debugfs_sta.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright 2003-2005 Devicescape Software, Inc.
  4. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. * Copyright 2013-2014 Intel Mobile Communications GmbH
  7. * Copyright(c) 2016 Intel Deutschland GmbH
  8. * Copyright (C) 2018 - 2020 Intel Corporation
  9. */
  10. #include <linux/debugfs.h>
  11. #include <linux/ieee80211.h>
  12. #include "ieee80211_i.h"
  13. #include "debugfs.h"
  14. #include "debugfs_sta.h"
  15. #include "sta_info.h"
  16. #include "driver-ops.h"
  17. /* sta attributtes */
  18. #define STA_READ(name, field, format_string) \
  19. static ssize_t sta_ ##name## _read(struct file *file, \
  20. char __user *userbuf, \
  21. size_t count, loff_t *ppos) \
  22. { \
  23. struct sta_info *sta = file->private_data; \
  24. return mac80211_format_buffer(userbuf, count, ppos, \
  25. format_string, sta->field); \
  26. }
  27. #define STA_READ_D(name, field) STA_READ(name, field, "%d\n")
  28. #define STA_OPS(name) \
  29. static const struct file_operations sta_ ##name## _ops = { \
  30. .read = sta_##name##_read, \
  31. .open = simple_open, \
  32. .llseek = generic_file_llseek, \
  33. }
  34. #define STA_OPS_RW(name) \
  35. static const struct file_operations sta_ ##name## _ops = { \
  36. .read = sta_##name##_read, \
  37. .write = sta_##name##_write, \
  38. .open = simple_open, \
  39. .llseek = generic_file_llseek, \
  40. }
  41. #define STA_FILE(name, field, format) \
  42. STA_READ_##format(name, field) \
  43. STA_OPS(name)
  44. STA_FILE(aid, sta.aid, D);
  45. static const char * const sta_flag_names[] = {
  46. #define FLAG(F) [WLAN_STA_##F] = #F
  47. FLAG(AUTH),
  48. FLAG(ASSOC),
  49. FLAG(PS_STA),
  50. FLAG(AUTHORIZED),
  51. FLAG(SHORT_PREAMBLE),
  52. FLAG(WDS),
  53. FLAG(CLEAR_PS_FILT),
  54. FLAG(MFP),
  55. FLAG(BLOCK_BA),
  56. FLAG(PS_DRIVER),
  57. FLAG(PSPOLL),
  58. FLAG(TDLS_PEER),
  59. FLAG(TDLS_PEER_AUTH),
  60. FLAG(TDLS_INITIATOR),
  61. FLAG(TDLS_CHAN_SWITCH),
  62. FLAG(TDLS_OFF_CHANNEL),
  63. FLAG(TDLS_WIDER_BW),
  64. FLAG(UAPSD),
  65. FLAG(SP),
  66. FLAG(4ADDR_EVENT),
  67. FLAG(INSERTED),
  68. FLAG(RATE_CONTROL),
  69. FLAG(TOFFSET_KNOWN),
  70. FLAG(MPSP_OWNER),
  71. FLAG(MPSP_RECIPIENT),
  72. FLAG(PS_DELIVER),
  73. FLAG(USES_ENCRYPTION),
  74. #undef FLAG
  75. };
  76. static ssize_t sta_flags_read(struct file *file, char __user *userbuf,
  77. size_t count, loff_t *ppos)
  78. {
  79. char buf[16 * NUM_WLAN_STA_FLAGS], *pos = buf;
  80. char *end = buf + sizeof(buf) - 1;
  81. struct sta_info *sta = file->private_data;
  82. unsigned int flg;
  83. BUILD_BUG_ON(ARRAY_SIZE(sta_flag_names) != NUM_WLAN_STA_FLAGS);
  84. for (flg = 0; flg < NUM_WLAN_STA_FLAGS; flg++) {
  85. if (test_sta_flag(sta, flg))
  86. pos += scnprintf(pos, end - pos, "%s\n",
  87. sta_flag_names[flg]);
  88. }
  89. return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
  90. }
  91. STA_OPS(flags);
  92. static ssize_t sta_num_ps_buf_frames_read(struct file *file,
  93. char __user *userbuf,
  94. size_t count, loff_t *ppos)
  95. {
  96. struct sta_info *sta = file->private_data;
  97. char buf[17*IEEE80211_NUM_ACS], *p = buf;
  98. int ac;
  99. for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
  100. p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac,
  101. skb_queue_len(&sta->ps_tx_buf[ac]) +
  102. skb_queue_len(&sta->tx_filtered[ac]));
  103. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  104. }
  105. STA_OPS(num_ps_buf_frames);
  106. static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf,
  107. size_t count, loff_t *ppos)
  108. {
  109. char buf[15*IEEE80211_NUM_TIDS], *p = buf;
  110. int i;
  111. struct sta_info *sta = file->private_data;
  112. for (i = 0; i < IEEE80211_NUM_TIDS; i++)
  113. p += scnprintf(p, sizeof(buf)+buf-p, "%x ",
  114. le16_to_cpu(sta->last_seq_ctrl[i]));
  115. p += scnprintf(p, sizeof(buf)+buf-p, "\n");
  116. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  117. }
  118. STA_OPS(last_seq_ctrl);
  119. #define AQM_TXQ_ENTRY_LEN 130
  120. static ssize_t sta_aqm_read(struct file *file, char __user *userbuf,
  121. size_t count, loff_t *ppos)
  122. {
  123. struct sta_info *sta = file->private_data;
  124. struct ieee80211_local *local = sta->local;
  125. size_t bufsz = AQM_TXQ_ENTRY_LEN * (IEEE80211_NUM_TIDS + 2);
  126. char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
  127. struct txq_info *txqi;
  128. ssize_t rv;
  129. int i;
  130. if (!buf)
  131. return -ENOMEM;
  132. spin_lock_bh(&local->fq.lock);
  133. rcu_read_lock();
  134. p += scnprintf(p,
  135. bufsz+buf-p,
  136. "target %uus interval %uus ecn %s\n",
  137. codel_time_to_us(sta->cparams.target),
  138. codel_time_to_us(sta->cparams.interval),
  139. sta->cparams.ecn ? "yes" : "no");
  140. p += scnprintf(p,
  141. bufsz+buf-p,
  142. "tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags\n");
  143. for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
  144. if (!sta->sta.txq[i])
  145. continue;
  146. txqi = to_txq_info(sta->sta.txq[i]);
  147. p += scnprintf(p, bufsz+buf-p,
  148. "%d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s)\n",
  149. txqi->txq.tid,
  150. txqi->txq.ac,
  151. txqi->tin.backlog_bytes,
  152. txqi->tin.backlog_packets,
  153. txqi->tin.flows,
  154. txqi->cstats.drop_count,
  155. txqi->cstats.ecn_mark,
  156. txqi->tin.overlimit,
  157. txqi->tin.collisions,
  158. txqi->tin.tx_bytes,
  159. txqi->tin.tx_packets,
  160. txqi->flags,
  161. test_bit(IEEE80211_TXQ_STOP, &txqi->flags) ? "STOP" : "RUN",
  162. test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags) ? " AMPDU" : "",
  163. test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags) ? " NO-AMSDU" : "");
  164. }
  165. rcu_read_unlock();
  166. spin_unlock_bh(&local->fq.lock);
  167. rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  168. kfree(buf);
  169. return rv;
  170. }
  171. STA_OPS(aqm);
  172. static ssize_t sta_airtime_read(struct file *file, char __user *userbuf,
  173. size_t count, loff_t *ppos)
  174. {
  175. struct sta_info *sta = file->private_data;
  176. struct ieee80211_local *local = sta->sdata->local;
  177. size_t bufsz = 400;
  178. char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
  179. u64 rx_airtime = 0, tx_airtime = 0;
  180. s64 deficit[IEEE80211_NUM_ACS];
  181. ssize_t rv;
  182. int ac;
  183. if (!buf)
  184. return -ENOMEM;
  185. for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
  186. spin_lock_bh(&local->active_txq_lock[ac]);
  187. rx_airtime += sta->airtime[ac].rx_airtime;
  188. tx_airtime += sta->airtime[ac].tx_airtime;
  189. deficit[ac] = sta->airtime[ac].deficit;
  190. spin_unlock_bh(&local->active_txq_lock[ac]);
  191. }
  192. p += scnprintf(p, bufsz + buf - p,
  193. "RX: %llu us\nTX: %llu us\nWeight: %u\n"
  194. "Deficit: VO: %lld us VI: %lld us BE: %lld us BK: %lld us\n",
  195. rx_airtime, tx_airtime, sta->airtime_weight,
  196. deficit[0], deficit[1], deficit[2], deficit[3]);
  197. rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  198. kfree(buf);
  199. return rv;
  200. }
  201. static ssize_t sta_airtime_write(struct file *file, const char __user *userbuf,
  202. size_t count, loff_t *ppos)
  203. {
  204. struct sta_info *sta = file->private_data;
  205. struct ieee80211_local *local = sta->sdata->local;
  206. int ac;
  207. for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
  208. spin_lock_bh(&local->active_txq_lock[ac]);
  209. sta->airtime[ac].rx_airtime = 0;
  210. sta->airtime[ac].tx_airtime = 0;
  211. sta->airtime[ac].deficit = sta->airtime_weight;
  212. spin_unlock_bh(&local->active_txq_lock[ac]);
  213. }
  214. return count;
  215. }
  216. STA_OPS_RW(airtime);
  217. static ssize_t sta_aql_read(struct file *file, char __user *userbuf,
  218. size_t count, loff_t *ppos)
  219. {
  220. struct sta_info *sta = file->private_data;
  221. struct ieee80211_local *local = sta->sdata->local;
  222. size_t bufsz = 400;
  223. char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
  224. u32 q_depth[IEEE80211_NUM_ACS];
  225. u32 q_limit_l[IEEE80211_NUM_ACS], q_limit_h[IEEE80211_NUM_ACS];
  226. ssize_t rv;
  227. int ac;
  228. if (!buf)
  229. return -ENOMEM;
  230. for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
  231. spin_lock_bh(&local->active_txq_lock[ac]);
  232. q_limit_l[ac] = sta->airtime[ac].aql_limit_low;
  233. q_limit_h[ac] = sta->airtime[ac].aql_limit_high;
  234. spin_unlock_bh(&local->active_txq_lock[ac]);
  235. q_depth[ac] = atomic_read(&sta->airtime[ac].aql_tx_pending);
  236. }
  237. p += scnprintf(p, bufsz + buf - p,
  238. "Q depth: VO: %u us VI: %u us BE: %u us BK: %u us\n"
  239. "Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u\n",
  240. q_depth[0], q_depth[1], q_depth[2], q_depth[3],
  241. q_limit_l[0], q_limit_h[0], q_limit_l[1], q_limit_h[1],
  242. q_limit_l[2], q_limit_h[2], q_limit_l[3], q_limit_h[3]),
  243. rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  244. kfree(buf);
  245. return rv;
  246. }
  247. static ssize_t sta_aql_write(struct file *file, const char __user *userbuf,
  248. size_t count, loff_t *ppos)
  249. {
  250. struct sta_info *sta = file->private_data;
  251. u32 ac, q_limit_l, q_limit_h;
  252. char _buf[100] = {}, *buf = _buf;
  253. if (count > sizeof(_buf))
  254. return -EINVAL;
  255. if (copy_from_user(buf, userbuf, count))
  256. return -EFAULT;
  257. buf[sizeof(_buf) - 1] = '\0';
  258. if (sscanf(buf, "limit %u %u %u", &ac, &q_limit_l, &q_limit_h)
  259. != 3)
  260. return -EINVAL;
  261. if (ac >= IEEE80211_NUM_ACS)
  262. return -EINVAL;
  263. sta->airtime[ac].aql_limit_low = q_limit_l;
  264. sta->airtime[ac].aql_limit_high = q_limit_h;
  265. return count;
  266. }
  267. STA_OPS_RW(aql);
  268. static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf,
  269. size_t count, loff_t *ppos)
  270. {
  271. char buf[71 + IEEE80211_NUM_TIDS * 40], *p = buf;
  272. int i;
  273. struct sta_info *sta = file->private_data;
  274. struct tid_ampdu_rx *tid_rx;
  275. struct tid_ampdu_tx *tid_tx;
  276. rcu_read_lock();
  277. p += scnprintf(p, sizeof(buf) + buf - p, "next dialog_token: %#02x\n",
  278. sta->ampdu_mlme.dialog_token_allocator + 1);
  279. p += scnprintf(p, sizeof(buf) + buf - p,
  280. "TID\t\tRX\tDTKN\tSSN\t\tTX\tDTKN\tpending\n");
  281. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  282. bool tid_rx_valid;
  283. tid_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[i]);
  284. tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[i]);
  285. tid_rx_valid = test_bit(i, sta->ampdu_mlme.agg_session_valid);
  286. p += scnprintf(p, sizeof(buf) + buf - p, "%02d", i);
  287. p += scnprintf(p, sizeof(buf) + buf - p, "\t\t%x",
  288. tid_rx_valid);
  289. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.2x",
  290. tid_rx_valid ?
  291. sta->ampdu_mlme.tid_rx_token[i] : 0);
  292. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.3x",
  293. tid_rx ? tid_rx->ssn : 0);
  294. p += scnprintf(p, sizeof(buf) + buf - p, "\t\t%x", !!tid_tx);
  295. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.2x",
  296. tid_tx ? tid_tx->dialog_token : 0);
  297. p += scnprintf(p, sizeof(buf) + buf - p, "\t%03d",
  298. tid_tx ? skb_queue_len(&tid_tx->pending) : 0);
  299. p += scnprintf(p, sizeof(buf) + buf - p, "\n");
  300. }
  301. rcu_read_unlock();
  302. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  303. }
  304. static ssize_t sta_agg_status_write(struct file *file, const char __user *userbuf,
  305. size_t count, loff_t *ppos)
  306. {
  307. char _buf[25] = {}, *buf = _buf;
  308. struct sta_info *sta = file->private_data;
  309. bool start, tx;
  310. unsigned long tid;
  311. char *pos;
  312. int ret, timeout = 5000;
  313. if (count > sizeof(_buf))
  314. return -EINVAL;
  315. if (copy_from_user(buf, userbuf, count))
  316. return -EFAULT;
  317. buf[sizeof(_buf) - 1] = '\0';
  318. pos = buf;
  319. buf = strsep(&pos, " ");
  320. if (!buf)
  321. return -EINVAL;
  322. if (!strcmp(buf, "tx"))
  323. tx = true;
  324. else if (!strcmp(buf, "rx"))
  325. tx = false;
  326. else
  327. return -EINVAL;
  328. buf = strsep(&pos, " ");
  329. if (!buf)
  330. return -EINVAL;
  331. if (!strcmp(buf, "start")) {
  332. start = true;
  333. if (!tx)
  334. return -EINVAL;
  335. } else if (!strcmp(buf, "stop")) {
  336. start = false;
  337. } else {
  338. return -EINVAL;
  339. }
  340. buf = strsep(&pos, " ");
  341. if (!buf)
  342. return -EINVAL;
  343. if (sscanf(buf, "timeout=%d", &timeout) == 1) {
  344. buf = strsep(&pos, " ");
  345. if (!buf || !tx || !start)
  346. return -EINVAL;
  347. }
  348. ret = kstrtoul(buf, 0, &tid);
  349. if (ret || tid >= IEEE80211_NUM_TIDS)
  350. return -EINVAL;
  351. if (tx) {
  352. if (start)
  353. ret = ieee80211_start_tx_ba_session(&sta->sta, tid,
  354. timeout);
  355. else
  356. ret = ieee80211_stop_tx_ba_session(&sta->sta, tid);
  357. } else {
  358. __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
  359. 3, true);
  360. ret = 0;
  361. }
  362. return ret ?: count;
  363. }
  364. STA_OPS_RW(agg_status);
  365. static ssize_t sta_ht_capa_read(struct file *file, char __user *userbuf,
  366. size_t count, loff_t *ppos)
  367. {
  368. #define PRINT_HT_CAP(_cond, _str) \
  369. do { \
  370. if (_cond) \
  371. p += scnprintf(p, sizeof(buf)+buf-p, "\t" _str "\n"); \
  372. } while (0)
  373. char buf[512], *p = buf;
  374. int i;
  375. struct sta_info *sta = file->private_data;
  376. struct ieee80211_sta_ht_cap *htc = &sta->sta.ht_cap;
  377. p += scnprintf(p, sizeof(buf) + buf - p, "ht %ssupported\n",
  378. htc->ht_supported ? "" : "not ");
  379. if (htc->ht_supported) {
  380. p += scnprintf(p, sizeof(buf)+buf-p, "cap: %#.4x\n", htc->cap);
  381. PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC");
  382. PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40");
  383. PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20");
  384. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save");
  385. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
  386. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled");
  387. PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield");
  388. PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI");
  389. PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI");
  390. PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC");
  391. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC");
  392. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
  393. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
  394. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
  395. PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack");
  396. PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: "
  397. "3839 bytes");
  398. PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: "
  399. "7935 bytes");
  400. /*
  401. * For beacons and probe response this would mean the BSS
  402. * does or does not allow the usage of DSSS/CCK HT40.
  403. * Otherwise it means the STA does or does not use
  404. * DSSS/CCK HT40.
  405. */
  406. PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40");
  407. PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40");
  408. /* BIT(13) is reserved */
  409. PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant");
  410. PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection");
  411. p += scnprintf(p, sizeof(buf)+buf-p, "ampdu factor/density: %d/%d\n",
  412. htc->ampdu_factor, htc->ampdu_density);
  413. p += scnprintf(p, sizeof(buf)+buf-p, "MCS mask:");
  414. for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
  415. p += scnprintf(p, sizeof(buf)+buf-p, " %.2x",
  416. htc->mcs.rx_mask[i]);
  417. p += scnprintf(p, sizeof(buf)+buf-p, "\n");
  418. /* If not set this is meaningless */
  419. if (le16_to_cpu(htc->mcs.rx_highest)) {
  420. p += scnprintf(p, sizeof(buf)+buf-p,
  421. "MCS rx highest: %d Mbps\n",
  422. le16_to_cpu(htc->mcs.rx_highest));
  423. }
  424. p += scnprintf(p, sizeof(buf)+buf-p, "MCS tx params: %x\n",
  425. htc->mcs.tx_params);
  426. }
  427. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  428. }
  429. STA_OPS(ht_capa);
  430. static ssize_t sta_vht_capa_read(struct file *file, char __user *userbuf,
  431. size_t count, loff_t *ppos)
  432. {
  433. char buf[512], *p = buf;
  434. struct sta_info *sta = file->private_data;
  435. struct ieee80211_sta_vht_cap *vhtc = &sta->sta.vht_cap;
  436. p += scnprintf(p, sizeof(buf) + buf - p, "VHT %ssupported\n",
  437. vhtc->vht_supported ? "" : "not ");
  438. if (vhtc->vht_supported) {
  439. p += scnprintf(p, sizeof(buf) + buf - p, "cap: %#.8x\n",
  440. vhtc->cap);
  441. #define PFLAG(a, b) \
  442. do { \
  443. if (vhtc->cap & IEEE80211_VHT_CAP_ ## a) \
  444. p += scnprintf(p, sizeof(buf) + buf - p, \
  445. "\t\t%s\n", b); \
  446. } while (0)
  447. switch (vhtc->cap & 0x3) {
  448. case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895:
  449. p += scnprintf(p, sizeof(buf) + buf - p,
  450. "\t\tMAX-MPDU-3895\n");
  451. break;
  452. case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991:
  453. p += scnprintf(p, sizeof(buf) + buf - p,
  454. "\t\tMAX-MPDU-7991\n");
  455. break;
  456. case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454:
  457. p += scnprintf(p, sizeof(buf) + buf - p,
  458. "\t\tMAX-MPDU-11454\n");
  459. break;
  460. default:
  461. p += scnprintf(p, sizeof(buf) + buf - p,
  462. "\t\tMAX-MPDU-UNKNOWN\n");
  463. }
  464. switch (vhtc->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
  465. case 0:
  466. p += scnprintf(p, sizeof(buf) + buf - p,
  467. "\t\t80Mhz\n");
  468. break;
  469. case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
  470. p += scnprintf(p, sizeof(buf) + buf - p,
  471. "\t\t160Mhz\n");
  472. break;
  473. case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
  474. p += scnprintf(p, sizeof(buf) + buf - p,
  475. "\t\t80+80Mhz\n");
  476. break;
  477. default:
  478. p += scnprintf(p, sizeof(buf) + buf - p,
  479. "\t\tUNKNOWN-MHZ: 0x%x\n",
  480. (vhtc->cap >> 2) & 0x3);
  481. }
  482. PFLAG(RXLDPC, "RXLDPC");
  483. PFLAG(SHORT_GI_80, "SHORT-GI-80");
  484. PFLAG(SHORT_GI_160, "SHORT-GI-160");
  485. PFLAG(TXSTBC, "TXSTBC");
  486. p += scnprintf(p, sizeof(buf) + buf - p,
  487. "\t\tRXSTBC_%d\n", (vhtc->cap >> 8) & 0x7);
  488. PFLAG(SU_BEAMFORMER_CAPABLE, "SU-BEAMFORMER-CAPABLE");
  489. PFLAG(SU_BEAMFORMEE_CAPABLE, "SU-BEAMFORMEE-CAPABLE");
  490. p += scnprintf(p, sizeof(buf) + buf - p,
  491. "\t\tBEAMFORMEE-STS: 0x%x\n",
  492. (vhtc->cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK) >>
  493. IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
  494. p += scnprintf(p, sizeof(buf) + buf - p,
  495. "\t\tSOUNDING-DIMENSIONS: 0x%x\n",
  496. (vhtc->cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK)
  497. >> IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT);
  498. PFLAG(MU_BEAMFORMER_CAPABLE, "MU-BEAMFORMER-CAPABLE");
  499. PFLAG(MU_BEAMFORMEE_CAPABLE, "MU-BEAMFORMEE-CAPABLE");
  500. PFLAG(VHT_TXOP_PS, "TXOP-PS");
  501. PFLAG(HTC_VHT, "HTC-VHT");
  502. p += scnprintf(p, sizeof(buf) + buf - p,
  503. "\t\tMPDU-LENGTH-EXPONENT: 0x%x\n",
  504. (vhtc->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
  505. IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT);
  506. PFLAG(VHT_LINK_ADAPTATION_VHT_UNSOL_MFB,
  507. "LINK-ADAPTATION-VHT-UNSOL-MFB");
  508. p += scnprintf(p, sizeof(buf) + buf - p,
  509. "\t\tLINK-ADAPTATION-VHT-MRQ-MFB: 0x%x\n",
  510. (vhtc->cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB) >> 26);
  511. PFLAG(RX_ANTENNA_PATTERN, "RX-ANTENNA-PATTERN");
  512. PFLAG(TX_ANTENNA_PATTERN, "TX-ANTENNA-PATTERN");
  513. p += scnprintf(p, sizeof(buf)+buf-p, "RX MCS: %.4x\n",
  514. le16_to_cpu(vhtc->vht_mcs.rx_mcs_map));
  515. if (vhtc->vht_mcs.rx_highest)
  516. p += scnprintf(p, sizeof(buf)+buf-p,
  517. "MCS RX highest: %d Mbps\n",
  518. le16_to_cpu(vhtc->vht_mcs.rx_highest));
  519. p += scnprintf(p, sizeof(buf)+buf-p, "TX MCS: %.4x\n",
  520. le16_to_cpu(vhtc->vht_mcs.tx_mcs_map));
  521. if (vhtc->vht_mcs.tx_highest)
  522. p += scnprintf(p, sizeof(buf)+buf-p,
  523. "MCS TX highest: %d Mbps\n",
  524. le16_to_cpu(vhtc->vht_mcs.tx_highest));
  525. #undef PFLAG
  526. }
  527. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  528. }
  529. STA_OPS(vht_capa);
  530. static ssize_t sta_he_capa_read(struct file *file, char __user *userbuf,
  531. size_t count, loff_t *ppos)
  532. {
  533. char *buf, *p;
  534. size_t buf_sz = PAGE_SIZE;
  535. struct sta_info *sta = file->private_data;
  536. struct ieee80211_sta_he_cap *hec = &sta->sta.he_cap;
  537. struct ieee80211_he_mcs_nss_supp *nss = &hec->he_mcs_nss_supp;
  538. u8 ppe_size;
  539. u8 *cap;
  540. int i;
  541. ssize_t ret;
  542. buf = kmalloc(buf_sz, GFP_KERNEL);
  543. if (!buf)
  544. return -ENOMEM;
  545. p = buf;
  546. p += scnprintf(p, buf_sz + buf - p, "HE %ssupported\n",
  547. hec->has_he ? "" : "not ");
  548. if (!hec->has_he)
  549. goto out;
  550. cap = hec->he_cap_elem.mac_cap_info;
  551. p += scnprintf(p, buf_sz + buf - p,
  552. "MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
  553. cap[0], cap[1], cap[2], cap[3], cap[4], cap[5]);
  554. #define PRINT(fmt, ...) \
  555. p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \
  556. ##__VA_ARGS__)
  557. #define PFLAG(t, n, a, b) \
  558. do { \
  559. if (cap[n] & IEEE80211_HE_##t##_CAP##n##_##a) \
  560. PRINT("%s", b); \
  561. } while (0)
  562. #define PFLAG_RANGE(t, i, n, s, m, off, fmt) \
  563. do { \
  564. u8 msk = IEEE80211_HE_##t##_CAP##i##_##n##_MASK; \
  565. u8 idx = ((cap[i] & msk) >> (ffs(msk) - 1)) + off; \
  566. PRINT(fmt, (s << idx) + (m * idx)); \
  567. } while (0)
  568. #define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \
  569. do { \
  570. if (cap[i] == IEEE80211_HE_##t ##_CAP##i##_##n##_##a) { \
  571. PRINT("%s", b); \
  572. break; \
  573. } \
  574. PFLAG_RANGE(t, i, n, s, m, off, fmt); \
  575. } while (0)
  576. PFLAG(MAC, 0, HTC_HE, "HTC-HE");
  577. PFLAG(MAC, 0, TWT_REQ, "TWT-REQ");
  578. PFLAG(MAC, 0, TWT_RES, "TWT-RES");
  579. PFLAG_RANGE_DEFAULT(MAC, 0, DYNAMIC_FRAG, 0, 1, 0,
  580. "DYNAMIC-FRAG-LEVEL-%d", NOT_SUPP, "NOT-SUPP");
  581. PFLAG_RANGE_DEFAULT(MAC, 0, MAX_NUM_FRAG_MSDU, 1, 0, 0,
  582. "MAX-NUM-FRAG-MSDU-%d", UNLIMITED, "UNLIMITED");
  583. PFLAG_RANGE_DEFAULT(MAC, 1, MIN_FRAG_SIZE, 128, 0, -1,
  584. "MIN-FRAG-SIZE-%d", UNLIMITED, "UNLIMITED");
  585. PFLAG_RANGE_DEFAULT(MAC, 1, TF_MAC_PAD_DUR, 0, 8, 0,
  586. "TF-MAC-PAD-DUR-%dUS", MASK, "UNKNOWN");
  587. PFLAG_RANGE(MAC, 1, MULTI_TID_AGG_RX_QOS, 0, 1, 1,
  588. "MULTI-TID-AGG-RX-QOS-%d");
  589. if (cap[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) {
  590. switch (((cap[2] << 1) | (cap[1] >> 7)) & 0x3) {
  591. case 0:
  592. PRINT("LINK-ADAPTATION-NO-FEEDBACK");
  593. break;
  594. case 1:
  595. PRINT("LINK-ADAPTATION-RESERVED");
  596. break;
  597. case 2:
  598. PRINT("LINK-ADAPTATION-UNSOLICITED-FEEDBACK");
  599. break;
  600. case 3:
  601. PRINT("LINK-ADAPTATION-BOTH");
  602. break;
  603. }
  604. }
  605. PFLAG(MAC, 2, ALL_ACK, "ALL-ACK");
  606. PFLAG(MAC, 2, TRS, "TRS");
  607. PFLAG(MAC, 2, BSR, "BSR");
  608. PFLAG(MAC, 2, BCAST_TWT, "BCAST-TWT");
  609. PFLAG(MAC, 2, 32BIT_BA_BITMAP, "32BIT-BA-BITMAP");
  610. PFLAG(MAC, 2, MU_CASCADING, "MU-CASCADING");
  611. PFLAG(MAC, 2, ACK_EN, "ACK-EN");
  612. PFLAG(MAC, 3, OMI_CONTROL, "OMI-CONTROL");
  613. PFLAG(MAC, 3, OFDMA_RA, "OFDMA-RA");
  614. switch (cap[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) {
  615. case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_USE_VHT:
  616. PRINT("MAX-AMPDU-LEN-EXP-USE-VHT");
  617. break;
  618. case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_1:
  619. PRINT("MAX-AMPDU-LEN-EXP-VHT-1");
  620. break;
  621. case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2:
  622. PRINT("MAX-AMPDU-LEN-EXP-VHT-2");
  623. break;
  624. case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_RESERVED:
  625. PRINT("MAX-AMPDU-LEN-EXP-RESERVED");
  626. break;
  627. }
  628. PFLAG(MAC, 3, AMSDU_FRAG, "AMSDU-FRAG");
  629. PFLAG(MAC, 3, FLEX_TWT_SCHED, "FLEX-TWT-SCHED");
  630. PFLAG(MAC, 3, RX_CTRL_FRAME_TO_MULTIBSS, "RX-CTRL-FRAME-TO-MULTIBSS");
  631. PFLAG(MAC, 4, BSRP_BQRP_A_MPDU_AGG, "BSRP-BQRP-A-MPDU-AGG");
  632. PFLAG(MAC, 4, QTP, "QTP");
  633. PFLAG(MAC, 4, BQR, "BQR");
  634. PFLAG(MAC, 4, SRP_RESP, "SRP-RESP");
  635. PFLAG(MAC, 4, NDP_FB_REP, "NDP-FB-REP");
  636. PFLAG(MAC, 4, OPS, "OPS");
  637. PFLAG(MAC, 4, AMDSU_IN_AMPDU, "AMSDU-IN-AMPDU");
  638. PRINT("MULTI-TID-AGG-TX-QOS-%d", ((cap[5] << 1) | (cap[4] >> 7)) & 0x7);
  639. PFLAG(MAC, 5, SUBCHAN_SELECVITE_TRANSMISSION,
  640. "SUBCHAN-SELECVITE-TRANSMISSION");
  641. PFLAG(MAC, 5, UL_2x996_TONE_RU, "UL-2x996-TONE-RU");
  642. PFLAG(MAC, 5, OM_CTRL_UL_MU_DATA_DIS_RX, "OM-CTRL-UL-MU-DATA-DIS-RX");
  643. PFLAG(MAC, 5, HE_DYNAMIC_SM_PS, "HE-DYNAMIC-SM-PS");
  644. PFLAG(MAC, 5, PUNCTURED_SOUNDING, "PUNCTURED-SOUNDING");
  645. PFLAG(MAC, 5, HT_VHT_TRIG_FRAME_RX, "HT-VHT-TRIG-FRAME-RX");
  646. cap = hec->he_cap_elem.phy_cap_info;
  647. p += scnprintf(p, buf_sz + buf - p,
  648. "PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
  649. cap[0], cap[1], cap[2], cap[3], cap[4], cap[5], cap[6],
  650. cap[7], cap[8], cap[9], cap[10]);
  651. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_IN_2G,
  652. "CHANNEL-WIDTH-SET-40MHZ-IN-2G");
  653. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
  654. "CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G");
  655. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_160MHZ_IN_5G,
  656. "CHANNEL-WIDTH-SET-160MHZ-IN-5G");
  657. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
  658. "CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G");
  659. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G,
  660. "CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G");
  661. PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G,
  662. "CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G");
  663. switch (cap[1] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK) {
  664. case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ:
  665. PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ");
  666. break;
  667. case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ:
  668. PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ");
  669. break;
  670. case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ:
  671. PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ");
  672. break;
  673. case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ:
  674. PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ");
  675. break;
  676. }
  677. PFLAG(PHY, 1, DEVICE_CLASS_A,
  678. "IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A");
  679. PFLAG(PHY, 1, LDPC_CODING_IN_PAYLOAD,
  680. "LDPC-CODING-IN-PAYLOAD");
  681. PFLAG(PHY, 1, HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US,
  682. "HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US");
  683. PRINT("MIDAMBLE-RX-MAX-NSTS-%d", ((cap[2] << 1) | (cap[1] >> 7)) & 0x3);
  684. PFLAG(PHY, 2, NDP_4x_LTF_AND_3_2US, "NDP-4X-LTF-AND-3-2US");
  685. PFLAG(PHY, 2, STBC_TX_UNDER_80MHZ, "STBC-TX-UNDER-80MHZ");
  686. PFLAG(PHY, 2, STBC_RX_UNDER_80MHZ, "STBC-RX-UNDER-80MHZ");
  687. PFLAG(PHY, 2, DOPPLER_TX, "DOPPLER-TX");
  688. PFLAG(PHY, 2, DOPPLER_RX, "DOPPLER-RX");
  689. PFLAG(PHY, 2, UL_MU_FULL_MU_MIMO, "UL-MU-FULL-MU-MIMO");
  690. PFLAG(PHY, 2, UL_MU_PARTIAL_MU_MIMO, "UL-MU-PARTIAL-MU-MIMO");
  691. switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK) {
  692. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM:
  693. PRINT("DCM-MAX-CONST-TX-NO-DCM");
  694. break;
  695. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK:
  696. PRINT("DCM-MAX-CONST-TX-BPSK");
  697. break;
  698. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK:
  699. PRINT("DCM-MAX-CONST-TX-QPSK");
  700. break;
  701. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM:
  702. PRINT("DCM-MAX-CONST-TX-16-QAM");
  703. break;
  704. }
  705. PFLAG(PHY, 3, DCM_MAX_TX_NSS_1, "DCM-MAX-TX-NSS-1");
  706. PFLAG(PHY, 3, DCM_MAX_TX_NSS_2, "DCM-MAX-TX-NSS-2");
  707. switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK) {
  708. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM:
  709. PRINT("DCM-MAX-CONST-RX-NO-DCM");
  710. break;
  711. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK:
  712. PRINT("DCM-MAX-CONST-RX-BPSK");
  713. break;
  714. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK:
  715. PRINT("DCM-MAX-CONST-RX-QPSK");
  716. break;
  717. case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM:
  718. PRINT("DCM-MAX-CONST-RX-16-QAM");
  719. break;
  720. }
  721. PFLAG(PHY, 3, DCM_MAX_RX_NSS_1, "DCM-MAX-RX-NSS-1");
  722. PFLAG(PHY, 3, DCM_MAX_RX_NSS_2, "DCM-MAX-RX-NSS-2");
  723. PFLAG(PHY, 3, RX_HE_MU_PPDU_FROM_NON_AP_STA,
  724. "RX-HE-MU-PPDU-FROM-NON-AP-STA");
  725. PFLAG(PHY, 3, SU_BEAMFORMER, "SU-BEAMFORMER");
  726. PFLAG(PHY, 4, SU_BEAMFORMEE, "SU-BEAMFORMEE");
  727. PFLAG(PHY, 4, MU_BEAMFORMER, "MU-BEAMFORMER");
  728. PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_UNDER_80MHZ, 0, 1, 4,
  729. "BEAMFORMEE-MAX-STS-UNDER-%d");
  730. PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_ABOVE_80MHZ, 0, 1, 4,
  731. "BEAMFORMEE-MAX-STS-ABOVE-%d");
  732. PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ, 0, 1, 1,
  733. "NUM-SND-DIM-UNDER-80MHZ-%d");
  734. PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ, 0, 1, 1,
  735. "NUM-SND-DIM-ABOVE-80MHZ-%d");
  736. PFLAG(PHY, 5, NG16_SU_FEEDBACK, "NG16-SU-FEEDBACK");
  737. PFLAG(PHY, 5, NG16_MU_FEEDBACK, "NG16-MU-FEEDBACK");
  738. PFLAG(PHY, 6, CODEBOOK_SIZE_42_SU, "CODEBOOK-SIZE-42-SU");
  739. PFLAG(PHY, 6, CODEBOOK_SIZE_75_MU, "CODEBOOK-SIZE-75-MU");
  740. PFLAG(PHY, 6, TRIG_SU_BEAMFORMER_FB, "TRIG-SU-BEAMFORMER-FB");
  741. PFLAG(PHY, 6, TRIG_MU_BEAMFORMER_FB, "TRIG-MU-BEAMFORMER-FB");
  742. PFLAG(PHY, 6, TRIG_CQI_FB, "TRIG-CQI-FB");
  743. PFLAG(PHY, 6, PARTIAL_BW_EXT_RANGE, "PARTIAL-BW-EXT-RANGE");
  744. PFLAG(PHY, 6, PARTIAL_BANDWIDTH_DL_MUMIMO,
  745. "PARTIAL-BANDWIDTH-DL-MUMIMO");
  746. PFLAG(PHY, 6, PPE_THRESHOLD_PRESENT, "PPE-THRESHOLD-PRESENT");
  747. PFLAG(PHY, 7, SRP_BASED_SR, "SRP-BASED-SR");
  748. PFLAG(PHY, 7, POWER_BOOST_FACTOR_AR, "POWER-BOOST-FACTOR-AR");
  749. PFLAG(PHY, 7, HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
  750. "HE-SU-MU-PPDU-4XLTF-AND-08-US-GI");
  751. PFLAG_RANGE(PHY, 7, MAX_NC, 0, 1, 1, "MAX-NC-%d");
  752. PFLAG(PHY, 7, STBC_TX_ABOVE_80MHZ, "STBC-TX-ABOVE-80MHZ");
  753. PFLAG(PHY, 7, STBC_RX_ABOVE_80MHZ, "STBC-RX-ABOVE-80MHZ");
  754. PFLAG(PHY, 8, HE_ER_SU_PPDU_4XLTF_AND_08_US_GI,
  755. "HE-ER-SU-PPDU-4XLTF-AND-08-US-GI");
  756. PFLAG(PHY, 8, 20MHZ_IN_40MHZ_HE_PPDU_IN_2G,
  757. "20MHZ-IN-40MHZ-HE-PPDU-IN-2G");
  758. PFLAG(PHY, 8, 20MHZ_IN_160MHZ_HE_PPDU, "20MHZ-IN-160MHZ-HE-PPDU");
  759. PFLAG(PHY, 8, 80MHZ_IN_160MHZ_HE_PPDU, "80MHZ-IN-160MHZ-HE-PPDU");
  760. PFLAG(PHY, 8, HE_ER_SU_1XLTF_AND_08_US_GI,
  761. "HE-ER-SU-1XLTF-AND-08-US-GI");
  762. PFLAG(PHY, 8, MIDAMBLE_RX_TX_2X_AND_1XLTF,
  763. "MIDAMBLE-RX-TX-2X-AND-1XLTF");
  764. switch (cap[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK) {
  765. case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242:
  766. PRINT("DCM-MAX-RU-242");
  767. break;
  768. case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484:
  769. PRINT("DCM-MAX-RU-484");
  770. break;
  771. case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996:
  772. PRINT("DCM-MAX-RU-996");
  773. break;
  774. case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996:
  775. PRINT("DCM-MAX-RU-2x996");
  776. break;
  777. }
  778. PFLAG(PHY, 9, LONGER_THAN_16_SIGB_OFDM_SYM,
  779. "LONGER-THAN-16-SIGB-OFDM-SYM");
  780. PFLAG(PHY, 9, NON_TRIGGERED_CQI_FEEDBACK,
  781. "NON-TRIGGERED-CQI-FEEDBACK");
  782. PFLAG(PHY, 9, TX_1024_QAM_LESS_THAN_242_TONE_RU,
  783. "TX-1024-QAM-LESS-THAN-242-TONE-RU");
  784. PFLAG(PHY, 9, RX_1024_QAM_LESS_THAN_242_TONE_RU,
  785. "RX-1024-QAM-LESS-THAN-242-TONE-RU");
  786. PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB,
  787. "RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB");
  788. PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
  789. "RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB");
  790. switch (cap[9] & IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_MASK) {
  791. case IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_0US:
  792. PRINT("NOMINAL-PACKET-PADDING-0US");
  793. break;
  794. case IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_8US:
  795. PRINT("NOMINAL-PACKET-PADDING-8US");
  796. break;
  797. case IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_16US:
  798. PRINT("NOMINAL-PACKET-PADDING-16US");
  799. break;
  800. }
  801. #undef PFLAG_RANGE_DEFAULT
  802. #undef PFLAG_RANGE
  803. #undef PFLAG
  804. #define PRINT_NSS_SUPP(f, n) \
  805. do { \
  806. int _i; \
  807. u16 v = le16_to_cpu(nss->f); \
  808. p += scnprintf(p, buf_sz + buf - p, n ": %#.4x\n", v); \
  809. for (_i = 0; _i < 8; _i += 2) { \
  810. switch ((v >> _i) & 0x3) { \
  811. case 0: \
  812. PRINT(n "-%d-SUPPORT-0-7", _i / 2); \
  813. break; \
  814. case 1: \
  815. PRINT(n "-%d-SUPPORT-0-9", _i / 2); \
  816. break; \
  817. case 2: \
  818. PRINT(n "-%d-SUPPORT-0-11", _i / 2); \
  819. break; \
  820. case 3: \
  821. PRINT(n "-%d-NOT-SUPPORTED", _i / 2); \
  822. break; \
  823. } \
  824. } \
  825. } while (0)
  826. PRINT_NSS_SUPP(rx_mcs_80, "RX-MCS-80");
  827. PRINT_NSS_SUPP(tx_mcs_80, "TX-MCS-80");
  828. if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) {
  829. PRINT_NSS_SUPP(rx_mcs_160, "RX-MCS-160");
  830. PRINT_NSS_SUPP(tx_mcs_160, "TX-MCS-160");
  831. }
  832. if (cap[0] &
  833. IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) {
  834. PRINT_NSS_SUPP(rx_mcs_80p80, "RX-MCS-80P80");
  835. PRINT_NSS_SUPP(tx_mcs_80p80, "TX-MCS-80P80");
  836. }
  837. #undef PRINT_NSS_SUPP
  838. #undef PRINT
  839. if (!(cap[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT))
  840. goto out;
  841. p += scnprintf(p, buf_sz + buf - p, "PPE-THRESHOLDS: %#.2x",
  842. hec->ppe_thres[0]);
  843. ppe_size = ieee80211_he_ppe_size(hec->ppe_thres[0], cap);
  844. for (i = 1; i < ppe_size; i++) {
  845. p += scnprintf(p, buf_sz + buf - p, " %#.2x",
  846. hec->ppe_thres[i]);
  847. }
  848. p += scnprintf(p, buf_sz + buf - p, "\n");
  849. out:
  850. ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  851. kfree(buf);
  852. return ret;
  853. }
  854. STA_OPS(he_capa);
  855. #define DEBUGFS_ADD(name) \
  856. debugfs_create_file(#name, 0400, \
  857. sta->debugfs_dir, sta, &sta_ ##name## _ops);
  858. #define DEBUGFS_ADD_COUNTER(name, field) \
  859. debugfs_create_ulong(#name, 0400, sta->debugfs_dir, &sta->field);
  860. void ieee80211_sta_debugfs_add(struct sta_info *sta)
  861. {
  862. struct ieee80211_local *local = sta->local;
  863. struct ieee80211_sub_if_data *sdata = sta->sdata;
  864. struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations;
  865. u8 mac[3*ETH_ALEN];
  866. if (!stations_dir)
  867. return;
  868. snprintf(mac, sizeof(mac), "%pM", sta->sta.addr);
  869. /*
  870. * This might fail due to a race condition:
  871. * When mac80211 unlinks a station, the debugfs entries
  872. * remain, but it is already possible to link a new
  873. * station with the same address which triggers adding
  874. * it to debugfs; therefore, if the old station isn't
  875. * destroyed quickly enough the old station's debugfs
  876. * dir might still be around.
  877. */
  878. sta->debugfs_dir = debugfs_create_dir(mac, stations_dir);
  879. DEBUGFS_ADD(flags);
  880. DEBUGFS_ADD(aid);
  881. DEBUGFS_ADD(num_ps_buf_frames);
  882. DEBUGFS_ADD(last_seq_ctrl);
  883. DEBUGFS_ADD(agg_status);
  884. DEBUGFS_ADD(ht_capa);
  885. DEBUGFS_ADD(vht_capa);
  886. DEBUGFS_ADD(he_capa);
  887. DEBUGFS_ADD_COUNTER(rx_duplicates, rx_stats.num_duplicates);
  888. DEBUGFS_ADD_COUNTER(rx_fragments, rx_stats.fragments);
  889. DEBUGFS_ADD_COUNTER(tx_filtered, status_stats.filtered);
  890. if (local->ops->wake_tx_queue) {
  891. DEBUGFS_ADD(aqm);
  892. DEBUGFS_ADD(airtime);
  893. }
  894. if (wiphy_ext_feature_isset(local->hw.wiphy,
  895. NL80211_EXT_FEATURE_AQL))
  896. DEBUGFS_ADD(aql);
  897. debugfs_create_xul("driver_buffered_tids", 0400, sta->debugfs_dir,
  898. &sta->driver_buffered_tids);
  899. drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs_dir);
  900. }
  901. void ieee80211_sta_debugfs_remove(struct sta_info *sta)
  902. {
  903. debugfs_remove_recursive(sta->debugfs_dir);
  904. sta->debugfs_dir = NULL;
  905. }