lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <lmb.h>
  10. #define LMB_ALLOC_ANYWHERE 0
  11. void lmb_dump_all(struct lmb *lmb)
  12. {
  13. #ifdef DEBUG
  14. unsigned long i;
  15. debug("lmb_dump_all:\n");
  16. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  17. debug(" memory.size = 0x%llx\n",
  18. (unsigned long long)lmb->memory.size);
  19. for (i = 0; i < lmb->memory.cnt; i++) {
  20. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  21. (unsigned long long)lmb->memory.region[i].base);
  22. debug(" .size = 0x%llx\n",
  23. (unsigned long long)lmb->memory.region[i].size);
  24. }
  25. debug("\n reserved.cnt = 0x%lx\n",
  26. lmb->reserved.cnt);
  27. debug(" reserved.size = 0x%llx\n",
  28. (unsigned long long)lmb->reserved.size);
  29. for (i = 0; i < lmb->reserved.cnt; i++) {
  30. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  31. (unsigned long long)lmb->reserved.region[i].base);
  32. debug(" .size = 0x%llx\n",
  33. (unsigned long long)lmb->reserved.region[i].size);
  34. }
  35. #endif /* DEBUG */
  36. }
  37. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  38. phys_addr_t base2, phys_size_t size2)
  39. {
  40. const phys_addr_t base1_end = base1 + size1 - 1;
  41. const phys_addr_t base2_end = base2 + size2 - 1;
  42. return ((base1 <= base2_end) && (base2 <= base1_end));
  43. }
  44. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  45. phys_addr_t base2, phys_size_t size2)
  46. {
  47. if (base2 == base1 + size1)
  48. return 1;
  49. else if (base1 == base2 + size2)
  50. return -1;
  51. return 0;
  52. }
  53. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  54. unsigned long r2)
  55. {
  56. phys_addr_t base1 = rgn->region[r1].base;
  57. phys_size_t size1 = rgn->region[r1].size;
  58. phys_addr_t base2 = rgn->region[r2].base;
  59. phys_size_t size2 = rgn->region[r2].size;
  60. return lmb_addrs_adjacent(base1, size1, base2, size2);
  61. }
  62. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  63. {
  64. unsigned long i;
  65. for (i = r; i < rgn->cnt - 1; i++) {
  66. rgn->region[i].base = rgn->region[i + 1].base;
  67. rgn->region[i].size = rgn->region[i + 1].size;
  68. }
  69. rgn->cnt--;
  70. }
  71. /* Assumption: base addr of region 1 < base addr of region 2 */
  72. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  73. unsigned long r2)
  74. {
  75. rgn->region[r1].size += rgn->region[r2].size;
  76. lmb_remove_region(rgn, r2);
  77. }
  78. void lmb_init(struct lmb *lmb)
  79. {
  80. lmb->memory.cnt = 0;
  81. lmb->memory.size = 0;
  82. lmb->reserved.cnt = 0;
  83. lmb->reserved.size = 0;
  84. }
  85. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  86. {
  87. arch_lmb_reserve(lmb);
  88. board_lmb_reserve(lmb);
  89. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  90. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  91. }
  92. /* Initialize the struct, add memory and call arch/board reserve functions */
  93. void lmb_init_and_reserve(struct lmb *lmb, bd_t *bd, void *fdt_blob)
  94. {
  95. #ifdef CONFIG_NR_DRAM_BANKS
  96. int i;
  97. #endif
  98. lmb_init(lmb);
  99. #ifdef CONFIG_NR_DRAM_BANKS
  100. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  101. if (bd->bi_dram[i].size) {
  102. lmb_add(lmb, bd->bi_dram[i].start,
  103. bd->bi_dram[i].size);
  104. }
  105. }
  106. #else
  107. if (bd->bi_memsize)
  108. lmb_add(lmb, bd->bi_memstart, bd->bi_memsize);
  109. #endif
  110. lmb_reserve_common(lmb, fdt_blob);
  111. }
  112. /* Initialize the struct, add memory and call arch/board reserve functions */
  113. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  114. phys_size_t size, void *fdt_blob)
  115. {
  116. lmb_init(lmb);
  117. lmb_add(lmb, base, size);
  118. lmb_reserve_common(lmb, fdt_blob);
  119. }
  120. /* This routine called with relocation disabled. */
  121. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  122. {
  123. unsigned long coalesced = 0;
  124. long adjacent, i;
  125. if (rgn->cnt == 0) {
  126. rgn->region[0].base = base;
  127. rgn->region[0].size = size;
  128. rgn->cnt = 1;
  129. return 0;
  130. }
  131. /* First try and coalesce this LMB with another. */
  132. for (i = 0; i < rgn->cnt; i++) {
  133. phys_addr_t rgnbase = rgn->region[i].base;
  134. phys_size_t rgnsize = rgn->region[i].size;
  135. if ((rgnbase == base) && (rgnsize == size))
  136. /* Already have this region, so we're done */
  137. return 0;
  138. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  139. if (adjacent > 0) {
  140. rgn->region[i].base -= size;
  141. rgn->region[i].size += size;
  142. coalesced++;
  143. break;
  144. } else if (adjacent < 0) {
  145. rgn->region[i].size += size;
  146. coalesced++;
  147. break;
  148. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  149. /* regions overlap */
  150. return -1;
  151. }
  152. }
  153. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  154. lmb_coalesce_regions(rgn, i, i + 1);
  155. coalesced++;
  156. }
  157. if (coalesced)
  158. return coalesced;
  159. if (rgn->cnt >= MAX_LMB_REGIONS)
  160. return -1;
  161. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  162. for (i = rgn->cnt-1; i >= 0; i--) {
  163. if (base < rgn->region[i].base) {
  164. rgn->region[i + 1].base = rgn->region[i].base;
  165. rgn->region[i + 1].size = rgn->region[i].size;
  166. } else {
  167. rgn->region[i + 1].base = base;
  168. rgn->region[i + 1].size = size;
  169. break;
  170. }
  171. }
  172. if (base < rgn->region[0].base) {
  173. rgn->region[0].base = base;
  174. rgn->region[0].size = size;
  175. }
  176. rgn->cnt++;
  177. return 0;
  178. }
  179. /* This routine may be called with relocation disabled. */
  180. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  181. {
  182. struct lmb_region *_rgn = &(lmb->memory);
  183. return lmb_add_region(_rgn, base, size);
  184. }
  185. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  186. {
  187. struct lmb_region *rgn = &(lmb->reserved);
  188. phys_addr_t rgnbegin, rgnend;
  189. phys_addr_t end = base + size - 1;
  190. int i;
  191. rgnbegin = rgnend = 0; /* supress gcc warnings */
  192. /* Find the region where (base, size) belongs to */
  193. for (i = 0; i < rgn->cnt; i++) {
  194. rgnbegin = rgn->region[i].base;
  195. rgnend = rgnbegin + rgn->region[i].size - 1;
  196. if ((rgnbegin <= base) && (end <= rgnend))
  197. break;
  198. }
  199. /* Didn't find the region */
  200. if (i == rgn->cnt)
  201. return -1;
  202. /* Check to see if we are removing entire region */
  203. if ((rgnbegin == base) && (rgnend == end)) {
  204. lmb_remove_region(rgn, i);
  205. return 0;
  206. }
  207. /* Check to see if region is matching at the front */
  208. if (rgnbegin == base) {
  209. rgn->region[i].base = end + 1;
  210. rgn->region[i].size -= size;
  211. return 0;
  212. }
  213. /* Check to see if the region is matching at the end */
  214. if (rgnend == end) {
  215. rgn->region[i].size -= size;
  216. return 0;
  217. }
  218. /*
  219. * We need to split the entry - adjust the current one to the
  220. * beginging of the hole and add the region after hole.
  221. */
  222. rgn->region[i].size = base - rgn->region[i].base;
  223. return lmb_add_region(rgn, end + 1, rgnend - end);
  224. }
  225. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  226. {
  227. struct lmb_region *_rgn = &(lmb->reserved);
  228. return lmb_add_region(_rgn, base, size);
  229. }
  230. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  231. phys_size_t size)
  232. {
  233. unsigned long i;
  234. for (i = 0; i < rgn->cnt; i++) {
  235. phys_addr_t rgnbase = rgn->region[i].base;
  236. phys_size_t rgnsize = rgn->region[i].size;
  237. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  238. break;
  239. }
  240. return (i < rgn->cnt) ? i : -1;
  241. }
  242. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  243. {
  244. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  245. }
  246. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  247. {
  248. phys_addr_t alloc;
  249. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  250. if (alloc == 0)
  251. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  252. (ulong)size, (ulong)max_addr);
  253. return alloc;
  254. }
  255. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  256. {
  257. return addr & ~(size - 1);
  258. }
  259. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  260. {
  261. long i, rgn;
  262. phys_addr_t base = 0;
  263. phys_addr_t res_base;
  264. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  265. phys_addr_t lmbbase = lmb->memory.region[i].base;
  266. phys_size_t lmbsize = lmb->memory.region[i].size;
  267. if (lmbsize < size)
  268. continue;
  269. if (max_addr == LMB_ALLOC_ANYWHERE)
  270. base = lmb_align_down(lmbbase + lmbsize - size, align);
  271. else if (lmbbase < max_addr) {
  272. base = lmbbase + lmbsize;
  273. if (base < lmbbase)
  274. base = -1;
  275. base = min(base, max_addr);
  276. base = lmb_align_down(base - size, align);
  277. } else
  278. continue;
  279. while (base && lmbbase <= base) {
  280. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  281. if (rgn < 0) {
  282. /* This area isn't reserved, take it */
  283. if (lmb_add_region(&lmb->reserved, base,
  284. size) < 0)
  285. return 0;
  286. return base;
  287. }
  288. res_base = lmb->reserved.region[rgn].base;
  289. if (res_base < size)
  290. break;
  291. base = lmb_align_down(res_base - size, align);
  292. }
  293. }
  294. return 0;
  295. }
  296. /*
  297. * Try to allocate a specific address range: must be in defined memory but not
  298. * reserved
  299. */
  300. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  301. {
  302. long rgn;
  303. /* Check if the requested address is in one of the memory regions */
  304. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  305. if (rgn >= 0) {
  306. /*
  307. * Check if the requested end address is in the same memory
  308. * region we found.
  309. */
  310. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  311. lmb->memory.region[rgn].size,
  312. base + size - 1, 1)) {
  313. /* ok, reserve the memory */
  314. if (lmb_reserve(lmb, base, size) >= 0)
  315. return base;
  316. }
  317. }
  318. return 0;
  319. }
  320. /* Return number of bytes from a given address that are free */
  321. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  322. {
  323. int i;
  324. long rgn;
  325. /* check if the requested address is in the memory regions */
  326. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  327. if (rgn >= 0) {
  328. for (i = 0; i < lmb->reserved.cnt; i++) {
  329. if (addr < lmb->reserved.region[i].base) {
  330. /* first reserved range > requested address */
  331. return lmb->reserved.region[i].base - addr;
  332. }
  333. if (lmb->reserved.region[i].base +
  334. lmb->reserved.region[i].size > addr) {
  335. /* requested addr is in this reserved range */
  336. return 0;
  337. }
  338. }
  339. /* if we come here: no reserved ranges above requested addr */
  340. return lmb->memory.region[lmb->memory.cnt - 1].base +
  341. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  342. }
  343. return 0;
  344. }
  345. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  346. {
  347. int i;
  348. for (i = 0; i < lmb->reserved.cnt; i++) {
  349. phys_addr_t upper = lmb->reserved.region[i].base +
  350. lmb->reserved.region[i].size - 1;
  351. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  352. return 1;
  353. }
  354. return 0;
  355. }
  356. __weak void board_lmb_reserve(struct lmb *lmb)
  357. {
  358. /* please define platform specific board_lmb_reserve() */
  359. }
  360. __weak void arch_lmb_reserve(struct lmb *lmb)
  361. {
  362. /* please define platform specific arch_lmb_reserve() */
  363. }