/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkPoint3.h" #include "src/sksl/SkSLByteCode.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLExternalValue.h" #include "src/utils/SkJSON.h" #include "tests/Test.h" static bool nearly_equal(const float a[], const float b[], int count) { for (int i = 0; i < count; ++i) { if (!SkScalarNearlyEqual(a[i], b[i])) { return false; } } return true; } void test(skiatest::Reporter* r, const char* src, float* in, int expectedCount, float* expected, bool exactCompare = true) { SkSL::Compiler compiler; SkSL::Program::Settings settings; std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); program.reset(); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } SkSL::ByteCodeFunction* main = byteCode->fFunctions[0].get(); std::unique_ptr out = std::unique_ptr(new float[expectedCount]); SkAssertResult(byteCode->run(main, in, out.get(), 1, nullptr, 0)); bool valid = exactCompare ? !memcmp(out.get(), expected, sizeof(float) * expectedCount) : nearly_equal(out.get(), expected, expectedCount); if (!valid) { printf("for program: %s\n", src); printf(" expected ("); const char* separator = ""; for (int i = 0; i < expectedCount; ++i) { printf("%s%f", separator, expected[i]); separator = ", "; } printf("), but received ("); separator = ""; for (int i = 0; i < expectedCount; ++i) { printf("%s%f", separator, out.get()[i]); separator = ", "; } printf(")\n"); main->disassemble(); } REPORTER_ASSERT(r, valid); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } } void vec_test(skiatest::Reporter* r, const char* src) { // Test on four different vectors (with varying orderings to get divergent control flow) const float input[16] = { 1, 2, 3, 4, 4, 3, 2, 1, 7, 5, 8, 6, 6, 8, 5, 7 }; SkSL::Compiler compiler; std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), SkSL::Program::Settings()); if (!program) { REPORT_FAILURE(r, "!program", SkString(compiler.errorText().c_str())); return; } std::unique_ptr byteCode = compiler.toByteCode(*program); if (compiler.errorCount() > 0) { REPORT_FAILURE(r, "!toByteCode", SkString(compiler.errorText().c_str())); return; } const SkSL::ByteCodeFunction* main = byteCode->getFunction("main"); float out_s[16], out_v[16]; memcpy(out_s, input, sizeof(out_s)); memcpy(out_v, input, sizeof(out_v)); // First run in scalar mode to determine the expected output for (int i = 0; i < 4; ++i) { SkAssertResult(byteCode->run(main, out_s + i * 4, nullptr, 1, nullptr, 0)); } // Now run in parallel and compare results SkAssertResult(byteCode->run(main, out_v, nullptr, 4, nullptr, 0)); if (memcmp(out_s, out_v, sizeof(out_s)) != 0) { printf("for program: %s\n", src); for (int i = 0; i < 4; ++i) { printf("(%g %g %g %g) -> (%g %g %g %g), expected (%g %g %g %g)\n", input[4*i + 0], input[4*i + 1], input[4*i + 2], input[4*i + 3], out_v[4*i + 0], out_v[4*i + 1], out_v[4*i + 2], out_v[4*i + 3], out_s[4*i + 0], out_s[4*i + 1], out_s[4*i + 2], out_s[4*i + 3]); } main->disassemble(); REPORT_FAILURE(r, "VecInterpreter mismatch", SkString()); } } void test(skiatest::Reporter* r, const char* src, float inR, float inG, float inB, float inA, float expectedR, float expectedG, float expectedB, float expectedA) { SkSL::Compiler compiler; SkSL::Program::Settings settings; std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); program.reset(); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } const SkSL::ByteCodeFunction* main = byteCode->getFunction("main"); float inoutColor[4] = { inR, inG, inB, inA }; SkAssertResult(byteCode->run(main, inoutColor, nullptr, 1, nullptr, 0)); if (inoutColor[0] != expectedR || inoutColor[1] != expectedG || inoutColor[2] != expectedB || inoutColor[3] != expectedA) { printf("for program: %s\n", src); printf(" expected (%f, %f, %f, %f), but received (%f, %f, %f, %f)\n", expectedR, expectedG, expectedB, expectedA, inoutColor[0], inoutColor[1], inoutColor[2], inoutColor[3]); main->disassemble(); } REPORTER_ASSERT(r, inoutColor[0] == expectedR); REPORTER_ASSERT(r, inoutColor[1] == expectedG); REPORTER_ASSERT(r, inoutColor[2] == expectedB); REPORTER_ASSERT(r, inoutColor[3] == expectedA); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } // Do additional testing of 4x1 vs 1x4 to stress divergent control flow, etc. vec_test(r, src); } DEF_TEST(SkSLInterpreterAdd, r) { test(r, "void main(inout half4 color) { color.r = color.r + color.g; }", 0.25, 0.75, 0, 0, 1, 0.75, 0, 0); test(r, "void main(inout half4 color) { color += half4(1, 2, 3, 4); }", 4, 3, 2, 1, 5, 5, 5, 5); test(r, "void main(inout half4 color) { half4 c = color; color += c; }", 0.25, 0.5, 0.75, 1, 0.5, 1, 1.5, 2); test(r, "void main(inout half4 color) { int a = 1; int b = 3; color.r = a + b; }", 1, 2, 3, 4, 4, 2, 3, 4); } DEF_TEST(SkSLInterpreterSubtract, r) { test(r, "void main(inout half4 color) { color.r = color.r - color.g; }", 1, 0.75, 0, 0, 0.25, 0.75, 0, 0); test(r, "void main(inout half4 color) { color -= half4(1, 2, 3, 4); }", 5, 5, 5, 5, 4, 3, 2, 1); test(r, "void main(inout half4 color) { half4 c = color; color -= c; }", 4, 3, 2, 1, 0, 0, 0, 0); test(r, "void main(inout half4 color) { color.x = -color.x; }", 4, 3, 2, 1, -4, 3, 2, 1); test(r, "void main(inout half4 color) { color = -color; }", 4, 3, 2, 1, -4, -3, -2, -1); test(r, "void main(inout half4 color) { int a = 3; int b = 1; color.r = a - b; }", 0, 0, 0, 0, 2, 0, 0, 0); } DEF_TEST(SkSLInterpreterMultiply, r) { test(r, "void main(inout half4 color) { color.r = color.r * color.g; }", 2, 3, 0, 0, 6, 3, 0, 0); test(r, "void main(inout half4 color) { color *= half4(1, 2, 3, 4); }", 2, 3, 4, 5, 2, 6, 12, 20); test(r, "void main(inout half4 color) { half4 c = color; color *= c; }", 4, 3, 2, 1, 16, 9, 4, 1); test(r, "void main(inout half4 color) { int a = 3; int b = -2; color.r = a * b; }", 0, 0, 0, 0, -6, 0, 0, 0); } DEF_TEST(SkSLInterpreterDivide, r) { test(r, "void main(inout half4 color) { color.r = color.r / color.g; }", 1, 2, 0, 0, 0.5, 2, 0, 0); test(r, "void main(inout half4 color) { color /= half4(1, 2, 3, 4); }", 12, 12, 12, 12, 12, 6, 4, 3); test(r, "void main(inout half4 color) { half4 c = color; color /= c; }", 4, 3, 2, 1, 1, 1, 1, 1); test(r, "void main(inout half4 color) { int a = 8; int b = -2; color.r = a / b; }", 0, 0, 0, 0, -4, 0, 0, 0); } DEF_TEST(SkSLInterpreterRemainder, r) { test(r, "void main(inout half4 color) { color.r = color.r % color.g; }", 3.125, 2, 0, 0, 1.125, 2, 0, 0); test(r, "void main(inout half4 color) { color %= half4(1, 2, 3, 4); }", 9.5, 9.5, 9.5, 9.5, 0.5, 1.5, 0.5, 1.5); test(r, "void main(inout half4 color) { int a = 8; int b = 3; a %= b; color.r = a; }", 0, 0, 0, 0, 2, 0, 0, 0); test(r, "void main(inout half4 color) { int a = 8; int b = 3; color.r = a % b; }", 0, 0, 0, 0, 2, 0, 0, 0); test(r, "void main(inout half4 color) { int2 a = int2(8, 10); a %= 6; color.rg = a; }", 0, 0, 0, 0, 2, 4, 0, 0); } DEF_TEST(SkSLInterpreterMatrix, r) { float in[16]; float expected[16]; // Constructing matrix from scalar produces a diagonal matrix in[0] = 1.0f; expected[0] = 2.0f; test(r, "float main(float x) { float4x4 m = float4x4(x); return m[1][1] + m[1][2] + m[2][2]; }", in, 1, expected); // With non-square matrix test(r, "float main(float x) { float3x2 m = float3x2(x); return m[0][0] + m[1][1] + m[2][1]; }", in, 1, expected); // Constructing from a different-sized matrix fills the remaining space with the identity matrix test(r, "float main(float x) {" "float3x2 m = float3x2(x);" "float4x4 m2 = float4x4(m);" "return m2[0][0] + m2[3][3]; }", in, 1, expected); // Constructing a matrix from vectors or scalars fills in values in column-major order in[0] = 1.0f; in[1] = 2.0f; in[2] = 4.0f; in[3] = 8.0f; expected[0] = 6.0f; test(r, "float main(float4 v) { float2x2 m = float2x2(v); return m[0][1] + m[1][0]; }", in, 1, expected); expected[0] = 10.0f; test(r, "float main(float4 v) {" "float2x2 m = float2x2(v.x, v.y, v.w, v.z);" "return m[0][1] + m[1][0]; }", in, 1, expected); // Initialize 16 values to be used as inputs to matrix tests for (int i = 0; i < 16; ++i) { in[i] = (float)i; } // M+M, M-S, S-M for (int i = 0; i < 16; ++i) { expected[i] = (float)(2 * i); } test(r, "float4x4 main(float4x4 m) { return m + m; }", in, 16, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i + 3); } test(r, "float4x4 main(float4x4 m) { return m + 3.0; }", in, 16, expected); test(r, "float4x4 main(float4x4 m) { return 3.0 + m; }", in, 16, expected); // M-M, M-S, S-M for (int i = 0; i < 8; ++i) { expected[i] = 8.0f; } test(r, "float4x2 main(float4x2 m1, float4x2 m2) { return m2 - m1; }", in, 8, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i - 3); } test(r, "float4x4 main(float4x4 m) { return m - 3.0; }", in, 16, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(3 - i); } test(r, "float4x4 main(float4x4 m) { return 3.0 - m; }", in, 16, expected); // M*S, S*M, M/S, S/M for (int i = 0; i < 16; ++i) { expected[i] = (float)(i * 3); } test(r, "float4x4 main(float4x4 m) { return m * 3.0; }", in, 16, expected); test(r, "float4x4 main(float4x4 m) { return 3.0 * m; }", in, 16, expected); for (int i = 0; i < 16; ++i) { expected[i] = (float)(i) / 2.0f; } test(r, "float4x4 main(float4x4 m) { return m / 2.0; }", in, 16, expected); for (int i = 0; i < 16; ++i) { expected[i] = 1.0f / (float)(i + 1); } test(r, "float4x4 main(float4x4 m) { return 1.0 / (m + 1); }", in, 16, expected); #if 0 // Matrix negation - legal in GLSL, not in SkSL? for (int i = 0; i < 16; ++i) { expected[i] = (float)(-i); } test(r, "float4x4 main(float4x4 m) { return -m; }", in, 16, expected); #endif // M*V, V*M for (int i = 0; i < 4; ++i) { expected[i] = 12.0f*i + 13.0f*(i+4) + 14.0f*(i+8); } test(r, "float4 main(float3x4 m, float3 v) { return m * v; }", in, 4, expected); for (int i = 0; i < 4; ++i) { expected[i] = 12.0f*(3*i) + 13.0f*(3*i+1) + 14.0f*(3*i+2); } test(r, "float4 main(float4x3 m, float3 v) { return v * m; }", in, 4, expected); // M*M { SkMatrix44 m; m.setColMajorf(in); SkMatrix44 m2; for (int i = 0; i < 16; ++i) { m2.set(i % 4, i / 4, (i + 4) % 16); } m.setConcat(m, m2); // Rearrange the columns on the RHS so we detect left-hand/right-hand errors test(r, "float4x4 main(float4x4 m) { return m * float4x4(m[1], m[2], m[3], m[0]); }", in, 16, (float*)&m); } } DEF_TEST(SkSLInterpreterTernary, r) { test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }", 0, 1, 2, 0, 2, 1, 2, 0); test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }", 0, 3, 2, 0, 3, 3, 2, 0); } DEF_TEST(SkSLInterpreterCast, r) { union Val { float f; uint32_t u; int32_t s; }; Val input[2]; Val expected[2]; input[0].s = 3; input[1].s = -5; expected[0].f = 3.0f; expected[1].f = -5.0f; test(r, "float main(int x) { return float (x); }", (float*)input, 1, (float*)expected); test(r, "float2 main(int2 x) { return float2(x); }", (float*)input, 2, (float*)expected); input[0].u = 3; input[1].u = 5; expected[0].f = 3.0f; expected[1].f = 5.0f; test(r, "float main(uint x) { return float (x); }", (float*)input, 1, (float*)expected); test(r, "float2 main(uint2 x) { return float2(x); }", (float*)input, 2, (float*)expected); input[0].f = 3.0f; input[1].f = -5.0f; expected[0].s = 3; expected[1].s = -5; test(r, "int main(float x) { return int (x); }", (float*)input, 1, (float*)expected); test(r, "int2 main(float2 x) { return int2(x); }", (float*)input, 2, (float*)expected); input[0].s = 3; expected[0].f = 3.0f; expected[1].f = 3.0f; test(r, "float2 main(int x) { return float2(x); }", (float*)input, 2, (float*)expected); } DEF_TEST(SkSLInterpreterIf, r) { test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 3, 0, 0, 5, 3, 0, 1); test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 6, 0, 0, 5, 6, 0, 0); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 3, 5, 0, 0, 3, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 6, 5, 0, 0, 6, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 3, 0, 0, 5, 3, 0, 1); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 6, 0, 0, 5, 6, 0, 0); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 3, 5, 0, 0, 3, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 5, 5, 0, 0, 5, 5, 0, 1); test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 6, 5, 0, 0, 6, 5, 0, 0); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, 2, 0, 0, 2, 2, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, -2, 0, 0, 2, -2, 0, 0); test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, 2, 0, 0, 2, 2, 0, 0); test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, -2, 0, 0, 2, -2, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else " "color.a = 2; }", 1, 1, 0, 0, 1, 1, 0, 1); test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else " "color.a = 2; }", 2, -2, 0, 0, 2, -2, 0, 2); } DEF_TEST(SkSLInterpreterIfVector, r) { test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }", 1, 2, 1, 2, 1, 2, 1, 1); test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }", 1, 2, 3, 2, 1, 2, 3, 2); test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }", 1, 2, 1, 2, 1, 2, 1, 2); test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }", 1, 2, 3, 2, 1, 2, 3, 1); } DEF_TEST(SkSLInterpreterWhile, r) { test(r, "void main(inout half4 color) { while (color.r < 8) { color.r++; } }", 1, 2, 3, 4, 8, 2, 3, 4); test(r, "void main(inout half4 color) { while (color.r < 1) color.r += 0.25; }", 0, 0, 0, 0, 1, 0, 0, 0); test(r, "void main(inout half4 color) { while (color.r > 1) color.r -= 0.25; }", 0, 0, 0, 0, 0, 0, 0, 0); test(r, "void main(inout half4 color) { while (true) { color.r += 0.5; " "if (color.r > 5) break; } }", 0, 0, 0, 0, 5.5, 0, 0, 0); test(r, "void main(inout half4 color) { while (color.r < 10) { color.r += 0.5; " "if (color.r < 5) continue; break; } }", 0, 0, 0, 0, 5, 0, 0, 0); test(r, "void main(inout half4 color) {" " while (true) {" " if (color.r > 4) { break; }" " while (true) { color.a = 1; break; }" " break;" " }" "}", 6, 5, 4, 3, 6, 5, 4, 3); } DEF_TEST(SkSLInterpreterDo, r) { test(r, "void main(inout half4 color) { do color.r += 0.25; while (color.r < 1); }", 0, 0, 0, 0, 1, 0, 0, 0); test(r, "void main(inout half4 color) { do color.r -= 0.25; while (color.r > 1); }", 0, 0, 0, 0, -0.25, 0, 0, 0); test(r, "void main(inout half4 color) { do { color.r += 0.5; if (color.r > 1) break; } while " "(true); }", 0, 0, 0, 0, 1.5, 0, 0, 0); test(r, "void main(inout half4 color) {do { color.r += 0.5; if (color.r < 5) " "continue; if (color.r >= 5) break; } while (true); }", 0, 0, 0, 0, 5, 0, 0, 0); test(r, "void main(inout half4 color) { do { color.r += 0.5; } while (false); }", 0, 0, 0, 0, 0.5, 0, 0, 0); } DEF_TEST(SkSLInterpreterFor, r) { test(r, "void main(inout half4 color) { for (int i = 1; i <= 10; ++i) color.r += i; }", 0, 0, 0, 0, 55, 0, 0, 0); test(r, "void main(inout half4 color) {" " for (int i = 1; i <= 10; ++i)" " for (int j = i; j <= 10; ++j)" " color.r += j;" "}", 0, 0, 0, 0, 385, 0, 0, 0); test(r, "void main(inout half4 color) {" " for (int i = 1; i <= 10; ++i)" " for (int j = 1; ; ++j) {" " if (i == j) continue;" " if (j > 10) break;" " color.r += j;" " }" "}", 0, 0, 0, 0, 495, 0, 0, 0); } DEF_TEST(SkSLInterpreterPrefixPostfix, r) { test(r, "void main(inout half4 color) { color.r = ++color.g; }", 1, 2, 3, 4, 3, 3, 3, 4); test(r, "void main(inout half4 color) { color.r = color.g++; }", 1, 2, 3, 4, 2, 3, 3, 4); } DEF_TEST(SkSLInterpreterSwizzle, r) { test(r, "void main(inout half4 color) { color = color.abgr; }", 1, 2, 3, 4, 4, 3, 2, 1); test(r, "void main(inout half4 color) { color.rgb = half4(5, 6, 7, 8).bbg; }", 1, 2, 3, 4, 7, 7, 6, 4); test(r, "void main(inout half4 color) { color.bgr = int3(5, 6, 7); }", 1, 2, 3, 4, 7, 6, 5, 4); } DEF_TEST(SkSLInterpreterGlobal, r) { test(r, "int x; void main(inout half4 color) { x = 10; color.b = x; }", 1, 2, 3, 4, 1, 2, 10, 4); test(r, "float4 x; void main(inout float4 color) { x = color * 2; color = x; }", 1, 2, 3, 4, 2, 4, 6, 8); test(r, "float4 x; void main(inout float4 color) { x = float4(5, 6, 7, 8); color = x.wzyx; }", 1, 2, 3, 4, 8, 7, 6, 5); test(r, "float4 x; void main(inout float4 color) { x.wzyx = float4(5, 6, 7, 8); color = x; }", 1, 2, 3, 4, 8, 7, 6, 5); } DEF_TEST(SkSLInterpreterGeneric, r) { float value1 = 5; float expected1 = 25; test(r, "float main(float x) { return x * x; }", &value1, 1, &expected1); float value2[2] = { 5, 25 }; float expected2[2] = { 25, 625 }; test(r, "float2 main(float x, float y) { return float2(x * x, y * y); }", value2, 2, expected2); } DEF_TEST(SkSLInterpreterCompound, r) { struct RectAndColor { SkIRect fRect; SkColor4f fColor; }; struct ManyRects { int fNumRects; RectAndColor fRects[4]; }; const char* src = // Some struct definitions "struct Point { int x; int y; };\n" "struct Rect { Point p0; Point p1; };\n" "struct RectAndColor { Rect r; float4 color; };\n" // Structs as globals, parameters, return values "RectAndColor temp;\n" "int rect_height(Rect r) { return r.p1.y - r.p0.y; }\n" "RectAndColor make_blue_rect(int w, int h) {\n" " temp.r.p0.x = temp.r.p0.y = 0;\n" " temp.r.p1.x = w; temp.r.p1.y = h;\n" " temp.color = float4(0, 1, 0, 1);\n" " return temp;\n" "}\n" // Initialization and assignment of types larger than 4 slots "RectAndColor init_big(RectAndColor r) { RectAndColor s = r; return s; }\n" "RectAndColor copy_big(RectAndColor r) { RectAndColor s; s = r; return s; }\n" // Same for arrays, including some non-constant indexing "float tempFloats[8];\n" "int median(int a[15]) { return a[7]; }\n" "float[8] sums(float a[8]) {\n" " float tempFloats[8];\n" " tempFloats[0] = a[0];\n" " for (int i = 1; i < 8; ++i) { tempFloats[i] = tempFloats[i - 1] + a[i]; }\n" " return tempFloats;\n" "}\n" // Uniforms, array-of-structs, dynamic indices "in uniform Rect gRects[4];\n" "Rect get_rect(int i) { return gRects[i]; }\n" // Kitchen sink (swizzles, inout, SoAoS) "struct ManyRects { int numRects; RectAndColor rects[4]; };\n" "void fill_rects(inout ManyRects mr) {\n" " for (int i = 0; i < mr.numRects; ++i) {\n" " mr.rects[i].r = gRects[i];\n" " float b = mr.rects[i].r.p1.y;\n" " mr.rects[i].color = float4(b, b, b, b);\n" " }\n" "}\n"; SkSL::Compiler compiler; SkSL::Program::Settings settings; std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); auto rect_height = byteCode->getFunction("rect_height"), make_blue_rect = byteCode->getFunction("make_blue_rect"), median = byteCode->getFunction("median"), sums = byteCode->getFunction("sums"), get_rect = byteCode->getFunction("get_rect"), fill_rects = byteCode->getFunction("fill_rects"); SkIRect gRects[4] = { { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 }, { 13,14,15,16 } }; { SkIRect in = SkIRect::MakeXYWH(10, 10, 20, 30); int out = 0; SkAssertResult(byteCode->run(rect_height, (float*)&in, (float*)&out, 1, (float*)gRects, 16)); REPORTER_ASSERT(r, out == 30); } { int in[2] = { 15, 25 }; RectAndColor out; SkAssertResult(byteCode->run(make_blue_rect, (float*)in, (float*)&out, 1, (float*)gRects, 16)); REPORTER_ASSERT(r, out.fRect.width() == 15); REPORTER_ASSERT(r, out.fRect.height() == 25); SkColor4f blue = { 0.0f, 1.0f, 0.0f, 1.0f }; REPORTER_ASSERT(r, out.fColor == blue); } { int in[15] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; int out = 0; SkAssertResult(byteCode->run(median, (float*)in, (float*)&out, 1, (float*)gRects, 16)); REPORTER_ASSERT(r, out == 8); } { float in[8] = { 1, 2, 3, 4, 5, 6, 7, 8 }; float out[8] = { 0 }; SkAssertResult(byteCode->run(sums, in, out, 1, (float*)gRects, 16)); for (int i = 0; i < 8; ++i) { REPORTER_ASSERT(r, out[i] == static_cast((i + 1) * (i + 2) / 2)); } } { int in = 2; SkIRect out = SkIRect::MakeEmpty(); SkAssertResult(byteCode->run(get_rect, (float*)&in, (float*)&out, 1, (float*)gRects, 16)); REPORTER_ASSERT(r, out == gRects[2]); } { ManyRects in; memset(&in, 0, sizeof(in)); in.fNumRects = 2; SkAssertResult(byteCode->run(fill_rects, (float*)&in, nullptr, 1, (float*)gRects, 16)); ManyRects expected; memset(&expected, 0, sizeof(expected)); expected.fNumRects = 2; for (int i = 0; i < 2; ++i) { expected.fRects[i].fRect = gRects[i]; float c = gRects[i].fBottom; expected.fRects[i].fColor = { c, c, c, c }; } REPORTER_ASSERT(r, memcmp(&in, &expected, sizeof(in)) == 0); } } static void expect_failure(skiatest::Reporter* r, const char* src) { SkSL::Compiler compiler; auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), SkSL::Program::Settings()); REPORTER_ASSERT(r, program); auto byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, compiler.errorCount() > 0); REPORTER_ASSERT(r, !byteCode); } static void expect_run_failure(skiatest::Reporter* r, const char* src, float* in) { SkSL::Compiler compiler; auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), SkSL::Program::Settings()); REPORTER_ASSERT(r, program); auto byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, byteCode); bool result = byteCode->run(byteCode->getFunction("main"), in, nullptr, 1, nullptr, 0); REPORTER_ASSERT(r, !result); } DEF_TEST(SkSLInterpreterRestrictFunctionCalls, r) { // Ensure that simple recursion is not allowed expect_failure(r, "float main() { return main() + 1; }"); // Ensure that calls to undefined functions are not allowed (to prevent mutual recursion) expect_failure(r, "float foo(); float bar() { return foo(); } float foo() { return bar(); }"); // returns are not allowed inside conditionals (or loops, which are effectively the same thing) expect_failure(r, "float main(float x, float y) { if (x < y) { return x; } return y; }"); expect_failure(r, "float main(float x) { while (x > 1) { return x; } return 0; }"); } DEF_TEST(SkSLInterpreterArrayBounds, r) { // Out of bounds array access at compile time expect_failure(r, "float main(float x[4]) { return x[-1]; }"); expect_failure(r, "float2 main(float2 x[2]) { return x[2]; }"); // Out of bounds array access at runtime is pinned, and we don't update any inout data float in[3] = { -1.0f, 1.0f, 2.0f }; expect_run_failure(r, "void main(inout float data[3]) { data[int(data[0])] = 0; }", in); REPORTER_ASSERT(r, in[0] == -1.0f && in[1] == 1.0f && in[2] == 2.0f); in[0] = 3.0f; expect_run_failure(r, "void main(inout float data[3]) { data[int(data[0])] = 0; }", in); REPORTER_ASSERT(r, in[0] == 3.0f && in[1] == 1.0f && in[2] == 2.0f); } DEF_TEST(SkSLInterpreterFunctions, r) { const char* src = "float sqr(float x) { return x * x; }\n" "float sub(float x, float y) { return x - y; }\n" "float main(float x) { return sub(sqr(x), x); }\n" // Different signatures "float dot(float2 a, float2 b) { return a.x*b.x + a.y*b.y; }\n" "float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n" "float dot3_test(float x) { return dot(float3(x, x + 1, x + 2), float3(1, -1, 2)); }\n" "float dot2_test(float x) { return dot(float2(x, x + 1), float2(1, -1)); }\n"; SkSL::Compiler compiler; SkSL::Program::Settings settings; std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); auto sub = byteCode->getFunction("sub"); auto sqr = byteCode->getFunction("sqr"); auto main = byteCode->getFunction("main"); auto tan = byteCode->getFunction("tan"); auto dot3 = byteCode->getFunction("dot3_test"); auto dot2 = byteCode->getFunction("dot2_test"); REPORTER_ASSERT(r, sub); REPORTER_ASSERT(r, sqr); REPORTER_ASSERT(r, main); REPORTER_ASSERT(r, !tan); REPORTER_ASSERT(r, dot3); REPORTER_ASSERT(r, dot2); float out = 0.0f; float in = 3.0f; SkAssertResult(byteCode->run(main, &in, &out, 1, nullptr, 0)); REPORTER_ASSERT(r, out = 6.0f); SkAssertResult(byteCode->run(dot3, &in, &out, 1, nullptr, 0)); REPORTER_ASSERT(r, out = 9.0f); SkAssertResult(byteCode->run(dot2, &in, &out, 1, nullptr, 0)); REPORTER_ASSERT(r, out = -1.0f); } DEF_TEST(SkSLInterpreterOutParams, r) { test(r, "void oneAlpha(inout half4 color) { color.a = 1; }" "void main(inout half4 color) { oneAlpha(color); }", 0, 0, 0, 0, 0, 0, 0, 1); test(r, "half2 tricky(half x, half y, inout half2 color, half z) {" " color.xy = color.yx;" " return half2(x + y, z);" "}" "void main(inout half4 color) {" " half2 t = tricky(1, 2, color.rb, 5);" " color.ga = t;" "}", 1, 2, 3, 4, 3, 3, 1, 5); } DEF_TEST(SkSLInterpreterMathFunctions, r) { float value, expected; value = 0.0f; expected = 0.0f; test(r, "float main(float x) { return sin(x); }", &value, 1, &expected); test(r, "float main(float x) { return tan(x); }", &value, 1, &expected); value = 0.0f; expected = 1.0f; test(r, "float main(float x) { return cos(x); }", &value, 1, &expected); value = 25.0f; expected = 5.0f; test(r, "float main(float x) { return sqrt(x); }", &value, 1, &expected); } DEF_TEST(SkSLInterpreterVoidFunction, r) { test(r, "half x; void foo() { x = 1.0; }" "void main(inout half4 color) { foo(); color.r = x; }", 0, 0, 0, 0, 1, 0, 0, 0); } DEF_TEST(SkSLInterpreterMix, r) { float value, expected; value = 0.5f; expected = 0.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, 1, &expected); value = 0.75f; expected = 5.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, 1, &expected); value = 2.0f; expected = 30.0f; test(r, "float main(float x) { return mix(-10, 10, x); }", &value, 1, &expected); float valueVectors[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f }, expectedVector[] = { 3.0f, 4.0f, 5.0f, 6.0f }; test(r, "float4 main(float4 x, float4 y) { return mix(x, y, 0.5); }", valueVectors, 4, expectedVector); } DEF_TEST(SkSLInterpreterCross, r) { float args[] = { 1.0f, 4.0f, -6.0f, -2.0f, 7.0f, -3.0f }; SkPoint3 cross = SkPoint3::CrossProduct(SkPoint3::Make(args[0], args[1], args[2]), SkPoint3::Make(args[3], args[4], args[5])); float expected[] = { cross.fX, cross.fY, cross.fZ }; test(r, "float3 main(float3 x, float3 y) { return cross(x, y); }", args, 3, expected); } DEF_TEST(SkSLInterpreterInverse, r) { { SkMatrix m; m.setRotate(30).postScale(1, 2); float args[4] = { m[0], m[3], m[1], m[4] }; SkAssertResult(m.invert(&m)); float expt[4] = { m[0], m[3], m[1], m[4] }; test(r, "float2x2 main(float2x2 m) { return inverse(m); }", args, 4, expt, false); } { SkMatrix m; m.setRotate(30).postScale(1, 2).postTranslate(1, 2); float args[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; SkAssertResult(m.invert(&m)); float expt[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; test(r, "float3x3 main(float3x3 m) { return inverse(m); }", args, 9, expt, false); } { float args[16], expt[16]; SkMatrix44 m; // just some crazy thing that is invertible m.set4x4(1, 2, 3, 4, 1, 2, 0, 3, 1, 0, 1, 4, 1, 3, 2, 0); m.asColMajorf(args); SkAssertResult(m.invert(&m)); m.asColMajorf(expt); test(r, "float4x4 main(float4x4 m) { return inverse(m); }", args, 16, expt, false); } } DEF_TEST(SkSLInterpreterDot, r) { float args[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f }; float expected = args[0] * args[2] + args[1] * args[3]; test(r, "float main(float2 x, float2 y) { return dot(x, y); }", args, 1, &expected); expected = args[0] * args[3] + args[1] * args[4] + args[2] * args[5]; test(r, "float main(float3 x, float3 y) { return dot(x, y); }", args, 1, &expected); expected = args[0] * args[4] + args[1] * args[5] + args[2] * args[6] + args[3] * args[7]; test(r, "float main(float4 x, float4 y) { return dot(x, y); }", args, 1, &expected); } static const SkSL::Type& type_of(const skjson::Value* value, SkSL::Compiler* compiler) { switch (value->getType()) { case skjson::Value::Type::kNumber: { float f = *value->as(); if (f == (float) (int) f) { return *compiler->context().fInt_Type; } return *compiler->context().fFloat_Type; } case skjson::Value::Type::kBool: return *compiler->context().fBool_Type; default: return *compiler->context().fVoid_Type; } } class JSONExternalValue : public SkSL::ExternalValue { public: JSONExternalValue(const char* name, const skjson::Value* value, SkSL::Compiler* compiler) : INHERITED(name, type_of(value, compiler)) , fValue(*value) , fCompiler(*compiler) {} bool canRead() const override { return type() != *fCompiler.context().fVoid_Type; } void read(int /*unusedIndex*/, float* target) override { if (type() == *fCompiler.context().fInt_Type) { *(int*) target = *fValue.as(); } else if (type() == *fCompiler.context().fFloat_Type) { *(float*) target = *fValue.as(); } else if (type() == *fCompiler.context().fBool_Type) { // ByteCode "booleans" are actually bit-masks *(int*) target = *fValue.as() ? ~0 : 0; } else { SkASSERT(false); } } SkSL::ExternalValue* getChild(const char* name) const override { if (fValue.getType() == skjson::Value::Type::kObject) { const skjson::Value& v = fValue.as()[name]; return (SkSL::ExternalValue*) fCompiler.takeOwnership(std::unique_ptr( new JSONExternalValue(name, &v, &fCompiler))); } return nullptr; } private: const skjson::Value& fValue; SkSL::Compiler& fCompiler; typedef SkSL::ExternalValue INHERITED; }; class PointerExternalValue : public SkSL::ExternalValue { public: PointerExternalValue(const char* name, const SkSL::Type& type, void* data, size_t size) : INHERITED(name, type) , fData(data) , fSize(size) {} bool canRead() const override { return true; } bool canWrite() const override { return true; } void read(int /*unusedIndex*/, float* target) override { memcpy(target, fData, fSize); } void write(int /*unusedIndex*/, float* src) override { memcpy(fData, src, fSize); } private: void* fData; size_t fSize; typedef SkSL::ExternalValue INHERITED; }; DEF_TEST(SkSLInterpreterExternalValues, r) { const char* json = "{ \"value1\": 12, \"child\": { \"value2\": true, \"value3\": 5.5 } }"; skjson::DOM dom(json, strlen(json)); SkSL::Compiler compiler; SkSL::Program::Settings settings; const char* src = "float main() {" " outValue = 152;" " return root.child.value2 ? root.value1 * root.child.value3 : -1;" "}"; compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership( std::unique_ptr(new JSONExternalValue("root", &dom.root(), &compiler)))); int32_t outValue = -1; compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership( std::unique_ptr(new PointerExternalValue("outValue", *compiler.context().fInt_Type, &outValue, sizeof(outValue))))); std::unique_ptr program = compiler.convertProgram( SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } SkSL::ByteCodeFunction* main = byteCode->fFunctions[0].get(); float out; SkAssertResult(byteCode->run(main, nullptr, &out, 1, nullptr, 0)); REPORTER_ASSERT(r, out == 66.0); REPORTER_ASSERT(r, outValue == 152); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } } DEF_TEST(SkSLInterpreterExternalValuesVector, r) { SkSL::Compiler compiler; SkSL::Program::Settings settings; const char* src = "void main() {" " value *= 2;" "}"; int32_t value[4] = { 1, 2, 3, 4 }; compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership( std::unique_ptr(new PointerExternalValue("value", *compiler.context().fInt4_Type, value, sizeof(value))))); std::unique_ptr program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } SkSL::ByteCodeFunction* main = byteCode->fFunctions[0].get(); SkAssertResult(byteCode->run(main, nullptr, nullptr, 1, nullptr, 0)); REPORTER_ASSERT(r, value[0] == 2); REPORTER_ASSERT(r, value[1] == 4); REPORTER_ASSERT(r, value[2] == 6); REPORTER_ASSERT(r, value[3] == 8); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } } class FunctionExternalValue : public SkSL::ExternalValue { public: FunctionExternalValue(const char* name, float(*function)(float), SkSL::Compiler& compiler) : INHERITED(name, *compiler.context().fFloat_Type) , fCompiler(compiler) , fFunction(function) {} bool canCall() const override { return true; } int callParameterCount() const override { return 1; } void getCallParameterTypes(const SkSL::Type** outTypes) const override { outTypes[0] = fCompiler.context().fFloat_Type.get(); } void call(int /*unusedIndex*/, float* arguments, float* outReturn) override { outReturn[0] = fFunction(arguments[0]); } private: SkSL::Compiler& fCompiler; float (*fFunction)(float); typedef SkSL::ExternalValue INHERITED; }; DEF_TEST(SkSLInterpreterExternalValuesCall, r) { SkSL::Compiler compiler; SkSL::Program::Settings settings; const char* src = "float main() {" " return external(25);" "}"; compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership( std::unique_ptr(new FunctionExternalValue("external", [] (float x) { return (float) sqrt(x); }, compiler)))); std::unique_ptr program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } SkSL::ByteCodeFunction* main = byteCode->fFunctions[0].get(); float out; SkAssertResult(byteCode->run(main, nullptr, &out, 1, nullptr, 0)); REPORTER_ASSERT(r, out == 5.0); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } } class VectorFunctionExternalValue : public SkSL::ExternalValue { public: VectorFunctionExternalValue(const char* name, void(*function)(float[4], float[4]), SkSL::Compiler& compiler) : INHERITED(name, *compiler.context().fFloat4_Type) , fCompiler(compiler) , fFunction(function) {} bool canCall() const override { return true; } int callParameterCount() const override { return 1; } void getCallParameterTypes(const SkSL::Type** outTypes) const override { outTypes[0] = fCompiler.context().fFloat4_Type.get(); } void call(int /*unusedIndex*/, float* arguments, float* outReturn) override { fFunction(arguments, outReturn); } private: SkSL::Compiler& fCompiler; void (*fFunction)(float[4], float[4]); typedef SkSL::ExternalValue INHERITED; }; DEF_TEST(SkSLInterpreterExternalValuesVectorCall, r) { SkSL::Compiler compiler; SkSL::Program::Settings settings; const char* src = "float4 main() {" " return external(float4(1, 4, 9, 16));" "}"; compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership( std::unique_ptr(new VectorFunctionExternalValue("external", [] (float in[4], float out[4]) { out[0] = sqrt(in[0]); out[1] = sqrt(in[1]); out[2] = sqrt(in[2]); out[3] = sqrt(in[3]); }, compiler)))); std::unique_ptr program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src), settings); REPORTER_ASSERT(r, program); if (program) { std::unique_ptr byteCode = compiler.toByteCode(*program); REPORTER_ASSERT(r, !compiler.errorCount()); if (compiler.errorCount() > 0) { printf("%s\n%s", src, compiler.errorText().c_str()); return; } SkSL::ByteCodeFunction* main = byteCode->fFunctions[0].get(); float out[4]; SkAssertResult(byteCode->run(main, nullptr, out, 1, nullptr, 0)); REPORTER_ASSERT(r, out[0] == 1.0); REPORTER_ASSERT(r, out[1] == 2.0); REPORTER_ASSERT(r, out[2] == 3.0); REPORTER_ASSERT(r, out[3] == 4.0); } else { printf("%s\n%s", src, compiler.errorText().c_str()); } }