sha2.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /*
  2. * FIPS 180-2 SHA-224/256/384/512 implementation
  3. * Last update: 02/02/2007
  4. * Issue date: 04/30/2005
  5. *
  6. * Since this code has been incorporated into a GPLv2 project, it is
  7. * distributed under GPLv2 inside mmc-utils. The original BSD license
  8. * that the code was released under is included below for clarity.
  9. *
  10. * Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
  11. * All rights reserved.
  12. *
  13. * Redistribution and use in source and binary forms, with or without
  14. * modification, are permitted provided that the following conditions
  15. * are met:
  16. * 1. Redistributions of source code must retain the above copyright
  17. * notice, this list of conditions and the following disclaimer.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. Neither the name of the project nor the names of its contributors
  22. * may be used to endorse or promote products derived from this software
  23. * without specific prior written permission.
  24. *
  25. * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
  26. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  27. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  28. * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
  29. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  30. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  31. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  32. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  33. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  34. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  35. * SUCH DAMAGE.
  36. */
  37. #if 0
  38. #define UNROLL_LOOPS /* Enable loops unrolling */
  39. #endif
  40. #include <string.h>
  41. #include "sha2.h"
  42. #define SHFR(x, n) (x >> n)
  43. #define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
  44. #define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
  45. #define CH(x, y, z) ((x & y) ^ (~x & z))
  46. #define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
  47. #define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
  48. #define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
  49. #define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
  50. #define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
  51. #define SHA512_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
  52. #define SHA512_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
  53. #define SHA512_F3(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHFR(x, 7))
  54. #define SHA512_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x, 6))
  55. #define UNPACK32(x, str) \
  56. { \
  57. *((str) + 3) = (uint8) ((x) ); \
  58. *((str) + 2) = (uint8) ((x) >> 8); \
  59. *((str) + 1) = (uint8) ((x) >> 16); \
  60. *((str) + 0) = (uint8) ((x) >> 24); \
  61. }
  62. #define PACK32(str, x) \
  63. { \
  64. *(x) = ((uint32) *((str) + 3) ) \
  65. | ((uint32) *((str) + 2) << 8) \
  66. | ((uint32) *((str) + 1) << 16) \
  67. | ((uint32) *((str) + 0) << 24); \
  68. }
  69. #define UNPACK64(x, str) \
  70. { \
  71. *((str) + 7) = (uint8) ((x) ); \
  72. *((str) + 6) = (uint8) ((x) >> 8); \
  73. *((str) + 5) = (uint8) ((x) >> 16); \
  74. *((str) + 4) = (uint8) ((x) >> 24); \
  75. *((str) + 3) = (uint8) ((x) >> 32); \
  76. *((str) + 2) = (uint8) ((x) >> 40); \
  77. *((str) + 1) = (uint8) ((x) >> 48); \
  78. *((str) + 0) = (uint8) ((x) >> 56); \
  79. }
  80. #define PACK64(str, x) \
  81. { \
  82. *(x) = ((uint64) *((str) + 7) ) \
  83. | ((uint64) *((str) + 6) << 8) \
  84. | ((uint64) *((str) + 5) << 16) \
  85. | ((uint64) *((str) + 4) << 24) \
  86. | ((uint64) *((str) + 3) << 32) \
  87. | ((uint64) *((str) + 2) << 40) \
  88. | ((uint64) *((str) + 1) << 48) \
  89. | ((uint64) *((str) + 0) << 56); \
  90. }
  91. /* Macros used for loops unrolling */
  92. #define SHA256_SCR(i) \
  93. { \
  94. w[i] = SHA256_F4(w[i - 2]) + w[i - 7] \
  95. + SHA256_F3(w[i - 15]) + w[i - 16]; \
  96. }
  97. #define SHA512_SCR(i) \
  98. { \
  99. w[i] = SHA512_F4(w[i - 2]) + w[i - 7] \
  100. + SHA512_F3(w[i - 15]) + w[i - 16]; \
  101. }
  102. #define SHA256_EXP(a, b, c, d, e, f, g, h, j) \
  103. { \
  104. t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
  105. + sha256_k[j] + w[j]; \
  106. t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
  107. wv[d] += t1; \
  108. wv[h] = t1 + t2; \
  109. }
  110. #define SHA512_EXP(a, b, c, d, e, f, g ,h, j) \
  111. { \
  112. t1 = wv[h] + SHA512_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
  113. + sha512_k[j] + w[j]; \
  114. t2 = SHA512_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
  115. wv[d] += t1; \
  116. wv[h] = t1 + t2; \
  117. }
  118. uint32 sha224_h0[8] =
  119. {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
  120. 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
  121. uint32 sha256_h0[8] =
  122. {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  123. 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
  124. uint64 sha384_h0[8] =
  125. {0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL,
  126. 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL,
  127. 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
  128. 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL};
  129. uint64 sha512_h0[8] =
  130. {0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
  131. 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
  132. 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
  133. 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL};
  134. uint32 sha256_k[64] =
  135. {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  136. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  137. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  138. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  139. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  140. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  141. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  142. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  143. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  144. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  145. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  146. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  147. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  148. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  149. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  150. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
  151. uint64 sha512_k[80] =
  152. {0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  153. 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  154. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  155. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  156. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  157. 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  158. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  159. 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  160. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  161. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  162. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  163. 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  164. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  165. 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  166. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  167. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  168. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  169. 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  170. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  171. 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  172. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  173. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  174. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  175. 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  176. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  177. 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  178. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  179. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  180. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  181. 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  182. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  183. 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  184. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  185. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  186. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  187. 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  188. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  189. 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  190. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  191. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL};
  192. /* SHA-256 functions */
  193. void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
  194. unsigned int block_nb)
  195. {
  196. uint32 w[64];
  197. uint32 wv[8];
  198. uint32 t1, t2;
  199. const unsigned char *sub_block;
  200. int i;
  201. #ifndef UNROLL_LOOPS
  202. int j;
  203. #endif
  204. for (i = 0; i < (int) block_nb; i++) {
  205. sub_block = message + (i << 6);
  206. #ifndef UNROLL_LOOPS
  207. for (j = 0; j < 16; j++) {
  208. PACK32(&sub_block[j << 2], &w[j]);
  209. }
  210. for (j = 16; j < 64; j++) {
  211. SHA256_SCR(j);
  212. }
  213. for (j = 0; j < 8; j++) {
  214. wv[j] = ctx->h[j];
  215. }
  216. for (j = 0; j < 64; j++) {
  217. t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
  218. + sha256_k[j] + w[j];
  219. t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
  220. wv[7] = wv[6];
  221. wv[6] = wv[5];
  222. wv[5] = wv[4];
  223. wv[4] = wv[3] + t1;
  224. wv[3] = wv[2];
  225. wv[2] = wv[1];
  226. wv[1] = wv[0];
  227. wv[0] = t1 + t2;
  228. }
  229. for (j = 0; j < 8; j++) {
  230. ctx->h[j] += wv[j];
  231. }
  232. #else
  233. PACK32(&sub_block[ 0], &w[ 0]); PACK32(&sub_block[ 4], &w[ 1]);
  234. PACK32(&sub_block[ 8], &w[ 2]); PACK32(&sub_block[12], &w[ 3]);
  235. PACK32(&sub_block[16], &w[ 4]); PACK32(&sub_block[20], &w[ 5]);
  236. PACK32(&sub_block[24], &w[ 6]); PACK32(&sub_block[28], &w[ 7]);
  237. PACK32(&sub_block[32], &w[ 8]); PACK32(&sub_block[36], &w[ 9]);
  238. PACK32(&sub_block[40], &w[10]); PACK32(&sub_block[44], &w[11]);
  239. PACK32(&sub_block[48], &w[12]); PACK32(&sub_block[52], &w[13]);
  240. PACK32(&sub_block[56], &w[14]); PACK32(&sub_block[60], &w[15]);
  241. SHA256_SCR(16); SHA256_SCR(17); SHA256_SCR(18); SHA256_SCR(19);
  242. SHA256_SCR(20); SHA256_SCR(21); SHA256_SCR(22); SHA256_SCR(23);
  243. SHA256_SCR(24); SHA256_SCR(25); SHA256_SCR(26); SHA256_SCR(27);
  244. SHA256_SCR(28); SHA256_SCR(29); SHA256_SCR(30); SHA256_SCR(31);
  245. SHA256_SCR(32); SHA256_SCR(33); SHA256_SCR(34); SHA256_SCR(35);
  246. SHA256_SCR(36); SHA256_SCR(37); SHA256_SCR(38); SHA256_SCR(39);
  247. SHA256_SCR(40); SHA256_SCR(41); SHA256_SCR(42); SHA256_SCR(43);
  248. SHA256_SCR(44); SHA256_SCR(45); SHA256_SCR(46); SHA256_SCR(47);
  249. SHA256_SCR(48); SHA256_SCR(49); SHA256_SCR(50); SHA256_SCR(51);
  250. SHA256_SCR(52); SHA256_SCR(53); SHA256_SCR(54); SHA256_SCR(55);
  251. SHA256_SCR(56); SHA256_SCR(57); SHA256_SCR(58); SHA256_SCR(59);
  252. SHA256_SCR(60); SHA256_SCR(61); SHA256_SCR(62); SHA256_SCR(63);
  253. wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
  254. wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
  255. wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
  256. wv[6] = ctx->h[6]; wv[7] = ctx->h[7];
  257. SHA256_EXP(0,1,2,3,4,5,6,7, 0); SHA256_EXP(7,0,1,2,3,4,5,6, 1);
  258. SHA256_EXP(6,7,0,1,2,3,4,5, 2); SHA256_EXP(5,6,7,0,1,2,3,4, 3);
  259. SHA256_EXP(4,5,6,7,0,1,2,3, 4); SHA256_EXP(3,4,5,6,7,0,1,2, 5);
  260. SHA256_EXP(2,3,4,5,6,7,0,1, 6); SHA256_EXP(1,2,3,4,5,6,7,0, 7);
  261. SHA256_EXP(0,1,2,3,4,5,6,7, 8); SHA256_EXP(7,0,1,2,3,4,5,6, 9);
  262. SHA256_EXP(6,7,0,1,2,3,4,5,10); SHA256_EXP(5,6,7,0,1,2,3,4,11);
  263. SHA256_EXP(4,5,6,7,0,1,2,3,12); SHA256_EXP(3,4,5,6,7,0,1,2,13);
  264. SHA256_EXP(2,3,4,5,6,7,0,1,14); SHA256_EXP(1,2,3,4,5,6,7,0,15);
  265. SHA256_EXP(0,1,2,3,4,5,6,7,16); SHA256_EXP(7,0,1,2,3,4,5,6,17);
  266. SHA256_EXP(6,7,0,1,2,3,4,5,18); SHA256_EXP(5,6,7,0,1,2,3,4,19);
  267. SHA256_EXP(4,5,6,7,0,1,2,3,20); SHA256_EXP(3,4,5,6,7,0,1,2,21);
  268. SHA256_EXP(2,3,4,5,6,7,0,1,22); SHA256_EXP(1,2,3,4,5,6,7,0,23);
  269. SHA256_EXP(0,1,2,3,4,5,6,7,24); SHA256_EXP(7,0,1,2,3,4,5,6,25);
  270. SHA256_EXP(6,7,0,1,2,3,4,5,26); SHA256_EXP(5,6,7,0,1,2,3,4,27);
  271. SHA256_EXP(4,5,6,7,0,1,2,3,28); SHA256_EXP(3,4,5,6,7,0,1,2,29);
  272. SHA256_EXP(2,3,4,5,6,7,0,1,30); SHA256_EXP(1,2,3,4,5,6,7,0,31);
  273. SHA256_EXP(0,1,2,3,4,5,6,7,32); SHA256_EXP(7,0,1,2,3,4,5,6,33);
  274. SHA256_EXP(6,7,0,1,2,3,4,5,34); SHA256_EXP(5,6,7,0,1,2,3,4,35);
  275. SHA256_EXP(4,5,6,7,0,1,2,3,36); SHA256_EXP(3,4,5,6,7,0,1,2,37);
  276. SHA256_EXP(2,3,4,5,6,7,0,1,38); SHA256_EXP(1,2,3,4,5,6,7,0,39);
  277. SHA256_EXP(0,1,2,3,4,5,6,7,40); SHA256_EXP(7,0,1,2,3,4,5,6,41);
  278. SHA256_EXP(6,7,0,1,2,3,4,5,42); SHA256_EXP(5,6,7,0,1,2,3,4,43);
  279. SHA256_EXP(4,5,6,7,0,1,2,3,44); SHA256_EXP(3,4,5,6,7,0,1,2,45);
  280. SHA256_EXP(2,3,4,5,6,7,0,1,46); SHA256_EXP(1,2,3,4,5,6,7,0,47);
  281. SHA256_EXP(0,1,2,3,4,5,6,7,48); SHA256_EXP(7,0,1,2,3,4,5,6,49);
  282. SHA256_EXP(6,7,0,1,2,3,4,5,50); SHA256_EXP(5,6,7,0,1,2,3,4,51);
  283. SHA256_EXP(4,5,6,7,0,1,2,3,52); SHA256_EXP(3,4,5,6,7,0,1,2,53);
  284. SHA256_EXP(2,3,4,5,6,7,0,1,54); SHA256_EXP(1,2,3,4,5,6,7,0,55);
  285. SHA256_EXP(0,1,2,3,4,5,6,7,56); SHA256_EXP(7,0,1,2,3,4,5,6,57);
  286. SHA256_EXP(6,7,0,1,2,3,4,5,58); SHA256_EXP(5,6,7,0,1,2,3,4,59);
  287. SHA256_EXP(4,5,6,7,0,1,2,3,60); SHA256_EXP(3,4,5,6,7,0,1,2,61);
  288. SHA256_EXP(2,3,4,5,6,7,0,1,62); SHA256_EXP(1,2,3,4,5,6,7,0,63);
  289. ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
  290. ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
  291. ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
  292. ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
  293. #endif /* !UNROLL_LOOPS */
  294. }
  295. }
  296. void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
  297. {
  298. sha256_ctx ctx;
  299. sha256_init(&ctx);
  300. sha256_update(&ctx, message, len);
  301. sha256_final(&ctx, digest);
  302. }
  303. void sha256_init(sha256_ctx *ctx)
  304. {
  305. #ifndef UNROLL_LOOPS
  306. int i;
  307. for (i = 0; i < 8; i++) {
  308. ctx->h[i] = sha256_h0[i];
  309. }
  310. #else
  311. ctx->h[0] = sha256_h0[0]; ctx->h[1] = sha256_h0[1];
  312. ctx->h[2] = sha256_h0[2]; ctx->h[3] = sha256_h0[3];
  313. ctx->h[4] = sha256_h0[4]; ctx->h[5] = sha256_h0[5];
  314. ctx->h[6] = sha256_h0[6]; ctx->h[7] = sha256_h0[7];
  315. #endif /* !UNROLL_LOOPS */
  316. ctx->len = 0;
  317. ctx->tot_len = 0;
  318. }
  319. void sha256_update(sha256_ctx *ctx, const unsigned char *message,
  320. unsigned int len)
  321. {
  322. unsigned int block_nb;
  323. unsigned int new_len, rem_len, tmp_len;
  324. const unsigned char *shifted_message;
  325. tmp_len = SHA256_BLOCK_SIZE - ctx->len;
  326. rem_len = len < tmp_len ? len : tmp_len;
  327. memcpy(&ctx->block[ctx->len], message, rem_len);
  328. if (ctx->len + len < SHA256_BLOCK_SIZE) {
  329. ctx->len += len;
  330. return;
  331. }
  332. new_len = len - rem_len;
  333. block_nb = new_len / SHA256_BLOCK_SIZE;
  334. shifted_message = message + rem_len;
  335. sha256_transf(ctx, ctx->block, 1);
  336. sha256_transf(ctx, shifted_message, block_nb);
  337. rem_len = new_len % SHA256_BLOCK_SIZE;
  338. memcpy(ctx->block, &shifted_message[block_nb << 6],
  339. rem_len);
  340. ctx->len = rem_len;
  341. ctx->tot_len += (block_nb + 1) << 6;
  342. }
  343. void sha256_final(sha256_ctx *ctx, unsigned char *digest)
  344. {
  345. unsigned int block_nb;
  346. unsigned int pm_len;
  347. unsigned int len_b;
  348. #ifndef UNROLL_LOOPS
  349. int i;
  350. #endif
  351. block_nb = (1 + ((SHA256_BLOCK_SIZE - 9)
  352. < (ctx->len % SHA256_BLOCK_SIZE)));
  353. len_b = (ctx->tot_len + ctx->len) << 3;
  354. pm_len = block_nb << 6;
  355. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  356. ctx->block[ctx->len] = 0x80;
  357. UNPACK32(len_b, ctx->block + pm_len - 4);
  358. sha256_transf(ctx, ctx->block, block_nb);
  359. #ifndef UNROLL_LOOPS
  360. for (i = 0 ; i < 8; i++) {
  361. UNPACK32(ctx->h[i], &digest[i << 2]);
  362. }
  363. #else
  364. UNPACK32(ctx->h[0], &digest[ 0]);
  365. UNPACK32(ctx->h[1], &digest[ 4]);
  366. UNPACK32(ctx->h[2], &digest[ 8]);
  367. UNPACK32(ctx->h[3], &digest[12]);
  368. UNPACK32(ctx->h[4], &digest[16]);
  369. UNPACK32(ctx->h[5], &digest[20]);
  370. UNPACK32(ctx->h[6], &digest[24]);
  371. UNPACK32(ctx->h[7], &digest[28]);
  372. #endif /* !UNROLL_LOOPS */
  373. }
  374. /* SHA-512 functions */
  375. void sha512_transf(sha512_ctx *ctx, const unsigned char *message,
  376. unsigned int block_nb)
  377. {
  378. uint64 w[80];
  379. uint64 wv[8];
  380. uint64 t1, t2;
  381. const unsigned char *sub_block;
  382. int i, j;
  383. for (i = 0; i < (int) block_nb; i++) {
  384. sub_block = message + (i << 7);
  385. #ifndef UNROLL_LOOPS
  386. for (j = 0; j < 16; j++) {
  387. PACK64(&sub_block[j << 3], &w[j]);
  388. }
  389. for (j = 16; j < 80; j++) {
  390. SHA512_SCR(j);
  391. }
  392. for (j = 0; j < 8; j++) {
  393. wv[j] = ctx->h[j];
  394. }
  395. for (j = 0; j < 80; j++) {
  396. t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
  397. + sha512_k[j] + w[j];
  398. t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
  399. wv[7] = wv[6];
  400. wv[6] = wv[5];
  401. wv[5] = wv[4];
  402. wv[4] = wv[3] + t1;
  403. wv[3] = wv[2];
  404. wv[2] = wv[1];
  405. wv[1] = wv[0];
  406. wv[0] = t1 + t2;
  407. }
  408. for (j = 0; j < 8; j++) {
  409. ctx->h[j] += wv[j];
  410. }
  411. #else
  412. PACK64(&sub_block[ 0], &w[ 0]); PACK64(&sub_block[ 8], &w[ 1]);
  413. PACK64(&sub_block[ 16], &w[ 2]); PACK64(&sub_block[ 24], &w[ 3]);
  414. PACK64(&sub_block[ 32], &w[ 4]); PACK64(&sub_block[ 40], &w[ 5]);
  415. PACK64(&sub_block[ 48], &w[ 6]); PACK64(&sub_block[ 56], &w[ 7]);
  416. PACK64(&sub_block[ 64], &w[ 8]); PACK64(&sub_block[ 72], &w[ 9]);
  417. PACK64(&sub_block[ 80], &w[10]); PACK64(&sub_block[ 88], &w[11]);
  418. PACK64(&sub_block[ 96], &w[12]); PACK64(&sub_block[104], &w[13]);
  419. PACK64(&sub_block[112], &w[14]); PACK64(&sub_block[120], &w[15]);
  420. SHA512_SCR(16); SHA512_SCR(17); SHA512_SCR(18); SHA512_SCR(19);
  421. SHA512_SCR(20); SHA512_SCR(21); SHA512_SCR(22); SHA512_SCR(23);
  422. SHA512_SCR(24); SHA512_SCR(25); SHA512_SCR(26); SHA512_SCR(27);
  423. SHA512_SCR(28); SHA512_SCR(29); SHA512_SCR(30); SHA512_SCR(31);
  424. SHA512_SCR(32); SHA512_SCR(33); SHA512_SCR(34); SHA512_SCR(35);
  425. SHA512_SCR(36); SHA512_SCR(37); SHA512_SCR(38); SHA512_SCR(39);
  426. SHA512_SCR(40); SHA512_SCR(41); SHA512_SCR(42); SHA512_SCR(43);
  427. SHA512_SCR(44); SHA512_SCR(45); SHA512_SCR(46); SHA512_SCR(47);
  428. SHA512_SCR(48); SHA512_SCR(49); SHA512_SCR(50); SHA512_SCR(51);
  429. SHA512_SCR(52); SHA512_SCR(53); SHA512_SCR(54); SHA512_SCR(55);
  430. SHA512_SCR(56); SHA512_SCR(57); SHA512_SCR(58); SHA512_SCR(59);
  431. SHA512_SCR(60); SHA512_SCR(61); SHA512_SCR(62); SHA512_SCR(63);
  432. SHA512_SCR(64); SHA512_SCR(65); SHA512_SCR(66); SHA512_SCR(67);
  433. SHA512_SCR(68); SHA512_SCR(69); SHA512_SCR(70); SHA512_SCR(71);
  434. SHA512_SCR(72); SHA512_SCR(73); SHA512_SCR(74); SHA512_SCR(75);
  435. SHA512_SCR(76); SHA512_SCR(77); SHA512_SCR(78); SHA512_SCR(79);
  436. wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
  437. wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
  438. wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
  439. wv[6] = ctx->h[6]; wv[7] = ctx->h[7];
  440. j = 0;
  441. do {
  442. SHA512_EXP(0,1,2,3,4,5,6,7,j); j++;
  443. SHA512_EXP(7,0,1,2,3,4,5,6,j); j++;
  444. SHA512_EXP(6,7,0,1,2,3,4,5,j); j++;
  445. SHA512_EXP(5,6,7,0,1,2,3,4,j); j++;
  446. SHA512_EXP(4,5,6,7,0,1,2,3,j); j++;
  447. SHA512_EXP(3,4,5,6,7,0,1,2,j); j++;
  448. SHA512_EXP(2,3,4,5,6,7,0,1,j); j++;
  449. SHA512_EXP(1,2,3,4,5,6,7,0,j); j++;
  450. } while (j < 80);
  451. ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
  452. ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
  453. ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
  454. ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
  455. #endif /* !UNROLL_LOOPS */
  456. }
  457. }
  458. void sha512(const unsigned char *message, unsigned int len,
  459. unsigned char *digest)
  460. {
  461. sha512_ctx ctx;
  462. sha512_init(&ctx);
  463. sha512_update(&ctx, message, len);
  464. sha512_final(&ctx, digest);
  465. }
  466. void sha512_init(sha512_ctx *ctx)
  467. {
  468. #ifndef UNROLL_LOOPS
  469. int i;
  470. for (i = 0; i < 8; i++) {
  471. ctx->h[i] = sha512_h0[i];
  472. }
  473. #else
  474. ctx->h[0] = sha512_h0[0]; ctx->h[1] = sha512_h0[1];
  475. ctx->h[2] = sha512_h0[2]; ctx->h[3] = sha512_h0[3];
  476. ctx->h[4] = sha512_h0[4]; ctx->h[5] = sha512_h0[5];
  477. ctx->h[6] = sha512_h0[6]; ctx->h[7] = sha512_h0[7];
  478. #endif /* !UNROLL_LOOPS */
  479. ctx->len = 0;
  480. ctx->tot_len = 0;
  481. }
  482. void sha512_update(sha512_ctx *ctx, const unsigned char *message,
  483. unsigned int len)
  484. {
  485. unsigned int block_nb;
  486. unsigned int new_len, rem_len, tmp_len;
  487. const unsigned char *shifted_message;
  488. tmp_len = SHA512_BLOCK_SIZE - ctx->len;
  489. rem_len = len < tmp_len ? len : tmp_len;
  490. memcpy(&ctx->block[ctx->len], message, rem_len);
  491. if (ctx->len + len < SHA512_BLOCK_SIZE) {
  492. ctx->len += len;
  493. return;
  494. }
  495. new_len = len - rem_len;
  496. block_nb = new_len / SHA512_BLOCK_SIZE;
  497. shifted_message = message + rem_len;
  498. sha512_transf(ctx, ctx->block, 1);
  499. sha512_transf(ctx, shifted_message, block_nb);
  500. rem_len = new_len % SHA512_BLOCK_SIZE;
  501. memcpy(ctx->block, &shifted_message[block_nb << 7],
  502. rem_len);
  503. ctx->len = rem_len;
  504. ctx->tot_len += (block_nb + 1) << 7;
  505. }
  506. void sha512_final(sha512_ctx *ctx, unsigned char *digest)
  507. {
  508. unsigned int block_nb;
  509. unsigned int pm_len;
  510. unsigned int len_b;
  511. #ifndef UNROLL_LOOPS
  512. int i;
  513. #endif
  514. block_nb = 1 + ((SHA512_BLOCK_SIZE - 17)
  515. < (ctx->len % SHA512_BLOCK_SIZE));
  516. len_b = (ctx->tot_len + ctx->len) << 3;
  517. pm_len = block_nb << 7;
  518. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  519. ctx->block[ctx->len] = 0x80;
  520. UNPACK32(len_b, ctx->block + pm_len - 4);
  521. sha512_transf(ctx, ctx->block, block_nb);
  522. #ifndef UNROLL_LOOPS
  523. for (i = 0 ; i < 8; i++) {
  524. UNPACK64(ctx->h[i], &digest[i << 3]);
  525. }
  526. #else
  527. UNPACK64(ctx->h[0], &digest[ 0]);
  528. UNPACK64(ctx->h[1], &digest[ 8]);
  529. UNPACK64(ctx->h[2], &digest[16]);
  530. UNPACK64(ctx->h[3], &digest[24]);
  531. UNPACK64(ctx->h[4], &digest[32]);
  532. UNPACK64(ctx->h[5], &digest[40]);
  533. UNPACK64(ctx->h[6], &digest[48]);
  534. UNPACK64(ctx->h[7], &digest[56]);
  535. #endif /* !UNROLL_LOOPS */
  536. }
  537. /* SHA-384 functions */
  538. void sha384(const unsigned char *message, unsigned int len,
  539. unsigned char *digest)
  540. {
  541. sha384_ctx ctx;
  542. sha384_init(&ctx);
  543. sha384_update(&ctx, message, len);
  544. sha384_final(&ctx, digest);
  545. }
  546. void sha384_init(sha384_ctx *ctx)
  547. {
  548. #ifndef UNROLL_LOOPS
  549. int i;
  550. for (i = 0; i < 8; i++) {
  551. ctx->h[i] = sha384_h0[i];
  552. }
  553. #else
  554. ctx->h[0] = sha384_h0[0]; ctx->h[1] = sha384_h0[1];
  555. ctx->h[2] = sha384_h0[2]; ctx->h[3] = sha384_h0[3];
  556. ctx->h[4] = sha384_h0[4]; ctx->h[5] = sha384_h0[5];
  557. ctx->h[6] = sha384_h0[6]; ctx->h[7] = sha384_h0[7];
  558. #endif /* !UNROLL_LOOPS */
  559. ctx->len = 0;
  560. ctx->tot_len = 0;
  561. }
  562. void sha384_update(sha384_ctx *ctx, const unsigned char *message,
  563. unsigned int len)
  564. {
  565. unsigned int block_nb;
  566. unsigned int new_len, rem_len, tmp_len;
  567. const unsigned char *shifted_message;
  568. tmp_len = SHA384_BLOCK_SIZE - ctx->len;
  569. rem_len = len < tmp_len ? len : tmp_len;
  570. memcpy(&ctx->block[ctx->len], message, rem_len);
  571. if (ctx->len + len < SHA384_BLOCK_SIZE) {
  572. ctx->len += len;
  573. return;
  574. }
  575. new_len = len - rem_len;
  576. block_nb = new_len / SHA384_BLOCK_SIZE;
  577. shifted_message = message + rem_len;
  578. sha512_transf(ctx, ctx->block, 1);
  579. sha512_transf(ctx, shifted_message, block_nb);
  580. rem_len = new_len % SHA384_BLOCK_SIZE;
  581. memcpy(ctx->block, &shifted_message[block_nb << 7],
  582. rem_len);
  583. ctx->len = rem_len;
  584. ctx->tot_len += (block_nb + 1) << 7;
  585. }
  586. void sha384_final(sha384_ctx *ctx, unsigned char *digest)
  587. {
  588. unsigned int block_nb;
  589. unsigned int pm_len;
  590. unsigned int len_b;
  591. #ifndef UNROLL_LOOPS
  592. int i;
  593. #endif
  594. block_nb = (1 + ((SHA384_BLOCK_SIZE - 17)
  595. < (ctx->len % SHA384_BLOCK_SIZE)));
  596. len_b = (ctx->tot_len + ctx->len) << 3;
  597. pm_len = block_nb << 7;
  598. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  599. ctx->block[ctx->len] = 0x80;
  600. UNPACK32(len_b, ctx->block + pm_len - 4);
  601. sha512_transf(ctx, ctx->block, block_nb);
  602. #ifndef UNROLL_LOOPS
  603. for (i = 0 ; i < 6; i++) {
  604. UNPACK64(ctx->h[i], &digest[i << 3]);
  605. }
  606. #else
  607. UNPACK64(ctx->h[0], &digest[ 0]);
  608. UNPACK64(ctx->h[1], &digest[ 8]);
  609. UNPACK64(ctx->h[2], &digest[16]);
  610. UNPACK64(ctx->h[3], &digest[24]);
  611. UNPACK64(ctx->h[4], &digest[32]);
  612. UNPACK64(ctx->h[5], &digest[40]);
  613. #endif /* !UNROLL_LOOPS */
  614. }
  615. /* SHA-224 functions */
  616. void sha224(const unsigned char *message, unsigned int len,
  617. unsigned char *digest)
  618. {
  619. sha224_ctx ctx;
  620. sha224_init(&ctx);
  621. sha224_update(&ctx, message, len);
  622. sha224_final(&ctx, digest);
  623. }
  624. void sha224_init(sha224_ctx *ctx)
  625. {
  626. #ifndef UNROLL_LOOPS
  627. int i;
  628. for (i = 0; i < 8; i++) {
  629. ctx->h[i] = sha224_h0[i];
  630. }
  631. #else
  632. ctx->h[0] = sha224_h0[0]; ctx->h[1] = sha224_h0[1];
  633. ctx->h[2] = sha224_h0[2]; ctx->h[3] = sha224_h0[3];
  634. ctx->h[4] = sha224_h0[4]; ctx->h[5] = sha224_h0[5];
  635. ctx->h[6] = sha224_h0[6]; ctx->h[7] = sha224_h0[7];
  636. #endif /* !UNROLL_LOOPS */
  637. ctx->len = 0;
  638. ctx->tot_len = 0;
  639. }
  640. void sha224_update(sha224_ctx *ctx, const unsigned char *message,
  641. unsigned int len)
  642. {
  643. unsigned int block_nb;
  644. unsigned int new_len, rem_len, tmp_len;
  645. const unsigned char *shifted_message;
  646. tmp_len = SHA224_BLOCK_SIZE - ctx->len;
  647. rem_len = len < tmp_len ? len : tmp_len;
  648. memcpy(&ctx->block[ctx->len], message, rem_len);
  649. if (ctx->len + len < SHA224_BLOCK_SIZE) {
  650. ctx->len += len;
  651. return;
  652. }
  653. new_len = len - rem_len;
  654. block_nb = new_len / SHA224_BLOCK_SIZE;
  655. shifted_message = message + rem_len;
  656. sha256_transf(ctx, ctx->block, 1);
  657. sha256_transf(ctx, shifted_message, block_nb);
  658. rem_len = new_len % SHA224_BLOCK_SIZE;
  659. memcpy(ctx->block, &shifted_message[block_nb << 6],
  660. rem_len);
  661. ctx->len = rem_len;
  662. ctx->tot_len += (block_nb + 1) << 6;
  663. }
  664. void sha224_final(sha224_ctx *ctx, unsigned char *digest)
  665. {
  666. unsigned int block_nb;
  667. unsigned int pm_len;
  668. unsigned int len_b;
  669. #ifndef UNROLL_LOOPS
  670. int i;
  671. #endif
  672. block_nb = (1 + ((SHA224_BLOCK_SIZE - 9)
  673. < (ctx->len % SHA224_BLOCK_SIZE)));
  674. len_b = (ctx->tot_len + ctx->len) << 3;
  675. pm_len = block_nb << 6;
  676. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  677. ctx->block[ctx->len] = 0x80;
  678. UNPACK32(len_b, ctx->block + pm_len - 4);
  679. sha256_transf(ctx, ctx->block, block_nb);
  680. #ifndef UNROLL_LOOPS
  681. for (i = 0 ; i < 7; i++) {
  682. UNPACK32(ctx->h[i], &digest[i << 2]);
  683. }
  684. #else
  685. UNPACK32(ctx->h[0], &digest[ 0]);
  686. UNPACK32(ctx->h[1], &digest[ 4]);
  687. UNPACK32(ctx->h[2], &digest[ 8]);
  688. UNPACK32(ctx->h[3], &digest[12]);
  689. UNPACK32(ctx->h[4], &digest[16]);
  690. UNPACK32(ctx->h[5], &digest[20]);
  691. UNPACK32(ctx->h[6], &digest[24]);
  692. #endif /* !UNROLL_LOOPS */
  693. }
  694. #ifdef TEST_VECTORS
  695. /* FIPS 180-2 Validation tests */
  696. #include <stdio.h>
  697. #include <stdlib.h>
  698. void test(const char *vector, unsigned char *digest,
  699. unsigned int digest_size)
  700. {
  701. char output[2 * SHA512_DIGEST_SIZE + 1];
  702. int i;
  703. output[2 * digest_size] = '\0';
  704. for (i = 0; i < (int) digest_size ; i++) {
  705. sprintf(output + 2 * i, "%02x", digest[i]);
  706. }
  707. printf("H: %s\n", output);
  708. if (strcmp(vector, output)) {
  709. fprintf(stderr, "Test failed.\n");
  710. exit(EXIT_FAILURE);
  711. }
  712. }
  713. int main(void)
  714. {
  715. static const char *vectors[4][3] =
  716. { /* SHA-224 */
  717. {
  718. "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7",
  719. "75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525",
  720. "20794655980c91d8bbb4c1ea97618a4bf03f42581948b2ee4ee7ad67",
  721. },
  722. /* SHA-256 */
  723. {
  724. "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad",
  725. "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1",
  726. "cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0",
  727. },
  728. /* SHA-384 */
  729. {
  730. "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed"
  731. "8086072ba1e7cc2358baeca134c825a7",
  732. "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712"
  733. "fcc7c71a557e2db966c3e9fa91746039",
  734. "9d0e1809716474cb086e834e310a4a1ced149e9c00f248527972cec5704c2a5b"
  735. "07b8b3dc38ecc4ebae97ddd87f3d8985",
  736. },
  737. /* SHA-512 */
  738. {
  739. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  740. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f",
  741. "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
  742. "501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909",
  743. "e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
  744. "de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b"
  745. }
  746. };
  747. static const char message1[] = "abc";
  748. static const char message2a[] = "abcdbcdecdefdefgefghfghighijhi"
  749. "jkijkljklmklmnlmnomnopnopq";
  750. static const char message2b[] = "abcdefghbcdefghicdefghijdefghijkefghij"
  751. "klfghijklmghijklmnhijklmnoijklmnopjklm"
  752. "nopqklmnopqrlmnopqrsmnopqrstnopqrstu";
  753. unsigned char *message3;
  754. unsigned int message3_len = 1000000;
  755. unsigned char digest[SHA512_DIGEST_SIZE];
  756. message3 = malloc(message3_len);
  757. if (message3 == NULL) {
  758. fprintf(stderr, "Can't allocate memory\n");
  759. return -1;
  760. }
  761. memset(message3, 'a', message3_len);
  762. printf("SHA-2 FIPS 180-2 Validation tests\n\n");
  763. printf("SHA-224 Test vectors\n");
  764. sha224((const unsigned char *) message1, strlen(message1), digest);
  765. test(vectors[0][0], digest, SHA224_DIGEST_SIZE);
  766. sha224((const unsigned char *) message2a, strlen(message2a), digest);
  767. test(vectors[0][1], digest, SHA224_DIGEST_SIZE);
  768. sha224(message3, message3_len, digest);
  769. test(vectors[0][2], digest, SHA224_DIGEST_SIZE);
  770. printf("\n");
  771. printf("SHA-256 Test vectors\n");
  772. sha256((const unsigned char *) message1, strlen(message1), digest);
  773. test(vectors[1][0], digest, SHA256_DIGEST_SIZE);
  774. sha256((const unsigned char *) message2a, strlen(message2a), digest);
  775. test(vectors[1][1], digest, SHA256_DIGEST_SIZE);
  776. sha256(message3, message3_len, digest);
  777. test(vectors[1][2], digest, SHA256_DIGEST_SIZE);
  778. printf("\n");
  779. printf("SHA-384 Test vectors\n");
  780. sha384((const unsigned char *) message1, strlen(message1), digest);
  781. test(vectors[2][0], digest, SHA384_DIGEST_SIZE);
  782. sha384((const unsigned char *)message2b, strlen(message2b), digest);
  783. test(vectors[2][1], digest, SHA384_DIGEST_SIZE);
  784. sha384(message3, message3_len, digest);
  785. test(vectors[2][2], digest, SHA384_DIGEST_SIZE);
  786. printf("\n");
  787. printf("SHA-512 Test vectors\n");
  788. sha512((const unsigned char *) message1, strlen(message1), digest);
  789. test(vectors[3][0], digest, SHA512_DIGEST_SIZE);
  790. sha512((const unsigned char *) message2b, strlen(message2b), digest);
  791. test(vectors[3][1], digest, SHA512_DIGEST_SIZE);
  792. sha512(message3, message3_len, digest);
  793. test(vectors[3][2], digest, SHA512_DIGEST_SIZE);
  794. printf("\n");
  795. printf("All tests passed.\n");
  796. return 0;
  797. }
  798. #endif /* TEST_VECTORS */