wiring.h 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. #ifndef CS
  2. #if defined(ESP8266)
  3. #define CS D8
  4. #else
  5. #define CS 8
  6. #endif
  7. #endif
  8. #if defined(ESP8266)
  9. #define YIELD() yield()
  10. #else
  11. #define YIELD()
  12. #endif
  13. class GDTransport {
  14. private:
  15. byte model;
  16. public:
  17. void ios() {
  18. pinMode(CS, OUTPUT);
  19. digitalWrite(CS, HIGH);
  20. pinMode(SD_PIN, OUTPUT);
  21. digitalWrite(SD_PIN, HIGH);
  22. }
  23. void begin0() {
  24. ios();
  25. SPI.begin();
  26. #if defined(TEENSYDUINO) || defined(ARDUINO_ARCH_STM32L4)
  27. SPI.beginTransaction(SPISettings(3000000, MSBFIRST, SPI_MODE0));
  28. #else
  29. #if !defined(__DUE__) && !defined(ESP8266)
  30. SPI.setClockDivider(SPI_CLOCK_DIV2);
  31. SPSR = (1 << SPI2X);
  32. #endif
  33. #endif
  34. hostcmd(0x00);
  35. #if (BOARD != BOARD_GAMEDUINO23)
  36. hostcmd(0x44); // from external crystal
  37. #endif
  38. hostcmd(0x68);
  39. }
  40. void begin1() {
  41. #if 0
  42. delay(120);
  43. #else
  44. while ((__rd16(0xc0000UL) & 0xff) != 0x08)
  45. ;
  46. #endif
  47. // Test point: saturate SPI
  48. while (0) {
  49. digitalWrite(CS, LOW);
  50. SPI.transfer(0x55);
  51. digitalWrite(CS, HIGH);
  52. }
  53. #if 0
  54. // Test point: attempt to wake up FT8xx every 2 seconds
  55. while (0) {
  56. hostcmd(0x00);
  57. delay(120);
  58. hostcmd(0x68);
  59. delay(120);
  60. digitalWrite(CS, LOW);
  61. Serial.println(SPI.transfer(0x10), HEX);
  62. Serial.println(SPI.transfer(0x24), HEX);
  63. Serial.println(SPI.transfer(0x00), HEX);
  64. Serial.println(SPI.transfer(0xff), HEX);
  65. Serial.println(SPI.transfer(0x00), HEX);
  66. Serial.println(SPI.transfer(0x00), HEX);
  67. Serial.println();
  68. digitalWrite(CS, HIGH);
  69. delay(2000);
  70. }
  71. #endif
  72. // So that FT800,801 FT81x
  73. // model 0 1
  74. ft8xx_model = __rd16(0x0c0000) >> 12;
  75. wp = 0;
  76. freespace = 4096 - 4;
  77. stream();
  78. }
  79. void cmd32(uint32_t x) {
  80. if (freespace < 4) {
  81. getfree(4);
  82. }
  83. wp += 4;
  84. freespace -= 4;
  85. #if defined(ESP8266)
  86. // SPI.writeBytes((uint8_t*)&x, 4);
  87. SPI.write32(x, 0);
  88. #else
  89. union {
  90. uint32_t c;
  91. uint8_t b[4];
  92. };
  93. c = x;
  94. SPI.transfer(b[0]);
  95. SPI.transfer(b[1]);
  96. SPI.transfer(b[2]);
  97. SPI.transfer(b[3]);
  98. #endif
  99. }
  100. void cmdbyte(byte x) {
  101. if (freespace == 0) {
  102. getfree(1);
  103. }
  104. wp++;
  105. freespace--;
  106. SPI.transfer(x);
  107. }
  108. void cmd_n(byte *s, uint16_t n) {
  109. if (freespace < n) {
  110. getfree(n);
  111. }
  112. wp += n;
  113. freespace -= n;
  114. while (n > 8) {
  115. n -= 8;
  116. SPI.transfer(*s++);
  117. SPI.transfer(*s++);
  118. SPI.transfer(*s++);
  119. SPI.transfer(*s++);
  120. SPI.transfer(*s++);
  121. SPI.transfer(*s++);
  122. SPI.transfer(*s++);
  123. SPI.transfer(*s++);
  124. }
  125. while (n--)
  126. SPI.transfer(*s++);
  127. }
  128. void flush() {
  129. YIELD();
  130. getfree(0);
  131. }
  132. uint16_t rp() {
  133. uint16_t r = __rd16(REG_CMD_READ);
  134. if (r == 0xfff) {
  135. GD.alert("COPROCESSOR EXCEPTION");
  136. }
  137. return r;
  138. }
  139. void finish() {
  140. wp &= 0xffc;
  141. __end();
  142. __wr16(REG_CMD_WRITE, wp);
  143. while (rp() != wp)
  144. YIELD();
  145. stream();
  146. }
  147. byte rd(uint32_t addr)
  148. {
  149. __end(); // stop streaming
  150. __start(addr);
  151. SPI.transfer(0); // dummy
  152. byte r = SPI.transfer(0);
  153. stream();
  154. return r;
  155. }
  156. void wr(uint32_t addr, byte v)
  157. {
  158. __end(); // stop streaming
  159. __wstart(addr);
  160. SPI.transfer(v);
  161. stream();
  162. }
  163. uint16_t rd16(uint32_t addr)
  164. {
  165. uint16_t r = 0;
  166. __end(); // stop streaming
  167. __start(addr);
  168. SPI.transfer(0);
  169. r = SPI.transfer(0);
  170. r |= (SPI.transfer(0) << 8);
  171. stream();
  172. return r;
  173. }
  174. void wr16(uint32_t addr, uint32_t v)
  175. {
  176. __end(); // stop streaming
  177. __wstart(addr);
  178. SPI.transfer(v);
  179. SPI.transfer(v >> 8);
  180. stream();
  181. }
  182. uint32_t rd32(uint32_t addr)
  183. {
  184. __end(); // stop streaming
  185. __start(addr);
  186. SPI.transfer(0);
  187. union {
  188. uint32_t c;
  189. uint8_t b[4];
  190. };
  191. b[0] = SPI.transfer(0);
  192. b[1] = SPI.transfer(0);
  193. b[2] = SPI.transfer(0);
  194. b[3] = SPI.transfer(0);
  195. stream();
  196. return c;
  197. }
  198. void rd_n(byte *dst, uint32_t addr, uint16_t n)
  199. {
  200. __end(); // stop streaming
  201. __start(addr);
  202. SPI.transfer(0);
  203. while (n--)
  204. *dst++ = SPI.transfer(0);
  205. stream();
  206. }
  207. #if defined(ARDUINO) && !defined(__DUE__) && !defined(ESP8266) && !defined(ARDUINO_ARCH_STM32L4)
  208. void wr_n(uint32_t addr, byte *src, uint16_t n)
  209. {
  210. __end(); // stop streaming
  211. __wstart(addr);
  212. while (n--) {
  213. SPDR = *src++;
  214. asm volatile("nop");
  215. asm volatile("nop");
  216. asm volatile("nop");
  217. asm volatile("nop");
  218. asm volatile("nop");
  219. asm volatile("nop");
  220. asm volatile("nop");
  221. asm volatile("nop");
  222. asm volatile("nop");
  223. asm volatile("nop");
  224. }
  225. while (!(SPSR & _BV(SPIF))) ;
  226. stream();
  227. }
  228. #else
  229. void wr_n(uint32_t addr, byte *src, uint16_t n)
  230. {
  231. __end(); // stop streaming
  232. __wstart(addr);
  233. #if defined(ESP8266)
  234. SPI.writeBytes(src, n);
  235. #else
  236. while (n--)
  237. SPI.transfer(*src++);
  238. #endif
  239. stream();
  240. }
  241. #endif
  242. void wr32(uint32_t addr, unsigned long v)
  243. {
  244. __end(); // stop streaming
  245. __wstart(addr);
  246. SPI.transfer(v);
  247. SPI.transfer(v >> 8);
  248. SPI.transfer(v >> 16);
  249. SPI.transfer(v >> 24);
  250. stream();
  251. }
  252. uint32_t getwp(void) {
  253. return RAM_CMD + (wp & 0xffc);
  254. }
  255. void bulk(uint32_t addr) {
  256. __end(); // stop streaming
  257. __start(addr);
  258. }
  259. void resume(void) {
  260. stream();
  261. }
  262. static void __start(uint32_t addr) // start an SPI transaction to addr
  263. {
  264. digitalWrite(CS, LOW);
  265. SPI.transfer(addr >> 16);
  266. SPI.transfer(highByte(addr));
  267. SPI.transfer(lowByte(addr));
  268. }
  269. static void __wstart(uint32_t addr) // start an SPI write transaction to addr
  270. {
  271. digitalWrite(CS, LOW);
  272. SPI.transfer(0x80 | (addr >> 16));
  273. SPI.transfer(highByte(addr));
  274. SPI.transfer(lowByte(addr));
  275. }
  276. static void __end() // end the SPI transaction
  277. {
  278. digitalWrite(CS, HIGH);
  279. }
  280. void stop() // end the SPI transaction
  281. {
  282. wp &= 0xffc;
  283. __end();
  284. __wr16(REG_CMD_WRITE, wp);
  285. // while (__rd16(REG_CMD_READ) != wp) ;
  286. }
  287. void stream(void) {
  288. __end();
  289. __wstart(RAM_CMD + (wp & 0xfff));
  290. }
  291. static unsigned int __rd16(uint32_t addr)
  292. {
  293. unsigned int r;
  294. __start(addr);
  295. SPI.transfer(0); // dummy
  296. r = SPI.transfer(0);
  297. r |= (SPI.transfer(0) << 8);
  298. __end();
  299. return r;
  300. }
  301. static void __wr16(uint32_t addr, unsigned int v)
  302. {
  303. __wstart(addr);
  304. SPI.transfer(lowByte(v));
  305. SPI.transfer(highByte(v));
  306. __end();
  307. }
  308. static void hostcmd(byte a)
  309. {
  310. digitalWrite(CS, LOW);
  311. SPI.transfer(a);
  312. SPI.transfer(0x00);
  313. SPI.transfer(0x00);
  314. digitalWrite(CS, HIGH);
  315. }
  316. void getfree(uint16_t n)
  317. {
  318. wp &= 0xfff;
  319. __end();
  320. __wr16(REG_CMD_WRITE, wp & 0xffc);
  321. do {
  322. uint16_t fullness = (wp - rp()) & 4095;
  323. freespace = (4096 - 4) - fullness;
  324. } while (freespace < n);
  325. stream();
  326. }
  327. byte streaming;
  328. uint16_t wp;
  329. uint16_t freespace;
  330. };