GD2.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. * Copyright (C) 2013-2016 by James Bowman <jamesb@excamera.com>
  3. * Gameduino 2 library for Arduino, Arduino Due, Raspberry Pi.
  4. *
  5. */
  6. #ifndef _GD2_H_INCLUDED
  7. #define _GD2_H_INCLUDED
  8. #if defined(RASPBERRY_PI) || defined(DUMPDEV)
  9. #include "wiring.h"
  10. #endif
  11. #include "Arduino.h"
  12. #include <stdarg.h>
  13. #define RGB(r, g, b) ((uint32_t)((((r) & 0xffL) << 16) | (((g) & 0xffL) << 8) | ((b) & 0xffL)))
  14. #define F8(x) (int((x) * 256L))
  15. #define F16(x) ((int32_t)((x) * 65536L))
  16. #define GD_CALIBRATE 1
  17. #define GD_TRIM 2
  18. #define GD_STORAGE 4
  19. #ifdef __SAM3X8E__
  20. #define __DUE__ 1
  21. #endif
  22. ////////////////////////////////////////////////////////////////////////
  23. // Decide if we want to compile in SDcard support
  24. //
  25. // For stock Arduino models: yes
  26. // Raspberry PI: no
  27. // Arduino Due: no
  28. //
  29. #if !defined(RASPBERRY_PI) && !defined(DUMPDEV)
  30. #define SDCARD 1
  31. #else
  32. #define SDCARD 0
  33. #endif
  34. #if defined(__DUE__)
  35. #define MOSI 11
  36. #define MISO 12
  37. #define SCK 13 // B.27
  38. class ASPI_t {
  39. public:
  40. void begin(void) {
  41. pinMode(MOSI, OUTPUT);
  42. pinMode(MISO, INPUT);
  43. pinMode(SCK, OUTPUT);
  44. digitalWrite(SCK, 0);
  45. // PIOB->PIO_PER = PIO_PB27;
  46. // PIOB->PIO_CODR = PIO_PB27;
  47. // PIOB->PIO_PUDR = PIO_PB27;
  48. }
  49. byte transfer(byte x ) {
  50. byte r = 0;
  51. for (byte i = 8; i; i--) {
  52. if (x & 0x80)
  53. PIOD->PIO_SODR = PIO_PD7;
  54. else
  55. PIOD->PIO_CODR = PIO_PD7;
  56. // digitalWrite(MOSI, (x >> 7) & 1);
  57. x <<= 1;
  58. // digitalWrite(SCK, 1);
  59. PIOB->PIO_SODR = PIO_PB27;
  60. r <<= 1;
  61. r |= digitalRead(MISO);
  62. // digitalWrite(SCK, 0);
  63. PIOB->PIO_CODR = PIO_PB27;
  64. }
  65. return r;
  66. }
  67. };
  68. static class ASPI_t ASPI;
  69. #define SPI ASPI
  70. #endif
  71. #if SDCARD
  72. #if defined(VERBOSE) && (VERBOSE > 0)
  73. #define INFO(X) Serial.println((X))
  74. #if defined(RASPBERRY_PI)
  75. #define REPORT(VAR) fprintf(stderr, #VAR "=%d\n", (VAR))
  76. #else
  77. #define REPORT(VAR) (Serial.print(#VAR "="), Serial.print(VAR, DEC), Serial.print(' '), Serial.println(VAR, HEX))
  78. #endif
  79. #else
  80. #define INFO(X)
  81. #define REPORT(X)
  82. #endif
  83. struct dirent {
  84. char name[8];
  85. char ext[3];
  86. byte attribute;
  87. byte reserved[8];
  88. uint16_t cluster_hi; // FAT32 only
  89. uint16_t time;
  90. uint16_t date;
  91. uint16_t cluster;
  92. uint32_t size;
  93. };
  94. // https://www.sdcard.org/downloads/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
  95. // page 22
  96. // http://mac6.ma.psu.edu/space2008/RockSat/microController/sdcard_appnote_foust.pdf
  97. // http://elm-chan.org/docs/mmc/mmc_e.html
  98. // http://www.pjrc.com/tech/8051/ide/fat32.html
  99. #define FAT16 0
  100. #define FAT32 1
  101. #define DD
  102. class sdcard {
  103. public:
  104. void sel() {
  105. digitalWrite(pin, LOW);
  106. delay(1);
  107. }
  108. void desel() {
  109. digitalWrite(pin, HIGH);
  110. SPI.transfer(0xff); // force DO release
  111. }
  112. void sd_delay(byte n) {
  113. while (n--) {
  114. DD SPI.transfer(0xff);
  115. }
  116. }
  117. void cmd(byte cmd, uint32_t lba = 0, uint8_t crc = 0x95) {
  118. #if VERBOSE > 1
  119. Serial.print("cmd ");
  120. Serial.print(cmd, DEC);
  121. Serial.print(" ");
  122. Serial.print(lba, HEX);
  123. Serial.println();
  124. #endif
  125. sel();
  126. // DD SPI.transfer(0xff);
  127. DD SPI.transfer(0x40 | cmd);
  128. DD SPI.transfer(0xff & (lba >> 24));
  129. DD SPI.transfer(0xff & (lba >> 16));
  130. DD SPI.transfer(0xff & (lba >> 8));
  131. DD SPI.transfer(0xff & (lba));
  132. DD SPI.transfer(crc);
  133. // DD SPI.transfer(0xff);
  134. }
  135. byte response() {
  136. byte r;
  137. DD
  138. r = SPI.transfer(0xff);
  139. while (r & 0x80) {
  140. DD
  141. r = SPI.transfer(0xff);
  142. }
  143. return r;
  144. }
  145. byte R1() { // read response R1
  146. byte r = response();
  147. desel();
  148. SPI.transfer(0xff); // trailing byte
  149. return r;
  150. }
  151. byte sdR3(uint32_t &ocr) { // read response R3
  152. byte r = response();
  153. for (byte i = 4; i; i--)
  154. ocr = (ocr << 8) | SPI.transfer(0xff);
  155. SPI.transfer(0xff); // trailing byte
  156. desel();
  157. return r;
  158. }
  159. byte sdR7() { // read response R3
  160. byte r = response();
  161. for (byte i = 4; i; i--)
  162. // Serial.println(SPI.transfer(0xff), HEX);
  163. SPI.transfer(0xff);
  164. desel();
  165. return r;
  166. }
  167. void appcmd(byte cc, uint32_t lba = 0) {
  168. cmd(55); R1();
  169. cmd(cc, lba);
  170. }
  171. void begin(byte p) {
  172. byte type_code;
  173. byte sdhc;
  174. pin = p;
  175. pinMode(pin, OUTPUT);
  176. #if !defined(__DUE__) && !defined(TEENSYDUINO)
  177. SPI.setClockDivider(SPI_CLOCK_DIV64);
  178. #endif
  179. desel();
  180. // for (;;) SPI.transfer(0xff);
  181. delay(10); // wait for boot
  182. sd_delay(10); // deselected, 80 pulses
  183. INFO("Attempting card reset... ");
  184. byte r1;
  185. static int attempts;
  186. attempts = 0;
  187. do { // reset, enter idle
  188. cmd(0);
  189. while ((r1 = SPI.transfer(0xff)) & 0x80)
  190. if (++attempts == 1000)
  191. goto finished;
  192. desel();
  193. SPI.transfer(0xff); // trailing byte
  194. REPORT(r1);
  195. } while (r1 != 1);
  196. INFO("reset ok\n");
  197. sdhc = 0;
  198. cmd(8, 0x1aa, 0x87);
  199. r1 = sdR7();
  200. sdhc = (r1 == 1);
  201. REPORT(sdhc);
  202. INFO("Sending card init command");
  203. while (1) {
  204. appcmd(41, sdhc ? (1UL << 30) : 0); // card init
  205. r1 = R1();
  206. #if VERBOSE
  207. Serial.println(r1, HEX);
  208. #endif
  209. if ((r1 & 1) == 0)
  210. break;
  211. delay(1);
  212. }
  213. INFO("OK");
  214. if (sdhc) {
  215. cmd(58);
  216. uint32_t OCR = 0;
  217. sdR3(OCR);
  218. REPORT(OCR);
  219. ccs = 1UL & (OCR >> 30);
  220. } else {
  221. ccs = 0;
  222. }
  223. REPORT(ccs);
  224. // Test point: dump sector 0 to serial.
  225. // should see first 512 bytes of card, ending 55 AA.
  226. #if 0
  227. if (0) {
  228. cmd17(0);
  229. for (int i = 0; i < 512; i++) {
  230. delay(10);
  231. byte b = SPI.transfer(0xff);
  232. Serial.print(b, HEX);
  233. Serial.print(' ');
  234. if ((i & 15) == 15)
  235. Serial.println();
  236. }
  237. desel();
  238. for (;;);
  239. }
  240. #endif
  241. #if !defined(__DUE__)
  242. SPI.setClockDivider(SPI_CLOCK_DIV2);
  243. SPSR = (1 << SPI2X);
  244. #endif
  245. type_code = rd(0x1be + 0x4);
  246. switch (type_code) {
  247. default:
  248. type = FAT16;
  249. break;
  250. case 0x0b:
  251. case 0x0c:
  252. type = FAT32;
  253. break;
  254. }
  255. REPORT(type_code);
  256. o_partition = 512L * rd4(0x1be + 0x8);
  257. sectors_per_cluster = rd(o_partition + 0xd);
  258. reserved_sectors = rd2(o_partition + 0xe);
  259. cluster_size = 512L * sectors_per_cluster;
  260. REPORT(sectors_per_cluster);
  261. // Serial.println("Bytes per sector: %d\n", rd2(o_partition + 0xb));
  262. // Serial.println("Sectors per cluster: %d\n", sectors_per_cluster);
  263. if (type == FAT16) {
  264. max_root_dir_entries = rd2(o_partition + 0x11);
  265. sectors_per_fat = rd2(o_partition + 0x16);
  266. o_fat = o_partition + 512L * reserved_sectors;
  267. o_root = o_fat + (2 * 512L * sectors_per_fat);
  268. // data area starts with cluster 2, so offset it here
  269. o_data = o_root + (max_root_dir_entries * 32L) - (2L * cluster_size);
  270. } else {
  271. uint32_t sectors_per_fat = rd4(o_partition + 0x24);
  272. root_dir_first_cluster = rd4(o_partition + 0x2c);
  273. uint32_t fat_begin_lba = (o_partition >> 9) + reserved_sectors;
  274. uint32_t cluster_begin_lba = (o_partition >> 9) + reserved_sectors + (2 * sectors_per_fat);
  275. o_fat = 512L * fat_begin_lba;
  276. o_root = (512L * (cluster_begin_lba + (root_dir_first_cluster - 2) * sectors_per_cluster));
  277. o_data = (512L * (cluster_begin_lba - 2 * sectors_per_cluster));
  278. }
  279. finished:
  280. INFO("finished");
  281. ;
  282. }
  283. void cmd17(uint32_t off) {
  284. if (ccs)
  285. cmd(17, off >> 9);
  286. else
  287. cmd(17, off & ~511L);
  288. R1();
  289. sel();
  290. while (SPI.transfer(0xff) != 0xfe)
  291. ;
  292. }
  293. void rdn(byte *d, uint32_t off, uint16_t n) {
  294. cmd17(off);
  295. uint16_t i;
  296. uint16_t bo = (off & 511);
  297. for (i = 0; i < bo; i++)
  298. SPI.transfer(0xff);
  299. for (i = 0; i < n; i++)
  300. *d++ = SPI.transfer(0xff);
  301. for (i = 0; i < (514 - bo - n); i++)
  302. SPI.transfer(0xff);
  303. desel();
  304. }
  305. uint32_t rd4(uint32_t off) {
  306. uint32_t r;
  307. rdn((byte*)&r, off, sizeof(r));
  308. return r;
  309. }
  310. uint16_t rd2(uint32_t off) {
  311. uint16_t r;
  312. rdn((byte*)&r, off, sizeof(r));
  313. return r;
  314. }
  315. byte rd(uint32_t off) {
  316. byte r;
  317. rdn((byte*)&r, off, sizeof(r));
  318. return r;
  319. }
  320. byte pin;
  321. byte ccs;
  322. byte type;
  323. uint16_t sectors_per_cluster;
  324. uint16_t reserved_sectors;
  325. uint16_t max_root_dir_entries;
  326. uint16_t sectors_per_fat;
  327. uint16_t cluster_size;
  328. uint32_t root_dir_first_cluster;
  329. // These are all linear addresses, hence the o_ prefix
  330. uint32_t o_partition;
  331. uint32_t o_fat;
  332. uint32_t o_root;
  333. uint32_t o_data;
  334. };
  335. static void dos83(byte dst[11], const char *ps)
  336. {
  337. byte i = 0;
  338. while (*ps) {
  339. if (*ps != '.')
  340. dst[i++] = toupper(*ps);
  341. else {
  342. while (i < 8)
  343. dst[i++] = ' ';
  344. }
  345. ps++;
  346. }
  347. while (i < 11)
  348. dst[i++] = ' ';
  349. }
  350. #else
  351. class sdcard {
  352. public:
  353. void begin(int p) {};
  354. };
  355. #endif
  356. ////////////////////////////////////////////////////////////////////////
  357. class GDClass {
  358. public:
  359. int w, h;
  360. void begin(uint8_t options = (GD_CALIBRATE | GD_TRIM | GD_STORAGE));
  361. uint16_t random();
  362. uint16_t random(uint16_t n);
  363. void seed(uint16_t n);
  364. int16_t rsin(int16_t r, uint16_t th);
  365. int16_t rcos(int16_t r, uint16_t th);
  366. void polar(int &x, int &y, int16_t r, uint16_t th);
  367. uint16_t atan2(int16_t y, int16_t x);
  368. void copy(const PROGMEM uint8_t *src, int count);
  369. void copyram(byte *src, int count);
  370. void self_calibrate(void);
  371. void swap(void);
  372. void flush(void);
  373. void finish(void);
  374. void play(uint8_t instrument, uint8_t note = 0);
  375. void sample(uint32_t start, uint32_t len, uint16_t freq, uint16_t format, int loop = 0);
  376. void get_inputs(void);
  377. void get_accel(int &x, int &y, int &z);
  378. struct {
  379. uint16_t track_tag;
  380. uint16_t track_val;
  381. uint16_t rz;
  382. uint16_t __dummy_1;
  383. int16_t y;
  384. int16_t x;
  385. int16_t tag_y;
  386. int16_t tag_x;
  387. uint8_t tag;
  388. uint8_t ptag;
  389. } inputs;
  390. void AlphaFunc(byte func, byte ref);
  391. void Begin(byte prim);
  392. void BitmapHandle(byte handle);
  393. void BitmapLayout(byte format, uint16_t linestride, uint16_t height);
  394. void BitmapSize(byte filter, byte wrapx, byte wrapy, uint16_t width, uint16_t height);
  395. void BitmapSource(uint32_t addr);
  396. void BitmapTransformA(int32_t a);
  397. void BitmapTransformB(int32_t b);
  398. void BitmapTransformC(int32_t c);
  399. void BitmapTransformD(int32_t d);
  400. void BitmapTransformE(int32_t e);
  401. void BitmapTransformF(int32_t f);
  402. void BlendFunc(byte src, byte dst);
  403. void Call(uint16_t dest);
  404. void Cell(byte cell);
  405. void ClearColorA(byte alpha);
  406. void ClearColorRGB(byte red, byte green, byte blue);
  407. void ClearColorRGB(uint32_t rgb);
  408. void Clear(byte c, byte s, byte t);
  409. void Clear(void);
  410. void ClearStencil(byte s);
  411. void ClearTag(byte s);
  412. void ColorA(byte alpha);
  413. void ColorMask(byte r, byte g, byte b, byte a);
  414. void ColorRGB(byte red, byte green, byte blue);
  415. void ColorRGB(uint32_t rgb);
  416. void Display(void);
  417. void End(void);
  418. void Jump(uint16_t dest);
  419. void LineWidth(uint16_t width);
  420. void Macro(byte m);
  421. void PointSize(uint16_t size);
  422. void RestoreContext(void);
  423. void Return(void);
  424. void SaveContext(void);
  425. void ScissorSize(uint16_t width, uint16_t height);
  426. void ScissorXY(uint16_t x, uint16_t y);
  427. void StencilFunc(byte func, byte ref, byte mask);
  428. void StencilMask(byte mask);
  429. void StencilOp(byte sfail, byte spass);
  430. void TagMask(byte mask);
  431. void Tag(byte s);
  432. void Vertex2f(int16_t x, int16_t y);
  433. void Vertex2ii(uint16_t x, uint16_t y, byte handle = 0, byte cell = 0);
  434. void VertexFormat(byte frac);
  435. void BitmapLayoutH(byte linestride, byte height);
  436. void BitmapSizeH(byte width, byte height);
  437. void PaletteSource(uint32_t addr);
  438. void VertexTranslateX(uint32_t x);
  439. void VertexTranslateY(uint32_t y);
  440. void Nop(void);
  441. // Higher-level graphics commands
  442. void cmd_append(uint32_t ptr, uint32_t num);
  443. void cmd_bgcolor(uint32_t c);
  444. void cmd_button(int16_t x, int16_t y, uint16_t w, uint16_t h, byte font, uint16_t options, const char *s);
  445. void cmd_calibrate(void);
  446. void cmd_clock(int16_t x, int16_t y, int16_t r, uint16_t options, uint16_t h, uint16_t m, uint16_t s, uint16_t ms);
  447. void cmd_coldstart(void);
  448. void cmd_dial(int16_t x, int16_t y, int16_t r, uint16_t options, uint16_t val);
  449. void cmd_dlstart(void);
  450. void cmd_fgcolor(uint32_t c);
  451. void cmd_gauge(int16_t x, int16_t y, int16_t r, uint16_t options, uint16_t major, uint16_t minor, uint16_t val, uint16_t range);
  452. void cmd_getmatrix(void);
  453. void cmd_getprops(uint32_t &ptr, uint32_t &w, uint32_t &h);
  454. void cmd_getptr(void);
  455. void cmd_gradcolor(uint32_t c);
  456. void cmd_gradient(int16_t x0, int16_t y0, uint32_t rgb0, int16_t x1, int16_t y1, uint32_t rgb1);
  457. void cmd_inflate(uint32_t ptr);
  458. void cmd_interrupt(uint32_t ms);
  459. void cmd_keys(int16_t x, int16_t y, int16_t w, int16_t h, byte font, uint16_t options, const char*s);
  460. void cmd_loadidentity(void);
  461. void cmd_loadimage(uint32_t ptr, int32_t options);
  462. void cmd_memcpy(uint32_t dest, uint32_t src, uint32_t num);
  463. void cmd_memset(uint32_t ptr, byte value, uint32_t num);
  464. uint32_t cmd_memcrc(uint32_t ptr, uint32_t num);
  465. void cmd_memwrite(uint32_t ptr, uint32_t num);
  466. void cmd_regwrite(uint32_t ptr, uint32_t val);
  467. void cmd_number(int16_t x, int16_t y, byte font, uint16_t options, uint32_t n);
  468. void cmd_progress(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t options, uint16_t val, uint16_t range);
  469. void cmd_regread(uint32_t ptr);
  470. void cmd_rotate(int32_t a);
  471. void cmd_scale(int32_t sx, int32_t sy);
  472. void cmd_screensaver(void);
  473. void cmd_scrollbar(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t options, uint16_t val, uint16_t size, uint16_t range);
  474. void cmd_setfont(byte font, uint32_t ptr);
  475. void cmd_setmatrix(void);
  476. void cmd_sketch(int16_t x, int16_t y, uint16_t w, uint16_t h, uint32_t ptr, uint16_t format);
  477. void cmd_slider(int16_t x, int16_t y, uint16_t w, uint16_t h, uint16_t options, uint16_t val, uint16_t range);
  478. void cmd_snapshot(uint32_t ptr);
  479. void cmd_spinner(int16_t x, int16_t y, byte style, byte scale);
  480. void cmd_stop(void);
  481. void cmd_swap(void);
  482. void cmd_text(int16_t x, int16_t y, byte font, uint16_t options, const char *s);
  483. void cmd_toggle(int16_t x, int16_t y, int16_t w, byte font, uint16_t options, uint16_t state, const char *s);
  484. void cmd_track(int16_t x, int16_t y, uint16_t w, uint16_t h, byte tag);
  485. void cmd_translate(int32_t tx, int32_t ty);
  486. void cmd_playvideo(int32_t options);
  487. void cmd_romfont(uint32_t font, uint32_t romslot);
  488. void cmd_mediafifo(uint32_t ptr, uint32_t size);
  489. void cmd_setbase(uint32_t b);
  490. void cmd_videoframe(uint32_t dst, uint32_t ptr);
  491. void cmd_snapshot2(uint32_t fmt, uint32_t ptr, int16_t x, int16_t y, int16_t w, int16_t h);
  492. void cmd_setfont2(uint32_t font, uint32_t ptr, uint32_t firstchar);
  493. void cmd_setrotate(uint32_t r);
  494. void cmd_videostart();
  495. void cmd_setbitmap(uint32_t source, uint16_t fmt, uint16_t w, uint16_t h);
  496. byte rd(uint32_t addr);
  497. void wr(uint32_t addr, uint8_t v);
  498. uint16_t rd16(uint32_t addr);
  499. void wr16(uint32_t addr, uint16_t v);
  500. uint32_t rd32(uint32_t addr);
  501. void wr32(uint32_t addr, uint32_t v);
  502. void wr_n(uint32_t addr, byte *src, uint32_t n);
  503. void cmd32(uint32_t b);
  504. void bulkrd(uint32_t a);
  505. void resume(void);
  506. void __end(void);
  507. void reset(void);
  508. void dumpscreen(void);
  509. byte load(const char *filename, void (*progress)(long, long) = NULL);
  510. void safeload(const char *filename);
  511. void alert(const char *message);
  512. sdcard SD;
  513. void storage(void);
  514. void tune(void);
  515. private:
  516. static void cFFFFFF(byte v);
  517. static void cI(uint32_t);
  518. static void ci(int32_t);
  519. static void cH(uint16_t);
  520. static void ch(int16_t);
  521. static void cs(const char *);
  522. static void fmtcmd(const char *fmt, ...);
  523. static void align(byte n);
  524. void cmdbyte(uint8_t b);
  525. uint32_t measure_freq(void);
  526. uint32_t rseed;
  527. };
  528. extern GDClass GD;
  529. extern byte ft8xx_model;
  530. #if SDCARD
  531. class Reader {
  532. public:
  533. int openfile(const char *filename) {
  534. int i = 0;
  535. byte dosname[11];
  536. dirent de;
  537. dos83(dosname, filename);
  538. do {
  539. GD.SD.rdn((byte*)&de, GD.SD.o_root + i * 32, sizeof(de));
  540. // Serial.println(de.name);
  541. if (0 == memcmp(de.name, dosname, 11)) {
  542. begin(de);
  543. return 1;
  544. }
  545. i++;
  546. } while (de.name[0]);
  547. return 0;
  548. }
  549. void begin(dirent &de) {
  550. nseq = 0;
  551. size = de.size;
  552. cluster0 = de.cluster;
  553. if (GD.SD.type == FAT32)
  554. cluster0 |= ((long)de.cluster_hi << 16);
  555. rewind();
  556. }
  557. void rewind(void) {
  558. cluster = cluster0;
  559. sector = 0;
  560. offset = 0;
  561. }
  562. void nextcluster() {
  563. if (GD.SD.type == FAT16)
  564. cluster = GD.SD.rd2(GD.SD.o_fat + 2 * cluster);
  565. else
  566. cluster = GD.SD.rd4(GD.SD.o_fat + 4 * cluster);
  567. #if VERBOSE
  568. Serial.print("nextcluster=");
  569. Serial.println(cluster, DEC);
  570. #endif
  571. }
  572. void fetch512(byte *dst) {
  573. #if defined(__DUE__) || defined(TEENSYDUINO)
  574. for (int i = 0; i < 512; i++)
  575. *dst++ = SPI.transfer(0xff);
  576. SPI.transfer(0xff); // consume CRC
  577. SPI.transfer(0xff);
  578. #else
  579. SPDR = 0xff;
  580. while (!(SPSR & _BV(SPIF))) ;
  581. for (int i = 0; i < 512; i++) {
  582. asm volatile("nop");
  583. asm volatile("nop");
  584. asm volatile("nop");
  585. asm volatile("nop");
  586. asm volatile("nop");
  587. asm volatile("nop");
  588. asm volatile("nop");
  589. asm volatile("nop");
  590. asm volatile("nop");
  591. asm volatile("nop");
  592. asm volatile("nop");
  593. *dst++ = SPDR;
  594. SPDR = 0xff;
  595. }
  596. while (!(SPSR & _BV(SPIF))) ;
  597. SPI.transfer(0xff);
  598. #endif
  599. GD.SD.desel();
  600. }
  601. void nextcluster2(byte *dst) {
  602. if (nseq) {
  603. nseq--;
  604. cluster++;
  605. return;
  606. }
  607. uint32_t off = GD.SD.o_fat + 4 * cluster;
  608. GD.SD.cmd17(off & ~511L);
  609. fetch512(dst);
  610. int i = off & 511;
  611. cluster = *(uint32_t*)&dst[i];
  612. uint32_t c = cluster;
  613. nseq = 0;
  614. for (uint32_t c = cluster;
  615. (i < 512) && *(uint32_t*)&dst[i] == c;
  616. i += 4, c++)
  617. nseq++;
  618. }
  619. void skipcluster() {
  620. nextcluster();
  621. offset += GD.SD.cluster_size;
  622. }
  623. void skipsector() {
  624. if (sector == GD.SD.sectors_per_cluster) {
  625. sector = 0;
  626. nextcluster();
  627. }
  628. sector++;
  629. offset += 512;
  630. }
  631. void seek(uint32_t o) {
  632. union {
  633. uint8_t buf[512];
  634. uint32_t fat32[128];
  635. uint16_t fat16[256];
  636. };
  637. uint32_t co = ~0;
  638. if (o < offset)
  639. rewind();
  640. while (offset < o) {
  641. if ((sector == GD.SD.sectors_per_cluster) && ((o - offset) > (long)GD.SD.cluster_size)) {
  642. uint32_t o;
  643. if (GD.SD.type == FAT16)
  644. o = (GD.SD.o_fat + 2 * cluster) & ~511;
  645. else
  646. o = (GD.SD.o_fat + 4 * cluster) & ~511;
  647. if (o != co) {
  648. GD.SD.rdn(buf, o, 512);
  649. co = o;
  650. }
  651. cluster = fat32[cluster & 127];
  652. offset += GD.SD.cluster_size;
  653. } else
  654. skipsector();
  655. }
  656. }
  657. void readsector(byte *dst) {
  658. if (sector == GD.SD.sectors_per_cluster) {
  659. sector = 0;
  660. nextcluster2(dst);
  661. }
  662. uint32_t off = GD.SD.o_data + ((long)GD.SD.cluster_size * cluster) + (512L * sector);
  663. GD.SD.cmd17(off & ~511L);
  664. sector++;
  665. offset += 512;
  666. fetch512(dst);
  667. }
  668. int eof(void) {
  669. return size <= offset;
  670. }
  671. uint32_t cluster, cluster0;
  672. uint32_t offset;
  673. uint32_t size;
  674. byte sector;
  675. byte nseq;
  676. };
  677. #endif
  678. typedef struct {
  679. byte handle;
  680. uint16_t w, h;
  681. uint16_t size;
  682. } shape_t;
  683. // Convert degrees to Furmans
  684. #define DEGREES(n) ((65536UL * (n)) / 360)
  685. #define NEVER 0
  686. #define LESS 1
  687. #define LEQUAL 2
  688. #define GREATER 3
  689. #define GEQUAL 4
  690. #define EQUAL 5
  691. #define NOTEQUAL 6
  692. #define ALWAYS 7
  693. #define ARGB1555 0
  694. #define L1 1
  695. #define L4 2
  696. #define L8 3
  697. #define RGB332 4
  698. #define ARGB2 5
  699. #define ARGB4 6
  700. #define RGB565 7
  701. #define PALETTED 8
  702. #define TEXT8X8 9
  703. #define TEXTVGA 10
  704. #define BARGRAPH 11
  705. #define NEAREST 0
  706. #define BILINEAR 1
  707. #define BORDER 0
  708. #define REPEAT 1
  709. #define KEEP 1
  710. #define REPLACE 2
  711. #define INCR 3
  712. #define DECR 4
  713. #define INVERT 5
  714. #define DLSWAP_DONE 0
  715. #define DLSWAP_LINE 1
  716. #define DLSWAP_FRAME 2
  717. #define INT_SWAP 1
  718. #define INT_TOUCH 2
  719. #define INT_TAG 4
  720. #define INT_SOUND 8
  721. #define INT_PLAYBACK 16
  722. #define INT_CMDEMPTY 32
  723. #define INT_CMDFLAG 64
  724. #define INT_CONVCOMPLETE 128
  725. #define TOUCHMODE_OFF 0
  726. #define TOUCHMODE_ONESHOT 1
  727. #define TOUCHMODE_FRAME 2
  728. #define TOUCHMODE_CONTINUOUS 3
  729. #define ZERO 0
  730. #define ONE 1
  731. #define SRC_ALPHA 2
  732. #define DST_ALPHA 3
  733. #define ONE_MINUS_SRC_ALPHA 4
  734. #define ONE_MINUS_DST_ALPHA 5
  735. #define BITMAPS 1
  736. #define POINTS 2
  737. #define LINES 3
  738. #define LINE_STRIP 4
  739. #define EDGE_STRIP_R 5
  740. #define EDGE_STRIP_L 6
  741. #define EDGE_STRIP_A 7
  742. #define EDGE_STRIP_B 8
  743. #define RECTS 9
  744. #define OPT_MONO 1
  745. #define OPT_NODL 2
  746. #define OPT_FLAT 256
  747. #define OPT_CENTERX 512
  748. #define OPT_CENTERY 1024
  749. #define OPT_CENTER (OPT_CENTERX | OPT_CENTERY)
  750. #define OPT_NOBACK 4096
  751. #define OPT_NOTICKS 8192
  752. #define OPT_NOHM 16384
  753. #define OPT_NOPOINTER 16384
  754. #define OPT_NOSECS 32768
  755. #define OPT_NOHANDS 49152
  756. #define OPT_RIGHTX 2048
  757. #define OPT_SIGNED 256
  758. #define OPT_NOTEAR 4
  759. #define OPT_FULLSCREEN 8
  760. #define OPT_MEDIAFIFO 16
  761. #define LINEAR_SAMPLES 0
  762. #define ULAW_SAMPLES 1
  763. #define ADPCM_SAMPLES 2
  764. // 'instrument' argument to GD.play()
  765. #define SILENCE 0x00
  766. #define SQUAREWAVE 0x01
  767. #define SINEWAVE 0x02
  768. #define SAWTOOTH 0x03
  769. #define TRIANGLE 0x04
  770. #define BEEPING 0x05
  771. #define ALARM 0x06
  772. #define WARBLE 0x07
  773. #define CAROUSEL 0x08
  774. #define PIPS(n) (0x0f + (n))
  775. #define HARP 0x40
  776. #define XYLOPHONE 0x41
  777. #define TUBA 0x42
  778. #define GLOCKENSPIEL 0x43
  779. #define ORGAN 0x44
  780. #define TRUMPET 0x45
  781. #define PIANO 0x46
  782. #define CHIMES 0x47
  783. #define MUSICBOX 0x48
  784. #define BELL 0x49
  785. #define CLICK 0x50
  786. #define SWITCH 0x51
  787. #define COWBELL 0x52
  788. #define NOTCH 0x53
  789. #define HIHAT 0x54
  790. #define KICKDRUM 0x55
  791. #define POP 0x56
  792. #define CLACK 0x57
  793. #define CHACK 0x58
  794. #define MUTE 0x60
  795. #define UNMUTE 0x61
  796. #define RAM_PAL 1056768UL
  797. #define RAM_CMD (ft8xx_model ? 0x308000UL : 0x108000UL)
  798. #define RAM_DL (ft8xx_model ? 0x300000UL : 0x100000UL)
  799. #define REG_CLOCK (ft8xx_model ? 0x302008UL : 0x102408UL)
  800. #define REG_CMD_DL (ft8xx_model ? 0x302100UL : 0x1024ecUL)
  801. #define REG_CMD_READ (ft8xx_model ? 0x3020f8UL : 0x1024e4UL)
  802. #define REG_CMD_WRITE (ft8xx_model ? 0x3020fcUL : 0x1024e8UL)
  803. #define REG_CPURESET (ft8xx_model ? 0x302020UL : 0x10241cUL)
  804. #define REG_CSPREAD (ft8xx_model ? 0x302068UL : 0x102464UL)
  805. #define REG_DITHER (ft8xx_model ? 0x302060UL : 0x10245cUL)
  806. #define REG_DLSWAP (ft8xx_model ? 0x302054UL : 0x102450UL)
  807. #define REG_FRAMES (ft8xx_model ? 0x302004UL : 0x102404UL)
  808. #define REG_FREQUENCY (ft8xx_model ? 0x30200cUL : 0x10240cUL)
  809. #define REG_GPIO (ft8xx_model ? 0x302094UL : 0x102490UL)
  810. #define REG_GPIO_DIR (ft8xx_model ? 0x302090UL : 0x10248cUL)
  811. #define REG_HCYCLE (ft8xx_model ? 0x30202cUL : 0x102428UL)
  812. #define REG_HOFFSET (ft8xx_model ? 0x302030UL : 0x10242cUL)
  813. #define REG_HSIZE (ft8xx_model ? 0x302034UL : 0x102430UL)
  814. #define REG_HSYNC0 (ft8xx_model ? 0x302038UL : 0x102434UL)
  815. #define REG_HSYNC1 (ft8xx_model ? 0x30203cUL : 0x102438UL)
  816. #define REG_ID (ft8xx_model ? 0x302000UL : 0x102400UL)
  817. #define REG_INT_EN (ft8xx_model ? 0x3020acUL : 0x10249cUL)
  818. #define REG_INT_FLAGS (ft8xx_model ? 0x3020a8UL : 0x102498UL)
  819. #define REG_INT_MASK (ft8xx_model ? 0x3020b0UL : 0x1024a0UL)
  820. #define REG_MACRO_0 (ft8xx_model ? 0x3020d8UL : 0x1024c8UL)
  821. #define REG_MACRO_1 (ft8xx_model ? 0x3020dcUL : 0x1024ccUL)
  822. #define REG_OUTBITS (ft8xx_model ? 0x30205cUL : 0x102458UL)
  823. #define REG_PCLK (ft8xx_model ? 0x302070UL : 0x10246cUL)
  824. #define REG_PCLK_POL (ft8xx_model ? 0x30206cUL : 0x102468UL)
  825. #define REG_PLAY (ft8xx_model ? 0x30208cUL : 0x102488UL)
  826. #define REG_PLAYBACK_FORMAT (ft8xx_model ? 0x3020c4UL : 0x1024b4UL)
  827. #define REG_PLAYBACK_FREQ (ft8xx_model ? 0x3020c0UL : 0x1024b0UL)
  828. #define REG_PLAYBACK_LENGTH (ft8xx_model ? 0x3020b8UL : 0x1024a8UL)
  829. #define REG_PLAYBACK_LOOP (ft8xx_model ? 0x3020c8UL : 0x1024b8UL)
  830. #define REG_PLAYBACK_PLAY (ft8xx_model ? 0x3020ccUL : 0x1024bcUL)
  831. #define REG_PLAYBACK_READPTR (ft8xx_model ? 0x3020bcUL : 0x1024acUL)
  832. #define REG_PLAYBACK_START (ft8xx_model ? 0x3020b4UL : 0x1024a4UL)
  833. #define REG_PWM_DUTY (ft8xx_model ? 0x3020d4UL : 0x1024c4UL)
  834. #define REG_PWM_HZ (ft8xx_model ? 0x3020d0UL : 0x1024c0UL)
  835. #define REG_ROTATE (ft8xx_model ? 0x302058UL : 0x102454UL)
  836. #define REG_SOUND (ft8xx_model ? 0x302088UL : 0x102484UL)
  837. #define REG_SWIZZLE (ft8xx_model ? 0x302064UL : 0x102460UL)
  838. #define REG_TAG (ft8xx_model ? 0x30207cUL : 0x102478UL)
  839. #define REG_TAG_X (ft8xx_model ? 0x302074UL : 0x102470UL)
  840. #define REG_TAG_Y (ft8xx_model ? 0x302078UL : 0x102474UL)
  841. #define REG_TOUCH_ADC_MODE (ft8xx_model ? 0x302108UL : 0x1024f4UL)
  842. #define REG_TOUCH_CHARGE (ft8xx_model ? 0x30210cUL : 0x1024f8UL)
  843. #define REG_TOUCH_DIRECT_XY (ft8xx_model ? 0x30218cUL : 0x102574UL)
  844. #define REG_TOUCH_DIRECT_Z1Z2 (ft8xx_model ? 0x302190UL : 0x102578UL)
  845. #define REG_TOUCH_MODE (ft8xx_model ? 0x302104UL : 0x1024f0UL)
  846. #define REG_TOUCH_OVERSAMPLE (ft8xx_model ? 0x302114UL : 0x102500UL)
  847. #define REG_TOUCH_RAW_XY (ft8xx_model ? 0x30211cUL : 0x102508UL)
  848. #define REG_TOUCH_RZ (ft8xx_model ? 0x302120UL : 0x10250cUL)
  849. #define REG_TOUCH_RZTHRESH (ft8xx_model ? 0x302118UL : 0x102504UL)
  850. #define REG_TOUCH_SCREEN_XY (ft8xx_model ? 0x302124UL : 0x102510UL)
  851. #define REG_TOUCH_SETTLE (ft8xx_model ? 0x302110UL : 0x1024fcUL)
  852. #define REG_TOUCH_TAG (ft8xx_model ? 0x30212cUL : 0x102518UL)
  853. #define REG_TOUCH_TAG_XY (ft8xx_model ? 0x302128UL : 0x102514UL)
  854. #define REG_TOUCH_TRANSFORM_A (ft8xx_model ? 0x302150UL : 0x10251cUL)
  855. #define REG_TOUCH_TRANSFORM_B (ft8xx_model ? 0x302154UL : 0x102520UL)
  856. #define REG_TOUCH_TRANSFORM_C (ft8xx_model ? 0x302158UL : 0x102524UL)
  857. #define REG_TOUCH_TRANSFORM_D (ft8xx_model ? 0x30215cUL : 0x102528UL)
  858. #define REG_TOUCH_TRANSFORM_E (ft8xx_model ? 0x302160UL : 0x10252cUL)
  859. #define REG_TOUCH_TRANSFORM_F (ft8xx_model ? 0x302164UL : 0x102530UL)
  860. #define REG_TRACKER (ft8xx_model ? 0x309000UL : 0x109000UL)
  861. #define REG_TRIM (ft8xx_model ? 0x302180UL : 0x10256cUL)
  862. #define REG_VCYCLE (ft8xx_model ? 0x302040UL : 0x10243cUL)
  863. #define REG_VOFFSET (ft8xx_model ? 0x302044UL : 0x102440UL)
  864. #define REG_VOL_PB (ft8xx_model ? 0x302080UL : 0x10247cUL)
  865. #define REG_VOL_SOUND (ft8xx_model ? 0x302084UL : 0x102480UL)
  866. #define REG_VSIZE (ft8xx_model ? 0x302048UL : 0x102444UL)
  867. #define REG_VSYNC0 (ft8xx_model ? 0x30204cUL : 0x102448UL)
  868. #define REG_VSYNC1 (ft8xx_model ? 0x302050UL : 0x10244cUL)
  869. #define REG_MEDIAFIFO_READ 0x309014
  870. #define REG_MEDIAFIFO_WRITE 0x309018
  871. #define VERTEX2II(x, y, handle, cell) \
  872. ((2UL << 30) | (((x) & 511UL) << 21) | (((y) & 511UL) << 12) | (((handle) & 31) << 7) | (((cell) & 127) << 0))
  873. #define ROM_PIXEL_FF 0xc0400UL
  874. class Poly {
  875. int x0, y0, x1, y1;
  876. int x[8], y[8];
  877. byte n;
  878. void restart() {
  879. n = 0;
  880. x0 = 16 * 480;
  881. x1 = 0;
  882. y0 = 16 * 272;
  883. y1 = 0;
  884. }
  885. void perim() {
  886. for (byte i = 0; i < n; i++)
  887. GD.Vertex2f(x[i], y[i]);
  888. GD.Vertex2f(x[0], y[0]);
  889. }
  890. public:
  891. void begin() {
  892. restart();
  893. GD.ColorMask(0,0,0,0);
  894. GD.StencilOp(KEEP, INVERT);
  895. GD.StencilFunc(ALWAYS, 255, 255);
  896. }
  897. void v(int _x, int _y) {
  898. x0 = min(x0, _x >> 4);
  899. x1 = max(x1, _x >> 4);
  900. y0 = min(y0, _y >> 4);
  901. y1 = max(y1, _y >> 4);
  902. x[n] = _x;
  903. y[n] = _y;
  904. n++;
  905. }
  906. void paint() {
  907. x0 = max(0, x0);
  908. y0 = max(0, y0);
  909. x1 = min(16 * 480, x1);
  910. y1 = min(16 * 272, y1);
  911. GD.ScissorXY(x0, y0);
  912. GD.ScissorSize(x1 - x0 + 1, y1 - y0 + 1);
  913. GD.Begin(EDGE_STRIP_B);
  914. perim();
  915. }
  916. void finish() {
  917. GD.ColorMask(1,1,1,1);
  918. GD.StencilFunc(EQUAL, 255, 255);
  919. GD.Begin(EDGE_STRIP_B);
  920. GD.Vertex2ii(0, 0);
  921. GD.Vertex2ii(511, 0);
  922. }
  923. void draw() {
  924. paint();
  925. finish();
  926. }
  927. void outline() {
  928. GD.Begin(LINE_STRIP);
  929. perim();
  930. }
  931. };
  932. #if SDCARD
  933. class Streamer {
  934. public:
  935. void begin(const char *rawsamples,
  936. uint16_t freq = 44100,
  937. byte format = ADPCM_SAMPLES,
  938. uint32_t _base = (0x40000UL - 8192), uint16_t size = 8192) {
  939. r.openfile(rawsamples);
  940. base = _base;
  941. mask = size - 1;
  942. wp = 0;
  943. for (byte i = 10; i; i--)
  944. feed();
  945. GD.sample(base, size, freq, format, 1);
  946. }
  947. int feed() {
  948. uint16_t rp = GD.rd32(REG_PLAYBACK_READPTR) - base;
  949. uint16_t freespace = mask & ((rp - 1) - wp);
  950. if (freespace >= 512) {
  951. // REPORT(base);
  952. // REPORT(rp);
  953. // REPORT(wp);
  954. // REPORT(freespace);
  955. // Serial.println();
  956. byte buf[512];
  957. // uint16_t n = min(512, r.size - r.offset);
  958. // n = (n + 3) & ~3; // force 32-bit alignment
  959. GD.__end();
  960. r.readsector(buf);
  961. GD.resume();
  962. GD.cmd_memwrite(base + wp, 512);
  963. GD.copyram(buf, 512);
  964. wp = (wp + 512) & mask;
  965. }
  966. return r.offset < r.size;
  967. }
  968. void progress(uint16_t &val, uint16_t &range) {
  969. uint32_t m = r.size;
  970. uint32_t p = min(r.offset, m);
  971. while (m > 0x10000) {
  972. m >>= 1;
  973. p >>= 1;
  974. }
  975. val = p;
  976. range = m;
  977. }
  978. private:
  979. Reader r;
  980. uint32_t base;
  981. uint16_t mask;
  982. uint16_t wp;
  983. };
  984. #else
  985. class Streamer {
  986. public:
  987. void begin(const char *rawsamples,
  988. uint16_t freq = 44100,
  989. byte format = ADPCM_SAMPLES,
  990. uint32_t _base = (0x40000UL - 4096), uint16_t size = 4096) {}
  991. int feed() {}
  992. void progress(uint16_t &val, uint16_t &range) {}
  993. };
  994. #endif
  995. #endif