wiring.h 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. #ifndef CS
  2. #define CS 8
  3. #endif
  4. class GDTransport {
  5. private:
  6. byte model;
  7. public:
  8. void ios() {
  9. pinMode(CS, OUTPUT);
  10. digitalWrite(CS, HIGH);
  11. pinMode(9, OUTPUT);
  12. digitalWrite(9, HIGH);
  13. SPI.begin();
  14. // for (;;) SPI.transfer(0x33);
  15. }
  16. void begin() {
  17. ios();
  18. SPI.begin();
  19. #ifndef __DUE__
  20. SPI.setClockDivider(SPI_CLOCK_DIV2);
  21. SPSR = (1 << SPI2X);
  22. #endif
  23. hostcmd(0x00);
  24. #if PROTO == 0
  25. hostcmd(0x44); // from external crystal
  26. #endif
  27. hostcmd(0x68);
  28. delay(120);
  29. while (0) {
  30. digitalWrite(CS, LOW);
  31. Serial.println(SPI.transfer(0x10), HEX);
  32. Serial.println(SPI.transfer(0x24), HEX);
  33. Serial.println(SPI.transfer(0x00), HEX);
  34. Serial.println(SPI.transfer(0xff), HEX);
  35. Serial.println(SPI.transfer(0x00), HEX);
  36. Serial.println(SPI.transfer(0x00), HEX);
  37. Serial.println();
  38. digitalWrite(CS, HIGH);
  39. delay(2000);
  40. }
  41. // So that FT800,801 FT81x
  42. // model 0 1
  43. ft8xx_model = rd(0x0c0001) >> 4;
  44. wp = 0;
  45. freespace = 4096 - 4;
  46. stream();
  47. }
  48. void cmd32(uint32_t x) {
  49. if (freespace < 4) {
  50. getfree(4);
  51. }
  52. wp += 4;
  53. freespace -= 4;
  54. union {
  55. uint32_t c;
  56. uint8_t b[4];
  57. };
  58. c = x;
  59. SPI.transfer(b[0]);
  60. SPI.transfer(b[1]);
  61. SPI.transfer(b[2]);
  62. SPI.transfer(b[3]);
  63. }
  64. void cmdbyte(byte x) {
  65. if (freespace == 0) {
  66. getfree(1);
  67. }
  68. wp++;
  69. freespace--;
  70. SPI.transfer(x);
  71. }
  72. void cmd_n(byte *s, uint16_t n) {
  73. if (freespace < n) {
  74. getfree(n);
  75. }
  76. wp += n;
  77. freespace -= n;
  78. while (n > 8) {
  79. n -= 8;
  80. SPI.transfer(*s++);
  81. SPI.transfer(*s++);
  82. SPI.transfer(*s++);
  83. SPI.transfer(*s++);
  84. SPI.transfer(*s++);
  85. SPI.transfer(*s++);
  86. SPI.transfer(*s++);
  87. SPI.transfer(*s++);
  88. }
  89. while (n--)
  90. SPI.transfer(*s++);
  91. }
  92. void flush() {
  93. getfree(0);
  94. }
  95. uint16_t rp() {
  96. uint16_t r = __rd16(REG_CMD_READ);
  97. if (r == 0xfff) {
  98. GD.alert("COPROCESSOR EXCEPTION");
  99. }
  100. return r;
  101. }
  102. void finish() {
  103. wp &= 0xffc;
  104. __end();
  105. __wr16(REG_CMD_WRITE, wp);
  106. while (rp() != wp)
  107. ;
  108. stream();
  109. }
  110. byte rd(uint32_t addr)
  111. {
  112. __end(); // stop streaming
  113. __start(addr);
  114. SPI.transfer(0); // dummy
  115. byte r = SPI.transfer(0);
  116. stream();
  117. return r;
  118. }
  119. void wr(uint32_t addr, byte v)
  120. {
  121. __end(); // stop streaming
  122. __wstart(addr);
  123. SPI.transfer(v);
  124. stream();
  125. }
  126. uint16_t rd16(uint32_t addr)
  127. {
  128. uint16_t r = 0;
  129. __end(); // stop streaming
  130. __start(addr);
  131. SPI.transfer(0);
  132. r = SPI.transfer(0);
  133. r |= (SPI.transfer(0) << 8);
  134. stream();
  135. return r;
  136. }
  137. void wr16(uint32_t addr, uint32_t v)
  138. {
  139. __end(); // stop streaming
  140. __wstart(addr);
  141. SPI.transfer(v);
  142. SPI.transfer(v >> 8);
  143. stream();
  144. }
  145. uint32_t rd32(uint32_t addr)
  146. {
  147. __end(); // stop streaming
  148. __start(addr);
  149. SPI.transfer(0);
  150. union {
  151. uint32_t c;
  152. uint8_t b[4];
  153. };
  154. b[0] = SPI.transfer(0);
  155. b[1] = SPI.transfer(0);
  156. b[2] = SPI.transfer(0);
  157. b[3] = SPI.transfer(0);
  158. stream();
  159. return c;
  160. }
  161. void rd_n(byte *dst, uint32_t addr, uint16_t n)
  162. {
  163. __end(); // stop streaming
  164. __start(addr);
  165. SPI.transfer(0);
  166. while (n--)
  167. *dst++ = SPI.transfer(0);
  168. stream();
  169. }
  170. void wr_n(uint32_t addr, byte *src, uint16_t n)
  171. {
  172. __end(); // stop streaming
  173. __wstart(addr);
  174. while (n--)
  175. SPI.transfer(*src++);
  176. stream();
  177. }
  178. void wr32(uint32_t addr, unsigned long v)
  179. {
  180. __end(); // stop streaming
  181. __wstart(addr);
  182. SPI.transfer(v);
  183. SPI.transfer(v >> 8);
  184. SPI.transfer(v >> 16);
  185. SPI.transfer(v >> 24);
  186. stream();
  187. }
  188. uint32_t getwp(void) {
  189. return RAM_CMD + (wp & 0xffc);
  190. }
  191. void bulk(uint32_t addr) {
  192. __end(); // stop streaming
  193. __start(addr);
  194. }
  195. void resume(void) {
  196. stream();
  197. }
  198. static void __start(uint32_t addr) // start an SPI transaction to addr
  199. {
  200. digitalWrite(CS, LOW);
  201. SPI.transfer(addr >> 16);
  202. SPI.transfer(highByte(addr));
  203. SPI.transfer(lowByte(addr));
  204. }
  205. static void __wstart(uint32_t addr) // start an SPI write transaction to addr
  206. {
  207. digitalWrite(CS, LOW);
  208. SPI.transfer(0x80 | (addr >> 16));
  209. SPI.transfer(highByte(addr));
  210. SPI.transfer(lowByte(addr));
  211. }
  212. static void __end() // end the SPI transaction
  213. {
  214. digitalWrite(CS, HIGH);
  215. }
  216. void stop() // end the SPI transaction
  217. {
  218. wp &= 0xffc;
  219. __end();
  220. __wr16(REG_CMD_WRITE, wp);
  221. // while (__rd16(REG_CMD_READ) != wp) ;
  222. }
  223. void stream(void) {
  224. __end();
  225. __wstart(RAM_CMD + (wp & 0xfff));
  226. }
  227. static unsigned int __rd16(uint32_t addr)
  228. {
  229. unsigned int r;
  230. __start(addr);
  231. SPI.transfer(0); // dummy
  232. r = SPI.transfer(0);
  233. r |= (SPI.transfer(0) << 8);
  234. __end();
  235. return r;
  236. }
  237. static void __wr16(uint32_t addr, unsigned int v)
  238. {
  239. __wstart(addr);
  240. SPI.transfer(lowByte(v));
  241. SPI.transfer(highByte(v));
  242. __end();
  243. }
  244. static void hostcmd(byte a)
  245. {
  246. digitalWrite(CS, LOW);
  247. SPI.transfer(a);
  248. SPI.transfer(0x00);
  249. SPI.transfer(0x00);
  250. digitalWrite(CS, HIGH);
  251. delay(60);
  252. }
  253. void getfree(uint16_t n)
  254. {
  255. wp &= 0xfff;
  256. __end();
  257. __wr16(REG_CMD_WRITE, wp & 0xffc);
  258. do {
  259. uint16_t fullness = (wp - rp()) & 4095;
  260. freespace = (4096 - 4) - fullness;
  261. } while (freespace < n);
  262. stream();
  263. }
  264. byte streaming;
  265. uint16_t wp;
  266. uint16_t freespace;
  267. };