/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/SkColorData.h" #include "src/core/SkBlitRow.h" #include "src/core/SkOpts.h" #include "src/core/SkUtils.h" // Everyone agrees memcpy() is the best way to do this. static void blit_row_s32_opaque(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(255 == alpha); memcpy(dst, src, count * sizeof(SkPMColor)); } // We have SSE2, NEON, and portable implementations of // blit_row_s32_blend() and blit_row_s32a_blend(). // TODO(mtklein): can we do better in NEON than 2 pixels at a time? #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include static inline __m128i SkPMLerp_SSE2(const __m128i& src, const __m128i& dst, const unsigned src_scale) { // Computes dst + (((src - dst)*src_scale)>>8) const __m128i mask = _mm_set1_epi32(0x00FF00FF); // Unpack the 16x8-bit source into 2 8x16-bit splayed halves. __m128i src_rb = _mm_and_si128(mask, src); __m128i src_ag = _mm_srli_epi16(src, 8); __m128i dst_rb = _mm_and_si128(mask, dst); __m128i dst_ag = _mm_srli_epi16(dst, 8); // Compute scaled differences. __m128i diff_rb = _mm_sub_epi16(src_rb, dst_rb); __m128i diff_ag = _mm_sub_epi16(src_ag, dst_ag); __m128i s = _mm_set1_epi16(src_scale); diff_rb = _mm_mullo_epi16(diff_rb, s); diff_ag = _mm_mullo_epi16(diff_ag, s); // Pack the differences back together. diff_rb = _mm_srli_epi16(diff_rb, 8); diff_ag = _mm_andnot_si128(mask, diff_ag); __m128i diff = _mm_or_si128(diff_rb, diff_ag); // Add difference to destination. return _mm_add_epi8(dst, diff); } static void blit_row_s32_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha <= 255); auto src4 = (const __m128i*)src; auto dst4 = ( __m128i*)dst; while (count >= 4) { _mm_storeu_si128(dst4, SkPMLerp_SSE2(_mm_loadu_si128(src4), _mm_loadu_si128(dst4), SkAlpha255To256(alpha))); src4++; dst4++; count -= 4; } src = (const SkPMColor*)src4; dst = ( SkPMColor*)dst4; while (count --> 0) { *dst = SkPMLerp(*src, *dst, SkAlpha255To256(alpha)); src++; dst++; } } static inline __m128i SkBlendARGB32_SSE2(const __m128i& src, const __m128i& dst, const unsigned aa) { unsigned alpha = SkAlpha255To256(aa); __m128i src_scale = _mm_set1_epi16(alpha); // SkAlphaMulInv256(SkGetPackedA32(src), src_scale) __m128i dst_scale = _mm_srli_epi32(src, 24); // High words in dst_scale are 0, so it's safe to multiply with 16-bit src_scale. dst_scale = _mm_mullo_epi16(dst_scale, src_scale); dst_scale = _mm_sub_epi32(_mm_set1_epi32(0xFFFF), dst_scale); dst_scale = _mm_add_epi32(dst_scale, _mm_srli_epi32(dst_scale, 8)); dst_scale = _mm_srli_epi32(dst_scale, 8); // Duplicate scales into 2x16-bit pattern per pixel. dst_scale = _mm_shufflelo_epi16(dst_scale, _MM_SHUFFLE(2, 2, 0, 0)); dst_scale = _mm_shufflehi_epi16(dst_scale, _MM_SHUFFLE(2, 2, 0, 0)); const __m128i mask = _mm_set1_epi32(0x00FF00FF); // Unpack the 16x8-bit source/destination into 2 8x16-bit splayed halves. __m128i src_rb = _mm_and_si128(mask, src); __m128i src_ag = _mm_srli_epi16(src, 8); __m128i dst_rb = _mm_and_si128(mask, dst); __m128i dst_ag = _mm_srli_epi16(dst, 8); // Scale them. src_rb = _mm_mullo_epi16(src_rb, src_scale); src_ag = _mm_mullo_epi16(src_ag, src_scale); dst_rb = _mm_mullo_epi16(dst_rb, dst_scale); dst_ag = _mm_mullo_epi16(dst_ag, dst_scale); // Add the scaled source and destination. dst_rb = _mm_add_epi16(src_rb, dst_rb); dst_ag = _mm_add_epi16(src_ag, dst_ag); // Unsplay the halves back together. dst_rb = _mm_srli_epi16(dst_rb, 8); dst_ag = _mm_andnot_si128(mask, dst_ag); return _mm_or_si128(dst_rb, dst_ag); } static void blit_row_s32a_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha <= 255); auto src4 = (const __m128i*)src; auto dst4 = ( __m128i*)dst; while (count >= 4) { _mm_storeu_si128(dst4, SkBlendARGB32_SSE2(_mm_loadu_si128(src4), _mm_loadu_si128(dst4), alpha)); src4++; dst4++; count -= 4; } src = (const SkPMColor*)src4; dst = ( SkPMColor*)dst4; while (count --> 0) { *dst = SkBlendARGB32(*src, *dst, alpha); src++; dst++; } } #elif defined(SK_ARM_HAS_NEON) #include static void blit_row_s32_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha <= 255); uint16_t src_scale = SkAlpha255To256(alpha); uint16_t dst_scale = 256 - src_scale; while (count >= 2) { uint8x8_t vsrc, vdst, vres; uint16x8_t vsrc_wide, vdst_wide; vsrc = vreinterpret_u8_u32(vld1_u32(src)); vdst = vreinterpret_u8_u32(vld1_u32(dst)); vsrc_wide = vmovl_u8(vsrc); vsrc_wide = vmulq_u16(vsrc_wide, vdupq_n_u16(src_scale)); vdst_wide = vmull_u8(vdst, vdup_n_u8(dst_scale)); vdst_wide += vsrc_wide; vres = vshrn_n_u16(vdst_wide, 8); vst1_u32(dst, vreinterpret_u32_u8(vres)); src += 2; dst += 2; count -= 2; } if (count == 1) { uint8x8_t vsrc = vdup_n_u8(0), vdst = vdup_n_u8(0), vres; uint16x8_t vsrc_wide, vdst_wide; vsrc = vreinterpret_u8_u32(vld1_lane_u32(src, vreinterpret_u32_u8(vsrc), 0)); vdst = vreinterpret_u8_u32(vld1_lane_u32(dst, vreinterpret_u32_u8(vdst), 0)); vsrc_wide = vmovl_u8(vsrc); vsrc_wide = vmulq_u16(vsrc_wide, vdupq_n_u16(src_scale)); vdst_wide = vmull_u8(vdst, vdup_n_u8(dst_scale)); vdst_wide += vsrc_wide; vres = vshrn_n_u16(vdst_wide, 8); vst1_lane_u32(dst, vreinterpret_u32_u8(vres), 0); } } static void blit_row_s32a_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha < 255); unsigned alpha256 = SkAlpha255To256(alpha); if (count & 1) { uint8x8_t vsrc = vdup_n_u8(0), vdst = vdup_n_u8(0), vres; uint16x8_t vdst_wide, vsrc_wide; unsigned dst_scale; vsrc = vreinterpret_u8_u32(vld1_lane_u32(src, vreinterpret_u32_u8(vsrc), 0)); vdst = vreinterpret_u8_u32(vld1_lane_u32(dst, vreinterpret_u32_u8(vdst), 0)); dst_scale = vget_lane_u8(vsrc, 3); dst_scale = SkAlphaMulInv256(dst_scale, alpha256); vsrc_wide = vmovl_u8(vsrc); vsrc_wide = vmulq_n_u16(vsrc_wide, alpha256); vdst_wide = vmovl_u8(vdst); vdst_wide = vmulq_n_u16(vdst_wide, dst_scale); vdst_wide += vsrc_wide; vres = vshrn_n_u16(vdst_wide, 8); vst1_lane_u32(dst, vreinterpret_u32_u8(vres), 0); dst++; src++; count--; } uint8x8_t alpha_mask; static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7}; alpha_mask = vld1_u8(alpha_mask_setup); while (count) { uint8x8_t vsrc, vdst, vres, vsrc_alphas; uint16x8_t vdst_wide, vsrc_wide, vsrc_scale, vdst_scale; __builtin_prefetch(src+32); __builtin_prefetch(dst+32); vsrc = vreinterpret_u8_u32(vld1_u32(src)); vdst = vreinterpret_u8_u32(vld1_u32(dst)); vsrc_scale = vdupq_n_u16(alpha256); vsrc_alphas = vtbl1_u8(vsrc, alpha_mask); vdst_scale = vmovl_u8(vsrc_alphas); // Calculate SkAlphaMulInv256(vdst_scale, vsrc_scale). // A 16-bit lane would overflow if we used 0xFFFF here, // so use an approximation with 0xFF00 that is off by 1, // and add back 1 after to get the correct value. // This is valid if alpha256 <= 255. vdst_scale = vmlsq_u16(vdupq_n_u16(0xFF00), vdst_scale, vsrc_scale); vdst_scale = vsraq_n_u16(vdst_scale, vdst_scale, 8); vdst_scale = vsraq_n_u16(vdupq_n_u16(1), vdst_scale, 8); vsrc_wide = vmovl_u8(vsrc); vsrc_wide *= vsrc_scale; vdst_wide = vmovl_u8(vdst); vdst_wide *= vdst_scale; vdst_wide += vsrc_wide; vres = vshrn_n_u16(vdst_wide, 8); vst1_u32(dst, vreinterpret_u32_u8(vres)); src += 2; dst += 2; count -= 2; } } #else static void blit_row_s32_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha <= 255); while (count --> 0) { *dst = SkPMLerp(*src, *dst, SkAlpha255To256(alpha)); src++; dst++; } } static void blit_row_s32a_blend(SkPMColor* dst, const SkPMColor* src, int count, U8CPU alpha) { SkASSERT(alpha <= 255); while (count --> 0) { *dst = SkBlendARGB32(*src, *dst, alpha); src++; dst++; } } #endif SkBlitRow::Proc32 SkBlitRow::Factory32(unsigned flags) { static const SkBlitRow::Proc32 kProcs[] = { blit_row_s32_opaque, blit_row_s32_blend, nullptr, // blit_row_s32a_opaque is in SkOpts blit_row_s32a_blend }; SkASSERT(flags < SK_ARRAY_COUNT(kProcs)); flags &= SK_ARRAY_COUNT(kProcs) - 1; // just to be safe return flags == 2 ? SkOpts::blit_row_s32a_opaque : kProcs[flags]; } void SkBlitRow::Color32(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) { switch (SkGetPackedA32(color)) { case 0: memmove(dst, src, count * sizeof(SkPMColor)); return; case 255: sk_memset32(dst, color, count); return; } return SkOpts::blit_row_color32(dst, src, count, color); }