sha256.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * FIPS-180-2 compliant SHA-256 implementation
  4. *
  5. * Copyright (C) 2001-2003 Christophe Devine
  6. */
  7. #ifndef USE_HOSTCC
  8. #include <common.h>
  9. #include <linux/string.h>
  10. #else
  11. #include <string.h>
  12. #endif /* USE_HOSTCC */
  13. #include <watchdog.h>
  14. #include <u-boot/sha256.h>
  15. const uint8_t sha256_der_prefix[SHA256_DER_LEN] = {
  16. 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
  17. 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
  18. 0x00, 0x04, 0x20
  19. };
  20. /*
  21. * 32-bit integer manipulation macros (big endian)
  22. */
  23. #ifndef GET_UINT32_BE
  24. #define GET_UINT32_BE(n,b,i) { \
  25. (n) = ( (unsigned long) (b)[(i) ] << 24 ) \
  26. | ( (unsigned long) (b)[(i) + 1] << 16 ) \
  27. | ( (unsigned long) (b)[(i) + 2] << 8 ) \
  28. | ( (unsigned long) (b)[(i) + 3] ); \
  29. }
  30. #endif
  31. #ifndef PUT_UINT32_BE
  32. #define PUT_UINT32_BE(n,b,i) { \
  33. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  34. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  35. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  36. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  37. }
  38. #endif
  39. void sha256_starts(sha256_context * ctx)
  40. {
  41. ctx->total[0] = 0;
  42. ctx->total[1] = 0;
  43. ctx->state[0] = 0x6A09E667;
  44. ctx->state[1] = 0xBB67AE85;
  45. ctx->state[2] = 0x3C6EF372;
  46. ctx->state[3] = 0xA54FF53A;
  47. ctx->state[4] = 0x510E527F;
  48. ctx->state[5] = 0x9B05688C;
  49. ctx->state[6] = 0x1F83D9AB;
  50. ctx->state[7] = 0x5BE0CD19;
  51. }
  52. static void sha256_process(sha256_context *ctx, const uint8_t data[64])
  53. {
  54. uint32_t temp1, temp2;
  55. uint32_t W[64];
  56. uint32_t A, B, C, D, E, F, G, H;
  57. GET_UINT32_BE(W[0], data, 0);
  58. GET_UINT32_BE(W[1], data, 4);
  59. GET_UINT32_BE(W[2], data, 8);
  60. GET_UINT32_BE(W[3], data, 12);
  61. GET_UINT32_BE(W[4], data, 16);
  62. GET_UINT32_BE(W[5], data, 20);
  63. GET_UINT32_BE(W[6], data, 24);
  64. GET_UINT32_BE(W[7], data, 28);
  65. GET_UINT32_BE(W[8], data, 32);
  66. GET_UINT32_BE(W[9], data, 36);
  67. GET_UINT32_BE(W[10], data, 40);
  68. GET_UINT32_BE(W[11], data, 44);
  69. GET_UINT32_BE(W[12], data, 48);
  70. GET_UINT32_BE(W[13], data, 52);
  71. GET_UINT32_BE(W[14], data, 56);
  72. GET_UINT32_BE(W[15], data, 60);
  73. #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
  74. #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
  75. #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
  76. #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
  77. #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
  78. #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
  79. #define F0(x,y,z) ((x & y) | (z & (x | y)))
  80. #define F1(x,y,z) (z ^ (x & (y ^ z)))
  81. #define R(t) \
  82. ( \
  83. W[t] = S1(W[t - 2]) + W[t - 7] + \
  84. S0(W[t - 15]) + W[t - 16] \
  85. )
  86. #define P(a,b,c,d,e,f,g,h,x,K) { \
  87. temp1 = h + S3(e) + F1(e,f,g) + K + x; \
  88. temp2 = S2(a) + F0(a,b,c); \
  89. d += temp1; h = temp1 + temp2; \
  90. }
  91. A = ctx->state[0];
  92. B = ctx->state[1];
  93. C = ctx->state[2];
  94. D = ctx->state[3];
  95. E = ctx->state[4];
  96. F = ctx->state[5];
  97. G = ctx->state[6];
  98. H = ctx->state[7];
  99. P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
  100. P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
  101. P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
  102. P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
  103. P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
  104. P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
  105. P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
  106. P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
  107. P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
  108. P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
  109. P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
  110. P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
  111. P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
  112. P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
  113. P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
  114. P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
  115. P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
  116. P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
  117. P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
  118. P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
  119. P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
  120. P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
  121. P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
  122. P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
  123. P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
  124. P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
  125. P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
  126. P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
  127. P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
  128. P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
  129. P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
  130. P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
  131. P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
  132. P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
  133. P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
  134. P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
  135. P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
  136. P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
  137. P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
  138. P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
  139. P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
  140. P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
  141. P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
  142. P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
  143. P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
  144. P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
  145. P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
  146. P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
  147. P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
  148. P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
  149. P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
  150. P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
  151. P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
  152. P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
  153. P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
  154. P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
  155. P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
  156. P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
  157. P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
  158. P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
  159. P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
  160. P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
  161. P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
  162. P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
  163. ctx->state[0] += A;
  164. ctx->state[1] += B;
  165. ctx->state[2] += C;
  166. ctx->state[3] += D;
  167. ctx->state[4] += E;
  168. ctx->state[5] += F;
  169. ctx->state[6] += G;
  170. ctx->state[7] += H;
  171. }
  172. void sha256_update(sha256_context *ctx, const uint8_t *input, uint32_t length)
  173. {
  174. uint32_t left, fill;
  175. if (!length)
  176. return;
  177. left = ctx->total[0] & 0x3F;
  178. fill = 64 - left;
  179. ctx->total[0] += length;
  180. ctx->total[0] &= 0xFFFFFFFF;
  181. if (ctx->total[0] < length)
  182. ctx->total[1]++;
  183. if (left && length >= fill) {
  184. memcpy((void *) (ctx->buffer + left), (void *) input, fill);
  185. sha256_process(ctx, ctx->buffer);
  186. length -= fill;
  187. input += fill;
  188. left = 0;
  189. }
  190. while (length >= 64) {
  191. sha256_process(ctx, input);
  192. length -= 64;
  193. input += 64;
  194. }
  195. if (length)
  196. memcpy((void *) (ctx->buffer + left), (void *) input, length);
  197. }
  198. static uint8_t sha256_padding[64] = {
  199. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  200. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  201. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  202. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  203. };
  204. void sha256_finish(sha256_context * ctx, uint8_t digest[32])
  205. {
  206. uint32_t last, padn;
  207. uint32_t high, low;
  208. uint8_t msglen[8];
  209. high = ((ctx->total[0] >> 29)
  210. | (ctx->total[1] << 3));
  211. low = (ctx->total[0] << 3);
  212. PUT_UINT32_BE(high, msglen, 0);
  213. PUT_UINT32_BE(low, msglen, 4);
  214. last = ctx->total[0] & 0x3F;
  215. padn = (last < 56) ? (56 - last) : (120 - last);
  216. sha256_update(ctx, sha256_padding, padn);
  217. sha256_update(ctx, msglen, 8);
  218. PUT_UINT32_BE(ctx->state[0], digest, 0);
  219. PUT_UINT32_BE(ctx->state[1], digest, 4);
  220. PUT_UINT32_BE(ctx->state[2], digest, 8);
  221. PUT_UINT32_BE(ctx->state[3], digest, 12);
  222. PUT_UINT32_BE(ctx->state[4], digest, 16);
  223. PUT_UINT32_BE(ctx->state[5], digest, 20);
  224. PUT_UINT32_BE(ctx->state[6], digest, 24);
  225. PUT_UINT32_BE(ctx->state[7], digest, 28);
  226. }
  227. /*
  228. * Output = SHA-256( input buffer ). Trigger the watchdog every 'chunk_sz'
  229. * bytes of input processed.
  230. */
  231. void sha256_csum_wd(const unsigned char *input, unsigned int ilen,
  232. unsigned char *output, unsigned int chunk_sz)
  233. {
  234. sha256_context ctx;
  235. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  236. const unsigned char *end;
  237. unsigned char *curr;
  238. int chunk;
  239. #endif
  240. sha256_starts(&ctx);
  241. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  242. curr = (unsigned char *)input;
  243. end = input + ilen;
  244. while (curr < end) {
  245. chunk = end - curr;
  246. if (chunk > chunk_sz)
  247. chunk = chunk_sz;
  248. sha256_update(&ctx, curr, chunk);
  249. curr += chunk;
  250. WATCHDOG_RESET();
  251. }
  252. #else
  253. sha256_update(&ctx, input, ilen);
  254. #endif
  255. sha256_finish(&ctx, output);
  256. }