/* * Copyright 2008 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // The copyright below was added in 2009, but I see no record of moto contributions...? /* NEON optimized code (C) COPYRIGHT 2009 Motorola * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkShader.h" #include "include/private/SkTo.h" #include "src/core/SkBitmapProcState.h" #include "src/core/SkUtils.h" /* * The decal_ functions require that * 1. dx > 0 * 2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX * * In addition, we use SkFractionalInt to keep more fractional precision than * just SkFixed, so we will abort the decal_ call if dx is very small, since * the decal_ function just operates on SkFixed. If that were changed, we could * skip the very_small test here. */ static inline bool can_truncate_to_fixed_for_decal(SkFixed fx, SkFixed dx, int count, unsigned max) { SkASSERT(count > 0); // if decal_ kept SkFractionalInt precision, this would just be dx <= 0 // I just made up the 1/256. Just don't want to perceive accumulated error // if we truncate frDx and lose its low bits. if (dx <= SK_Fixed1 / 256) { return false; } // Note: it seems the test should be (fx <= max && lastFx <= max); but // historically it's been a strict inequality check, and changing produces // unexpected diffs. Further investigation is needed. // We cast to unsigned so we don't have to check for negative values, which // will now appear as very large positive values, and thus fail our test! if ((unsigned)SkFixedFloorToInt(fx) >= max) { return false; } // Promote to 64bit (48.16) to avoid overflow. const uint64_t lastFx = fx + sk_64_mul(dx, count - 1); return SkTFitsIn(lastFx) && (unsigned)SkFixedFloorToInt(SkTo(lastFx)) < max; } // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ... // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1. // The clamp routines may try to fall into one of these unclamped decal fast-paths. // (Only clamp works in the right coordinate space to check for decal.) static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) { // can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1 // times doesn't overflow fx, so we take unusual care not to step count times. for (; count > 2; count -= 2) { *dst++ = pack_two_shorts( (fx + 0) >> 16, (fx + dx) >> 16); fx += dx+dx; } SkASSERT(count <= 2); switch (count) { case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16); case 1: ((uint16_t*)dst)[0] = SkToU16((fx + 0) >> 16); } } // A generic implementation for unfiltered scale+translate, templated on tiling method. template static void nofilter_scale(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); // Write out our 32-bit y, and get our intial fx. SkFractionalInt fx; { const SkBitmapProcStateAutoMapper mapper(s, x, y); *xy++ = tile(mapper.fixedY(), s.fPixmap.height() - 1); fx = mapper.fractionalIntX(); } const unsigned maxX = s.fPixmap.width() - 1; if (0 == maxX) { // If width == 1, all the x-values must refer to that pixel, and must be zero. memset(xy, 0, count * sizeof(uint16_t)); return; } const SkFractionalInt dx = s.fInvSxFractionalInt; if (tryDecal) { const SkFixed fixedFx = SkFractionalIntToFixed(fx); const SkFixed fixedDx = SkFractionalIntToFixed(dx); if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) { decal_nofilter_scale(xy, fixedFx, fixedDx, count); return; } } // Remember, each x-coordinate is 16-bit. for (; count >= 2; count -= 2) { *xy++ = pack_two_shorts(tile(SkFractionalIntToFixed(fx ), maxX), tile(SkFractionalIntToFixed(fx + dx), maxX)); fx += dx+dx; } auto xx = (uint16_t*)xy; while (count --> 0) { *xx++ = tile(SkFractionalIntToFixed(fx), maxX); fx += dx; } } // Extract the high four fractional bits from fx, the lerp parameter when filtering. static unsigned extract_low_bits_clamp(SkFixed fx, int /*max*/) { // If we're already scaled up to by max like clamp/decal, // just grab the high four fractional bits. return (fx >> 12) & 0xf; } static unsigned extract_low_bits_repeat_mirror(SkFixed fx, int max) { // In repeat or mirror fx is in [0,1], so scale up by max first. // TODO: remove the +1 here and the -1 at the call sites... return extract_low_bits_clamp((fx & 0xffff) * (max+1), max); } template static void filter_scale(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); SkASSERT(s.fInvKy == 0); auto pack = [](SkFixed f, unsigned max, SkFixed one) { unsigned i = tile(f, max); i = (i << 4) | extract_low_bits(f, max); return (i << 14) | (tile((f + one), max)); }; const unsigned maxX = s.fPixmap.width() - 1; const SkFractionalInt dx = s.fInvSxFractionalInt; SkFractionalInt fx; { const SkBitmapProcStateAutoMapper mapper(s, x, y); const SkFixed fy = mapper.fixedY(); const unsigned maxY = s.fPixmap.height() - 1; // compute our two Y values up front *xy++ = pack(fy, maxY, s.fFilterOneY); // now initialize fx fx = mapper.fractionalIntX(); } // For historical reasons we check both ends are < maxX rather than <= maxX. // TODO: try changing this? See also can_truncate_to_fixed_for_decal(). if (tryDecal && (unsigned)SkFractionalIntToInt(fx ) < maxX && (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) { while (count --> 0) { SkFixed fixedFx = SkFractionalIntToFixed(fx); SkASSERT((fixedFx >> (16 + 14)) == 0); *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1); fx += dx; } return; } while (count --> 0) { SkFixed fixedFx = SkFractionalIntToFixed(fx); *xy++ = pack(fixedFx, maxX, s.fFilterOneX); fx += dx; } } // Helper to ensure that when we shift down, we do it w/o sign-extension // so the caller doesn't have to manually mask off the top 16 bits. static inline unsigned SK_USHIFT16(unsigned x) { return x >> 16; } static unsigned clamp(SkFixed fx, int max) { return SkClampMax(fx >> 16, max); } static unsigned repeat(SkFixed fx, int max) { SkASSERT(max < 65535); return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1)); } static unsigned mirror(SkFixed fx, int max) { SkASSERT(max < 65535); // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval SkFixed s = SkLeftShift(fx, 15) >> 31; // This should be exactly the same as repeat(fx ^ s, max) from here on. return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) ); } // Mirror/Mirror's always just portable code. static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = { nofilter_scale, filter_scale, }; // Clamp/Clamp and Repeat/Repeat have NEON or portable implementations. #if defined(SK_ARM_HAS_NEON) #include // TODO: this is a fine drop-in for decal_nofilter_scale() generally. static void decal_nofilter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) { if (count >= 8) { // SkFixed is 16.16 fixed point SkFixed dx8 = dx * 8; int32x4_t vdx8 = vdupq_n_s32(dx8); // setup lbase and hbase int32x4_t lbase, hbase; lbase = vdupq_n_s32(fx); lbase = vsetq_lane_s32(fx + dx, lbase, 1); lbase = vsetq_lane_s32(fx + dx + dx, lbase, 2); lbase = vsetq_lane_s32(fx + dx + dx + dx, lbase, 3); hbase = lbase + vdupq_n_s32(4 * dx); do { // store the upper 16 bits vst1q_u32(dst, vreinterpretq_u32_s16( vuzpq_s16(vreinterpretq_s16_s32(lbase), vreinterpretq_s16_s32(hbase)).val[1] )); // on to the next group of 8 lbase += vdx8; hbase += vdx8; dst += 4; // we did 8 elements but the result is twice smaller count -= 8; fx += dx8; } while (count >= 8); } uint16_t* xx = (uint16_t*)dst; for (int i = count; i > 0; --i) { *xx++ = SkToU16(fx >> 16); fx += dx; } } static void decal_filter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) { if (count >= 8) { SkFixed dx8 = dx * 8; int32x4_t vdx8 = vdupq_n_s32(dx8); int32x4_t wide_fx, wide_fx2; wide_fx = vdupq_n_s32(fx); wide_fx = vsetq_lane_s32(fx + dx, wide_fx, 1); wide_fx = vsetq_lane_s32(fx + dx + dx, wide_fx, 2); wide_fx = vsetq_lane_s32(fx + dx + dx + dx, wide_fx, 3); wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(4 * dx)); while (count >= 8) { int32x4_t wide_out; int32x4_t wide_out2; wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14); wide_out = wide_out | (vshrq_n_s32(wide_fx,16) + vdupq_n_s32(1)); wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14); wide_out2 = wide_out2 | (vshrq_n_s32(wide_fx2,16) + vdupq_n_s32(1)); vst1q_u32(dst, vreinterpretq_u32_s32(wide_out)); vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2)); dst += 8; fx += dx8; wide_fx += vdx8; wide_fx2 += vdx8; count -= 8; } } if (count & 1) { SkASSERT((fx >> (16 + 14)) == 0); *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); fx += dx; } while ((count -= 2) >= 0) { SkASSERT((fx >> (16 + 14)) == 0); *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); fx += dx; *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); fx += dx; } } static inline int16x8_t clamp8(int32x4_t low, int32x4_t high, unsigned max) { int16x8_t res; // get the hi 16s of all those 32s res = vuzpq_s16(vreinterpretq_s16_s32(low), vreinterpretq_s16_s32(high)).val[1]; // clamp res = vmaxq_s16(res, vdupq_n_s16(0)); res = vminq_s16(res, vdupq_n_s16(max)); return res; } static inline int32x4_t clamp4(int32x4_t f, unsigned max) { int32x4_t res; // get the hi 16s of all those 32s res = vshrq_n_s32(f, 16); // clamp res = vmaxq_s32(res, vdupq_n_s32(0)); res = vminq_s32(res, vdupq_n_s32(max)); return res; } static inline int32x4_t extract_low_bits_clamp4(int32x4_t fx, unsigned) { int32x4_t ret; ret = vshrq_n_s32(fx, 12); /* We don't need the mask below because the caller will * overwrite the non-masked bits */ //ret = vandq_s32(ret, vdupq_n_s32(0xF)); return ret; } static inline int16x8_t repeat8(int32x4_t low, int32x4_t high, unsigned max) { uint16x8_t res; uint32x4_t tmpl, tmph; // get the lower 16 bits res = vuzpq_u16(vreinterpretq_u16_s32(low), vreinterpretq_u16_s32(high)).val[0]; // bare multiplication, not SkFixedMul tmpl = vmull_u16(vget_low_u16(res), vdup_n_u16(max+1)); tmph = vmull_u16(vget_high_u16(res), vdup_n_u16(max+1)); // extraction of the 16 upper bits res = vuzpq_u16(vreinterpretq_u16_u32(tmpl), vreinterpretq_u16_u32(tmph)).val[1]; return vreinterpretq_s16_u16(res); } static inline int32x4_t repeat4(int32x4_t f, unsigned max) { uint16x4_t res; uint32x4_t tmp; // get the lower 16 bits res = vmovn_u32(vreinterpretq_u32_s32(f)); // bare multiplication, not SkFixedMul tmp = vmull_u16(res, vdup_n_u16(max+1)); // extraction of the 16 upper bits tmp = vshrq_n_u32(tmp, 16); return vreinterpretq_s32_u32(tmp); } static inline int32x4_t extract_low_bits_repeat_mirror4(int32x4_t fx, unsigned max) { uint16x4_t res; uint32x4_t tmp; int32x4_t ret; // get the lower 16 bits res = vmovn_u32(vreinterpretq_u32_s32(fx)); // bare multiplication, not SkFixedMul tmp = vmull_u16(res, vdup_n_u16(max + 1)); // shift and mask ret = vshrq_n_s32(vreinterpretq_s32_u32(tmp), 12); /* We don't need the mask below because the caller will * overwrite the non-masked bits */ //ret = vandq_s32(ret, vdupq_n_s32(0xF)); return ret; } template static void nofilter_scale_neon(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); // we store y, x, x, x, x, x const unsigned maxX = s.fPixmap.width() - 1; SkFractionalInt fx; { const SkBitmapProcStateAutoMapper mapper(s, x, y); const unsigned maxY = s.fPixmap.height() - 1; *xy++ = tile(mapper.fixedY(), maxY); fx = mapper.fractionalIntX(); } if (0 == maxX) { // all of the following X values must be 0 memset(xy, 0, count * sizeof(uint16_t)); return; } const SkFractionalInt dx = s.fInvSxFractionalInt; // test if we don't need to apply the tile proc const SkFixed fixedFx = SkFractionalIntToFixed(fx); const SkFixed fixedDx = SkFractionalIntToFixed(dx); if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) { decal_nofilter_scale_neon(xy, fixedFx, fixedDx, count); return; } if (count >= 8) { SkFractionalInt dx2 = dx+dx; SkFractionalInt dx4 = dx2+dx2; SkFractionalInt dx8 = dx4+dx4; // now build fx/fx+dx/fx+2dx/fx+3dx SkFractionalInt fx1, fx2, fx3; int32x4_t lbase, hbase; int16_t *dst16 = (int16_t *)xy; fx1 = fx+dx; fx2 = fx1+dx; fx3 = fx2+dx; lbase = vdupq_n_s32(SkFractionalIntToFixed(fx)); lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx1), lbase, 1); lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx2), lbase, 2); lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx3), lbase, 3); hbase = vaddq_s32(lbase, vdupq_n_s32(SkFractionalIntToFixed(dx4))); // store & bump while (count >= 8) { int16x8_t fx8; fx8 = tile8(lbase, hbase, maxX); vst1q_s16(dst16, fx8); // but preserving base & on to the next lbase = vaddq_s32 (lbase, vdupq_n_s32(SkFractionalIntToFixed(dx8))); hbase = vaddq_s32 (hbase, vdupq_n_s32(SkFractionalIntToFixed(dx8))); dst16 += 8; count -= 8; fx += dx8; } xy = (uint32_t *) dst16; } uint16_t* xx = (uint16_t*)xy; for (int i = count; i > 0; --i) { *xx++ = tile(SkFractionalIntToFixed(fx), maxX); fx += dx; } } template static void filter_scale_neon(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); SkASSERT(s.fInvKy == 0); auto pack = [&](SkFixed f, unsigned max, SkFixed one) { unsigned i = tile(f, max); i = (i << 4) | extract_low_bits(f, max); return (i << 14) | (tile((f + one), max)); }; auto pack4 = [&](int32x4_t f, unsigned max, SkFixed one) { int32x4_t ret, res; res = tile4(f, max); ret = extract_low_bits4(f, max); ret = vsliq_n_s32(ret, res, 4); res = tile4(f + vdupq_n_s32(one), max); ret = vorrq_s32(vshlq_n_s32(ret, 14), res); return ret; }; const unsigned maxX = s.fPixmap.width() - 1; const SkFixed one = s.fFilterOneX; const SkFractionalInt dx = s.fInvSxFractionalInt; SkFractionalInt fx; { const SkBitmapProcStateAutoMapper mapper(s, x, y); const SkFixed fy = mapper.fixedY(); const unsigned maxY = s.fPixmap.height() - 1; // compute our two Y values up front *xy++ = pack(fy, maxY, s.fFilterOneY); // now initialize fx fx = mapper.fractionalIntX(); } // test if we don't need to apply the tile proc const SkFixed fixedFx = SkFractionalIntToFixed(fx); const SkFixed fixedDx = SkFractionalIntToFixed(dx); if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) { decal_filter_scale_neon(xy, fixedFx, fixedDx, count); return; } if (count >= 4) { int32x4_t wide_fx; wide_fx = vdupq_n_s32(SkFractionalIntToFixed(fx)); wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx), wide_fx, 1); wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx), wide_fx, 2); wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx+dx), wide_fx, 3); while (count >= 4) { int32x4_t res; res = pack4(wide_fx, maxX, one); vst1q_u32(xy, vreinterpretq_u32_s32(res)); wide_fx += vdupq_n_s32(SkFractionalIntToFixed(dx+dx+dx+dx)); fx += dx+dx+dx+dx; xy += 4; count -= 4; } } while (--count >= 0) { *xy++ = pack(SkFractionalIntToFixed(fx), maxX, one); fx += dx; } } static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = { nofilter_scale_neon, filter_scale_neon, }; static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = { nofilter_scale_neon, filter_scale_neon, }; #else static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = { nofilter_scale, filter_scale, }; static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = { nofilter_scale, filter_scale, }; #endif /////////////////////////////////////////////////////////////////////////////// // This next chunk has some specializations for unfiltered translate-only matrices. static inline U16CPU int_clamp(int x, int n) { if (x < 0) { x = 0; } if (x >= n) { x = n - 1; } return x; } /* returns 0...(n-1) given any x (positive or negative). As an example, if n (which is always positive) is 5... x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 */ static inline int sk_int_mod(int x, int n) { SkASSERT(n > 0); if ((unsigned)x >= (unsigned)n) { if (x < 0) { x = n + ~(~x % n); } else { x = x % n; } } return x; } static inline U16CPU int_repeat(int x, int n) { return sk_int_mod(x, n); } static inline U16CPU int_mirror(int x, int n) { x = sk_int_mod(x, 2 * n); if (x >= n) { x = n + ~(x - n); } return x; } static void fill_sequential(uint16_t xptr[], int pos, int count) { while (count --> 0) { *xptr++ = pos++; } } static void fill_backwards(uint16_t xptr[], int pos, int count) { while (count --> 0) { SkASSERT(pos >= 0); *xptr++ = pos--; } } static void clampx_nofilter_trans(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); const SkBitmapProcStateAutoMapper mapper(s, x, y); *xy++ = int_clamp(mapper.intY(), s.fPixmap.height()); int xpos = mapper.intX(); const int width = s.fPixmap.width(); if (1 == width) { // all of the following X values must be 0 memset(xy, 0, count * sizeof(uint16_t)); return; } uint16_t* xptr = reinterpret_cast(xy); int n; // fill before 0 as needed if (xpos < 0) { n = -xpos; if (n > count) { n = count; } memset(xptr, 0, n * sizeof(uint16_t)); count -= n; if (0 == count) { return; } xptr += n; xpos = 0; } // fill in 0..width-1 if needed if (xpos < width) { n = width - xpos; if (n > count) { n = count; } fill_sequential(xptr, xpos, n); count -= n; if (0 == count) { return; } xptr += n; } // fill the remaining with the max value sk_memset16(xptr, width - 1, count); } static void repeatx_nofilter_trans(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); const SkBitmapProcStateAutoMapper mapper(s, x, y); *xy++ = int_repeat(mapper.intY(), s.fPixmap.height()); int xpos = mapper.intX(); const int width = s.fPixmap.width(); if (1 == width) { // all of the following X values must be 0 memset(xy, 0, count * sizeof(uint16_t)); return; } uint16_t* xptr = reinterpret_cast(xy); int start = sk_int_mod(xpos, width); int n = width - start; if (n > count) { n = count; } fill_sequential(xptr, start, n); xptr += n; count -= n; while (count >= width) { fill_sequential(xptr, 0, width); xptr += width; count -= width; } if (count > 0) { fill_sequential(xptr, 0, count); } } static void mirrorx_nofilter_trans(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); const SkBitmapProcStateAutoMapper mapper(s, x, y); *xy++ = int_mirror(mapper.intY(), s.fPixmap.height()); int xpos = mapper.intX(); const int width = s.fPixmap.width(); if (1 == width) { // all of the following X values must be 0 memset(xy, 0, count * sizeof(uint16_t)); return; } uint16_t* xptr = reinterpret_cast(xy); // need to know our start, and our initial phase (forward or backward) bool forward; int n; int start = sk_int_mod(xpos, 2 * width); if (start >= width) { start = width + ~(start - width); forward = false; n = start + 1; // [start .. 0] } else { forward = true; n = width - start; // [start .. width) } if (n > count) { n = count; } if (forward) { fill_sequential(xptr, start, n); } else { fill_backwards(xptr, start, n); } forward = !forward; xptr += n; count -= n; while (count >= width) { if (forward) { fill_sequential(xptr, 0, width); } else { fill_backwards(xptr, width - 1, width); } forward = !forward; xptr += width; count -= width; } if (count > 0) { if (forward) { fill_sequential(xptr, 0, count); } else { fill_backwards(xptr, width - 1, count); } } } /////////////////////////////////////////////////////////////////////////////// // The main entry point to the file, choosing between everything above. SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) { SkASSERT(fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)); SkASSERT(fTileModeX == fTileModeY); SkASSERT(fTileModeX != SkTileMode::kDecal); // Check for our special case translate methods when there is no scale/affine/perspective. if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) { switch (fTileModeX) { default: SkASSERT(false); case SkTileMode::kClamp: return clampx_nofilter_trans; case SkTileMode::kRepeat: return repeatx_nofilter_trans; case SkTileMode::kMirror: return mirrorx_nofilter_trans; } } // The arrays are all [ nofilter, filter ]. int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0; if (fTileModeX == SkTileMode::kClamp) { // clamp gets special version of filterOne, working in non-normalized space (allowing decal) fFilterOneX = SK_Fixed1; fFilterOneY = SK_Fixed1; return ClampX_ClampY_Procs[index]; } // all remaining procs use this form for filterOne, putting them into normalized space. fFilterOneX = SK_Fixed1 / fPixmap.width(); fFilterOneY = SK_Fixed1 / fPixmap.height(); if (fTileModeX == SkTileMode::kRepeat) { return RepeatX_RepeatY_Procs[index]; } return MirrorX_MirrorY_Procs[index]; }