/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/SkHalf.h" #include "include/private/SkTo.h" #include "src/core/SkRasterPipeline.h" #include "src/gpu/GrSwizzle.h" #include "tests/Test.h" DEF_TEST(SkRasterPipeline, r) { // Build and run a simple pipeline to exercise SkRasterPipeline, // drawing 50% transparent blue over opaque red in half-floats. uint64_t red = 0x3c00000000003c00ull, blue = 0x3800380000000000ull, result; SkRasterPipeline_MemoryCtx load_s_ctx = { &blue, 0 }, load_d_ctx = { &red, 0 }, store_ctx = { &result, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &load_s_ctx); p.append(SkRasterPipeline::load_f16_dst, &load_d_ctx); p.append(SkRasterPipeline::srcover); p.append(SkRasterPipeline::store_f16, &store_ctx); p.run(0,0,1,1); // We should see half-intensity magenta. REPORTER_ASSERT(r, ((result >> 0) & 0xffff) == 0x3800); REPORTER_ASSERT(r, ((result >> 16) & 0xffff) == 0x0000); REPORTER_ASSERT(r, ((result >> 32) & 0xffff) == 0x3800); REPORTER_ASSERT(r, ((result >> 48) & 0xffff) == 0x3c00); } DEF_TEST(SkRasterPipeline_empty, r) { // No asserts... just a test that this is safe to run. SkRasterPipeline_<256> p; p.run(0,0,20,1); } DEF_TEST(SkRasterPipeline_nonsense, r) { // No asserts... just a test that this is safe to run and terminates. // srcover() calls st->next(); this makes sure we've always got something there to call. SkRasterPipeline_<256> p; p.append(SkRasterPipeline::srcover); p.run(0,0,20,1); } DEF_TEST(SkRasterPipeline_JIT, r) { // This tests a couple odd corners that a JIT backend can stumble over. uint32_t buf[72] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; SkRasterPipeline_MemoryCtx src = { buf + 0, 0 }, dst = { buf + 36, 0 }; // Copy buf[x] to buf[x+36] for x in [15,35). SkRasterPipeline_<256> p; p.append(SkRasterPipeline:: load_8888, &src); p.append(SkRasterPipeline::store_8888, &dst); p.run(15,0, 20,1); for (int i = 0; i < 36; i++) { if (i < 15 || i == 35) { REPORTER_ASSERT(r, buf[i+36] == 0); } else { REPORTER_ASSERT(r, buf[i+36] == (uint32_t)(i - 11)); } } } static uint16_t h(float f) { // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. uint32_t sem; memcpy(&sem, &f, sizeof(sem)); uint32_t s = sem & 0x80000000, em = sem ^ s; // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. auto denorm = (int32_t)em < 0x38800000; // I32 comparison is often quicker, and always safe // here. return denorm ? SkTo(0) : SkTo((s>>16) + (em>>13) - ((127-15)<<10)); } DEF_TEST(SkRasterPipeline_tail, r) { { float data[][4] = { {00, 01, 02, 03}, {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}, }; float buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f32, &src); p.append(SkRasterPipeline::store_f32, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { for (unsigned k = 0; k < 4; k++) { if (buffer[j][k] != data[j][k]) { ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]); } } } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, SkScalarIsNaN(f)); } } } } { float data[][2] = { {00, 01}, {10, 11}, {20, 21}, {30, 31}, }; float buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rgf32, &src); p.append(SkRasterPipeline::store_f32, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { for (unsigned k = 0; k < 2; k++) { if (buffer[j][k] != data[j][k]) { ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]); } } if (buffer[j][2] != 0) { ERRORF(r, "(%u, 2) - a: 0 r: %g\n", j, buffer[j][2]); } if (buffer[j][3] != 1) { ERRORF(r, "(%u, 3) - a: 1 r: %g\n", j, buffer[j][3]); } } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, SkScalarIsNaN(f)); } } } } { float data[][4] = { {00, 01, 02, 03}, {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}, }; float buffer[4][2]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f32, &src); p.append(SkRasterPipeline::store_rgf32, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { for (unsigned k = 0; k < 2; k++) { if (buffer[j][k] != data[j][k]) { ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]); } } } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, SkScalarIsNaN(f)); } } } } { alignas(8) uint16_t data[][4] = { {h(00), h(01), h(02), h(03)}, {h(10), h(11), h(12), h(13)}, {h(20), h(21), h(22), h(23)}, {h(30), h(31), h(32), h(33)}, }; alignas(8) uint16_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &src); p.append(SkRasterPipeline::store_f16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { REPORTER_ASSERT(r, !memcmp(&data[j][0], &buffer[j][0], sizeof(buffer[j]))); } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, f == 0xffff); } } } } { alignas(8) uint16_t data[]= { h(00), h(10), h(20), h(30), }; alignas(8) uint16_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_af16, &src); p.append(SkRasterPipeline::store_f16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint16_t expected[] = {0, 0, 0, data[j]}; REPORTER_ASSERT(r, !memcmp(expected, &buffer[j][0], sizeof(buffer[j]))); } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, f == 0xffff); } } } } { alignas(8) uint16_t data[][4] = { {h(00), h(01), h(02), h(03)}, {h(10), h(11), h(12), h(13)}, {h(20), h(21), h(22), h(23)}, {h(30), h(31), h(32), h(33)}, }; alignas(8) uint16_t buffer[4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &src); p.append(SkRasterPipeline::store_af16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { REPORTER_ASSERT(r, !memcmp(&data[j][3], &buffer[j], sizeof(buffer[j]))); } for (int j = i; j < 4; j++) { REPORTER_ASSERT(r, buffer[j] == 0xffff); } } } { alignas(8) uint16_t data[][4] = { {h(00), h(01), h(02), h(03)}, {h(10), h(11), h(12), h(13)}, {h(20), h(21), h(22), h(23)}, {h(30), h(31), h(32), h(33)}, }; alignas(8) uint16_t buffer[4][2]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &src); p.append(SkRasterPipeline::store_rgf16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { REPORTER_ASSERT(r, !memcmp(&buffer[j], &data[j], 2 * sizeof(uint16_t))); } for (int j = i; j < 4; j++) { for (auto h : buffer[j]) { REPORTER_ASSERT(r, h == 0xffff); } } } } { alignas(8) uint16_t data[][2] = { {h(00), h(01)}, {h(10), h(11)}, {h(20), h(21)}, {h(30), h(31)}, }; alignas(8) uint16_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rgf16, &src); p.append(SkRasterPipeline::store_f16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint16_t expected[] = {data[j][0], data[j][1], h(0), h(1)}; REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected))); } for (int j = i; j < 4; j++) { for (auto h : buffer[j]) { REPORTER_ASSERT(r, h == 0xffff); } } } } } DEF_TEST(SkRasterPipeline_u16, r) { { alignas(8) uint16_t data[][2] = { {0x0000, 0x0111}, {0x1010, 0x1111}, {0x2020, 0x2121}, {0x3030, 0x3131}, }; uint8_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xab, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rg1616, &src); p.append(SkRasterPipeline::store_8888, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint8_t expected[] = { SkToU8(data[j][0] >> 8), SkToU8(data[j][1] >> 8), 000, 0xff }; REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected))); } for (int j = i; j < 4; j++) { for (auto b : buffer[j]) { REPORTER_ASSERT(r, b == 0xab); } } } } alignas(8) uint16_t data[] = { 0x0000, 0x1010, 0x2020, 0x3030, }; uint8_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_a16, &src); p.append(SkRasterPipeline::store_8888, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint8_t expected[] = {0x00, 0x00, 0x00, SkToU8(data[j] >> 8)}; REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected))); } for (int j = i; j < 4; j++) { for (auto b : buffer[j]) { REPORTER_ASSERT(r, b == 0xff); } } } { uint8_t data[][4] = { {0x00, 0x01, 0x02, 0x03}, {0x10, 0x11, 0x12, 0x13}, {0x20, 0x21, 0x22, 0x23}, {0x30, 0x31, 0x32, 0x33}, }; alignas(8) uint16_t buffer[4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_8888, &src); p.append(SkRasterPipeline::store_a16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint16_t expected = (data[j][3] << 8) | data[j][3]; REPORTER_ASSERT(r, buffer[j] == expected); } for (int j = i; j < 4; j++) { REPORTER_ASSERT(r, buffer[j] == 0xffff); } } } { alignas(8) uint16_t data[][4] = { {0x0000, 0x1000, 0x2000, 0x3000}, {0x0001, 0x1001, 0x2001, 0x3001}, {0x0002, 0x1002, 0x2002, 0x3002}, {0x0003, 0x1003, 0x2003, 0x3003}, }; alignas(8) uint16_t buffer[4][4]; SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_16161616, &src); p.append(SkRasterPipeline::swap_rb); p.append(SkRasterPipeline::store_16161616, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { uint16_t expected[4] = {data[j][2], data[j][1], data[j][0], data[j][3]}; REPORTER_ASSERT(r, !memcmp(&expected[0], &buffer[j], sizeof(expected))); } for (int j = i; j < 4; j++) { for (uint16_t u16 : buffer[j]) REPORTER_ASSERT(r, u16 == 0xffff); } } } } DEF_TEST(SkRasterPipeline_lowp, r) { uint32_t rgba[64]; for (int i = 0; i < 64; i++) { rgba[i] = (4*i+0) << 0 | (4*i+1) << 8 | (4*i+2) << 16 | (4*i+3) << 24; } SkRasterPipeline_MemoryCtx ptr = { rgba, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_8888, &ptr); p.append(SkRasterPipeline::swap_rb); p.append(SkRasterPipeline::store_8888, &ptr); p.run(0,0,64,1); for (int i = 0; i < 64; i++) { uint32_t want = (4*i+0) << 16 | (4*i+1) << 8 | (4*i+2) << 0 | (4*i+3) << 24; if (rgba[i] != want) { ERRORF(r, "got %08x, want %08x\n", rgba[i], want); } } } DEF_TEST(SkRasterPipeline_swizzle, r) { // This takes the lowp code path { uint16_t rg[64]; for (int i = 0; i < 64; i++) { rg[i] = (4*i+0) << 0 | (4*i+1) << 8; } GrSwizzle swizzle("g1b1"); SkRasterPipeline_MemoryCtx ptr = { rg, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rg88, &ptr); swizzle.apply(&p); p.append(SkRasterPipeline::store_rg88, &ptr); p.run(0,0,64,1); for (int i = 0; i < 64; i++) { uint32_t want = 0xff << 8 | (4*i+1) << 0; if (rg[i] != want) { ERRORF(r, "got %08x, want %08x\n", rg[i], want); } } } // This takes the highp code path { float rg[64][2]; for (int i = 0; i < 64; i++) { rg[i][0] = i + 1; rg[i][1] = 2 * i + 1; } GrSwizzle swizzle("0gra"); uint16_t buffer[64][4]; SkRasterPipeline_MemoryCtx src = { rg, 0 }, dst = { buffer, 0}; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rgf32, &src); swizzle.apply(&p); p.append(SkRasterPipeline::store_f16, &dst); p.run(0,0,64,1); for (int i = 0; i < 64; i++) { uint16_t want[4] { h(0), h(2 * i + 1), h(i + 1), h(1), }; REPORTER_ASSERT(r, !memcmp(want, buffer[i], sizeof(buffer[i]))); } } } DEF_TEST(SkRasterPipeline_lowp_clamp01, r) { // This may seem like a funny pipeline to create, // but it certainly shouldn't crash when you run it. uint32_t rgba = 0xff00ff00; SkRasterPipeline_MemoryCtx ptr = { &rgba, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_8888, &ptr); p.append(SkRasterPipeline::swap_rb); p.append(SkRasterPipeline::clamp_0); p.append(SkRasterPipeline::clamp_1); p.append(SkRasterPipeline::store_8888, &ptr); p.run(0,0,1,1); }