af_key.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  4. *
  5. * Authors: Maxim Giryaev <gem@asplinux.ru>
  6. * David S. Miller <davem@redhat.com>
  7. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  8. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  9. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  10. * Derek Atkins <derek@ihtfp.com>
  11. */
  12. #include <linux/capability.h>
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/socket.h>
  16. #include <linux/pfkeyv2.h>
  17. #include <linux/ipsec.h>
  18. #include <linux/skbuff.h>
  19. #include <linux/rtnetlink.h>
  20. #include <linux/in.h>
  21. #include <linux/in6.h>
  22. #include <linux/proc_fs.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <net/net_namespace.h>
  26. #include <net/netns/generic.h>
  27. #include <net/xfrm.h>
  28. #include <net/sock.h>
  29. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  30. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  31. static unsigned int pfkey_net_id __read_mostly;
  32. struct netns_pfkey {
  33. /* List of all pfkey sockets. */
  34. struct hlist_head table;
  35. atomic_t socks_nr;
  36. };
  37. static DEFINE_MUTEX(pfkey_mutex);
  38. #define DUMMY_MARK 0
  39. static const struct xfrm_mark dummy_mark = {0, 0};
  40. struct pfkey_sock {
  41. /* struct sock must be the first member of struct pfkey_sock */
  42. struct sock sk;
  43. int registered;
  44. int promisc;
  45. struct {
  46. uint8_t msg_version;
  47. uint32_t msg_portid;
  48. int (*dump)(struct pfkey_sock *sk);
  49. void (*done)(struct pfkey_sock *sk);
  50. union {
  51. struct xfrm_policy_walk policy;
  52. struct xfrm_state_walk state;
  53. } u;
  54. struct sk_buff *skb;
  55. } dump;
  56. struct mutex dump_lock;
  57. };
  58. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  59. xfrm_address_t *saddr, xfrm_address_t *daddr,
  60. u16 *family);
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. struct pfkey_sock *pfk;
  123. int err;
  124. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  125. return -EPERM;
  126. if (sock->type != SOCK_RAW)
  127. return -ESOCKTNOSUPPORT;
  128. if (protocol != PF_KEY_V2)
  129. return -EPROTONOSUPPORT;
  130. err = -ENOMEM;
  131. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern);
  132. if (sk == NULL)
  133. goto out;
  134. pfk = pfkey_sk(sk);
  135. mutex_init(&pfk->dump_lock);
  136. sock->ops = &pfkey_ops;
  137. sock_init_data(sock, sk);
  138. sk->sk_family = PF_KEY;
  139. sk->sk_destruct = pfkey_sock_destruct;
  140. atomic_inc(&net_pfkey->socks_nr);
  141. pfkey_insert(sk);
  142. return 0;
  143. out:
  144. return err;
  145. }
  146. static int pfkey_release(struct socket *sock)
  147. {
  148. struct sock *sk = sock->sk;
  149. if (!sk)
  150. return 0;
  151. pfkey_remove(sk);
  152. sock_orphan(sk);
  153. sock->sk = NULL;
  154. skb_queue_purge(&sk->sk_write_queue);
  155. synchronize_rcu();
  156. sock_put(sk);
  157. return 0;
  158. }
  159. static int pfkey_broadcast_one(struct sk_buff *skb, gfp_t allocation,
  160. struct sock *sk)
  161. {
  162. int err = -ENOBUFS;
  163. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  164. return err;
  165. skb = skb_clone(skb, allocation);
  166. if (skb) {
  167. skb_set_owner_r(skb, sk);
  168. skb_queue_tail(&sk->sk_receive_queue, skb);
  169. sk->sk_data_ready(sk);
  170. err = 0;
  171. }
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  180. int broadcast_flags, struct sock *one_sk,
  181. struct net *net)
  182. {
  183. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  184. struct sock *sk;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. rcu_read_lock();
  192. sk_for_each_rcu(sk, &net_pfkey->table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, GFP_ATOMIC, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, GFP_ATOMIC, sk);
  214. /* Error is cleared after successful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. rcu_read_unlock();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, allocation, one_sk);
  222. kfree_skb(skb);
  223. return err;
  224. }
  225. static int pfkey_do_dump(struct pfkey_sock *pfk)
  226. {
  227. struct sadb_msg *hdr;
  228. int rc;
  229. mutex_lock(&pfk->dump_lock);
  230. if (!pfk->dump.dump) {
  231. rc = 0;
  232. goto out;
  233. }
  234. rc = pfk->dump.dump(pfk);
  235. if (rc == -ENOBUFS) {
  236. rc = 0;
  237. goto out;
  238. }
  239. if (pfk->dump.skb) {
  240. if (!pfkey_can_dump(&pfk->sk)) {
  241. rc = 0;
  242. goto out;
  243. }
  244. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  245. hdr->sadb_msg_seq = 0;
  246. hdr->sadb_msg_errno = rc;
  247. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  248. &pfk->sk, sock_net(&pfk->sk));
  249. pfk->dump.skb = NULL;
  250. }
  251. pfkey_terminate_dump(pfk);
  252. out:
  253. mutex_unlock(&pfk->dump_lock);
  254. return rc;
  255. }
  256. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  257. const struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  284. return 0;
  285. }
  286. static const u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  313. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  314. };
  315. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  316. static int verify_address_len(const void *p)
  317. {
  318. const struct sadb_address *sp = p;
  319. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  320. const struct sockaddr_in *sin;
  321. #if IS_ENABLED(CONFIG_IPV6)
  322. const struct sockaddr_in6 *sin6;
  323. #endif
  324. int len;
  325. if (sp->sadb_address_len <
  326. DIV_ROUND_UP(sizeof(*sp) + offsetofend(typeof(*addr), sa_family),
  327. sizeof(uint64_t)))
  328. return -EINVAL;
  329. switch (addr->sa_family) {
  330. case AF_INET:
  331. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  332. if (sp->sadb_address_len != len ||
  333. sp->sadb_address_prefixlen > 32)
  334. return -EINVAL;
  335. break;
  336. #if IS_ENABLED(CONFIG_IPV6)
  337. case AF_INET6:
  338. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  339. if (sp->sadb_address_len != len ||
  340. sp->sadb_address_prefixlen > 128)
  341. return -EINVAL;
  342. break;
  343. #endif
  344. default:
  345. /* It is user using kernel to keep track of security
  346. * associations for another protocol, such as
  347. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  348. * lengths.
  349. *
  350. * XXX Actually, association/policy database is not yet
  351. * XXX able to cope with arbitrary sockaddr families.
  352. * XXX When it can, remove this -EINVAL. -DaveM
  353. */
  354. return -EINVAL;
  355. }
  356. return 0;
  357. }
  358. static inline int sadb_key_len(const struct sadb_key *key)
  359. {
  360. int key_bytes = DIV_ROUND_UP(key->sadb_key_bits, 8);
  361. return DIV_ROUND_UP(sizeof(struct sadb_key) + key_bytes,
  362. sizeof(uint64_t));
  363. }
  364. static int verify_key_len(const void *p)
  365. {
  366. const struct sadb_key *key = p;
  367. if (sadb_key_len(key) > key->sadb_key_len)
  368. return -EINVAL;
  369. return 0;
  370. }
  371. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  372. {
  373. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  374. sec_ctx->sadb_x_ctx_len,
  375. sizeof(uint64_t));
  376. }
  377. static inline int verify_sec_ctx_len(const void *p)
  378. {
  379. const struct sadb_x_sec_ctx *sec_ctx = p;
  380. int len = sec_ctx->sadb_x_ctx_len;
  381. if (len > PAGE_SIZE)
  382. return -EINVAL;
  383. len = pfkey_sec_ctx_len(sec_ctx);
  384. if (sec_ctx->sadb_x_sec_len != len)
  385. return -EINVAL;
  386. return 0;
  387. }
  388. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  389. gfp_t gfp)
  390. {
  391. struct xfrm_user_sec_ctx *uctx = NULL;
  392. int ctx_size = sec_ctx->sadb_x_ctx_len;
  393. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  394. if (!uctx)
  395. return NULL;
  396. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  397. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  398. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  399. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  400. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  401. memcpy(uctx + 1, sec_ctx + 1,
  402. uctx->ctx_len);
  403. return uctx;
  404. }
  405. static int present_and_same_family(const struct sadb_address *src,
  406. const struct sadb_address *dst)
  407. {
  408. const struct sockaddr *s_addr, *d_addr;
  409. if (!src || !dst)
  410. return 0;
  411. s_addr = (const struct sockaddr *)(src + 1);
  412. d_addr = (const struct sockaddr *)(dst + 1);
  413. if (s_addr->sa_family != d_addr->sa_family)
  414. return 0;
  415. if (s_addr->sa_family != AF_INET
  416. #if IS_ENABLED(CONFIG_IPV6)
  417. && s_addr->sa_family != AF_INET6
  418. #endif
  419. )
  420. return 0;
  421. return 1;
  422. }
  423. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  424. {
  425. const char *p = (char *) hdr;
  426. int len = skb->len;
  427. len -= sizeof(*hdr);
  428. p += sizeof(*hdr);
  429. while (len > 0) {
  430. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  431. uint16_t ext_type;
  432. int ext_len;
  433. if (len < sizeof(*ehdr))
  434. return -EINVAL;
  435. ext_len = ehdr->sadb_ext_len;
  436. ext_len *= sizeof(uint64_t);
  437. ext_type = ehdr->sadb_ext_type;
  438. if (ext_len < sizeof(uint64_t) ||
  439. ext_len > len ||
  440. ext_type == SADB_EXT_RESERVED)
  441. return -EINVAL;
  442. if (ext_type <= SADB_EXT_MAX) {
  443. int min = (int) sadb_ext_min_len[ext_type];
  444. if (ext_len < min)
  445. return -EINVAL;
  446. if (ext_hdrs[ext_type-1] != NULL)
  447. return -EINVAL;
  448. switch (ext_type) {
  449. case SADB_EXT_ADDRESS_SRC:
  450. case SADB_EXT_ADDRESS_DST:
  451. case SADB_EXT_ADDRESS_PROXY:
  452. case SADB_X_EXT_NAT_T_OA:
  453. if (verify_address_len(p))
  454. return -EINVAL;
  455. break;
  456. case SADB_X_EXT_SEC_CTX:
  457. if (verify_sec_ctx_len(p))
  458. return -EINVAL;
  459. break;
  460. case SADB_EXT_KEY_AUTH:
  461. case SADB_EXT_KEY_ENCRYPT:
  462. if (verify_key_len(p))
  463. return -EINVAL;
  464. break;
  465. default:
  466. break;
  467. }
  468. ext_hdrs[ext_type-1] = (void *) p;
  469. }
  470. p += ext_len;
  471. len -= ext_len;
  472. }
  473. return 0;
  474. }
  475. static uint16_t
  476. pfkey_satype2proto(uint8_t satype)
  477. {
  478. switch (satype) {
  479. case SADB_SATYPE_UNSPEC:
  480. return IPSEC_PROTO_ANY;
  481. case SADB_SATYPE_AH:
  482. return IPPROTO_AH;
  483. case SADB_SATYPE_ESP:
  484. return IPPROTO_ESP;
  485. case SADB_X_SATYPE_IPCOMP:
  486. return IPPROTO_COMP;
  487. default:
  488. return 0;
  489. }
  490. /* NOTREACHED */
  491. }
  492. static uint8_t
  493. pfkey_proto2satype(uint16_t proto)
  494. {
  495. switch (proto) {
  496. case IPPROTO_AH:
  497. return SADB_SATYPE_AH;
  498. case IPPROTO_ESP:
  499. return SADB_SATYPE_ESP;
  500. case IPPROTO_COMP:
  501. return SADB_X_SATYPE_IPCOMP;
  502. default:
  503. return 0;
  504. }
  505. /* NOTREACHED */
  506. }
  507. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  508. * say specifically 'just raw sockets' as we encode them as 255.
  509. */
  510. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  511. {
  512. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  513. }
  514. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  515. {
  516. return proto ? proto : IPSEC_PROTO_ANY;
  517. }
  518. static inline int pfkey_sockaddr_len(sa_family_t family)
  519. {
  520. switch (family) {
  521. case AF_INET:
  522. return sizeof(struct sockaddr_in);
  523. #if IS_ENABLED(CONFIG_IPV6)
  524. case AF_INET6:
  525. return sizeof(struct sockaddr_in6);
  526. #endif
  527. }
  528. return 0;
  529. }
  530. static
  531. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  532. {
  533. switch (sa->sa_family) {
  534. case AF_INET:
  535. xaddr->a4 =
  536. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  537. return AF_INET;
  538. #if IS_ENABLED(CONFIG_IPV6)
  539. case AF_INET6:
  540. memcpy(xaddr->a6,
  541. &((struct sockaddr_in6 *)sa)->sin6_addr,
  542. sizeof(struct in6_addr));
  543. return AF_INET6;
  544. #endif
  545. }
  546. return 0;
  547. }
  548. static
  549. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  550. {
  551. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  552. xaddr);
  553. }
  554. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  555. {
  556. const struct sadb_sa *sa;
  557. const struct sadb_address *addr;
  558. uint16_t proto;
  559. unsigned short family;
  560. xfrm_address_t *xaddr;
  561. sa = ext_hdrs[SADB_EXT_SA - 1];
  562. if (sa == NULL)
  563. return NULL;
  564. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  565. if (proto == 0)
  566. return NULL;
  567. /* sadb_address_len should be checked by caller */
  568. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  569. if (addr == NULL)
  570. return NULL;
  571. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  572. switch (family) {
  573. case AF_INET:
  574. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  575. break;
  576. #if IS_ENABLED(CONFIG_IPV6)
  577. case AF_INET6:
  578. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  579. break;
  580. #endif
  581. default:
  582. xaddr = NULL;
  583. }
  584. if (!xaddr)
  585. return NULL;
  586. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  587. }
  588. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  589. static int
  590. pfkey_sockaddr_size(sa_family_t family)
  591. {
  592. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  593. }
  594. static inline int pfkey_mode_from_xfrm(int mode)
  595. {
  596. switch(mode) {
  597. case XFRM_MODE_TRANSPORT:
  598. return IPSEC_MODE_TRANSPORT;
  599. case XFRM_MODE_TUNNEL:
  600. return IPSEC_MODE_TUNNEL;
  601. case XFRM_MODE_BEET:
  602. return IPSEC_MODE_BEET;
  603. default:
  604. return -1;
  605. }
  606. }
  607. static inline int pfkey_mode_to_xfrm(int mode)
  608. {
  609. switch(mode) {
  610. case IPSEC_MODE_ANY: /*XXX*/
  611. case IPSEC_MODE_TRANSPORT:
  612. return XFRM_MODE_TRANSPORT;
  613. case IPSEC_MODE_TUNNEL:
  614. return XFRM_MODE_TUNNEL;
  615. case IPSEC_MODE_BEET:
  616. return XFRM_MODE_BEET;
  617. default:
  618. return -1;
  619. }
  620. }
  621. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  622. struct sockaddr *sa,
  623. unsigned short family)
  624. {
  625. switch (family) {
  626. case AF_INET:
  627. {
  628. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  629. sin->sin_family = AF_INET;
  630. sin->sin_port = port;
  631. sin->sin_addr.s_addr = xaddr->a4;
  632. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  633. return 32;
  634. }
  635. #if IS_ENABLED(CONFIG_IPV6)
  636. case AF_INET6:
  637. {
  638. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  639. sin6->sin6_family = AF_INET6;
  640. sin6->sin6_port = port;
  641. sin6->sin6_flowinfo = 0;
  642. sin6->sin6_addr = xaddr->in6;
  643. sin6->sin6_scope_id = 0;
  644. return 128;
  645. }
  646. #endif
  647. }
  648. return 0;
  649. }
  650. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  651. int add_keys, int hsc)
  652. {
  653. struct sk_buff *skb;
  654. struct sadb_msg *hdr;
  655. struct sadb_sa *sa;
  656. struct sadb_lifetime *lifetime;
  657. struct sadb_address *addr;
  658. struct sadb_key *key;
  659. struct sadb_x_sa2 *sa2;
  660. struct sadb_x_sec_ctx *sec_ctx;
  661. struct xfrm_sec_ctx *xfrm_ctx;
  662. int ctx_size = 0;
  663. int size;
  664. int auth_key_size = 0;
  665. int encrypt_key_size = 0;
  666. int sockaddr_size;
  667. struct xfrm_encap_tmpl *natt = NULL;
  668. int mode;
  669. /* address family check */
  670. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  671. if (!sockaddr_size)
  672. return ERR_PTR(-EINVAL);
  673. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  674. key(AE), (identity(SD),) (sensitivity)> */
  675. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  676. sizeof(struct sadb_lifetime) +
  677. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  678. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  679. sizeof(struct sadb_address)*2 +
  680. sockaddr_size*2 +
  681. sizeof(struct sadb_x_sa2);
  682. if ((xfrm_ctx = x->security)) {
  683. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  684. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  685. }
  686. /* identity & sensitivity */
  687. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  688. size += sizeof(struct sadb_address) + sockaddr_size;
  689. if (add_keys) {
  690. if (x->aalg && x->aalg->alg_key_len) {
  691. auth_key_size =
  692. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  693. size += sizeof(struct sadb_key) + auth_key_size;
  694. }
  695. if (x->ealg && x->ealg->alg_key_len) {
  696. encrypt_key_size =
  697. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  698. size += sizeof(struct sadb_key) + encrypt_key_size;
  699. }
  700. }
  701. if (x->encap)
  702. natt = x->encap;
  703. if (natt && natt->encap_type) {
  704. size += sizeof(struct sadb_x_nat_t_type);
  705. size += sizeof(struct sadb_x_nat_t_port);
  706. size += sizeof(struct sadb_x_nat_t_port);
  707. }
  708. skb = alloc_skb(size + 16, GFP_ATOMIC);
  709. if (skb == NULL)
  710. return ERR_PTR(-ENOBUFS);
  711. /* call should fill header later */
  712. hdr = skb_put(skb, sizeof(struct sadb_msg));
  713. memset(hdr, 0, size); /* XXX do we need this ? */
  714. hdr->sadb_msg_len = size / sizeof(uint64_t);
  715. /* sa */
  716. sa = skb_put(skb, sizeof(struct sadb_sa));
  717. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  718. sa->sadb_sa_exttype = SADB_EXT_SA;
  719. sa->sadb_sa_spi = x->id.spi;
  720. sa->sadb_sa_replay = x->props.replay_window;
  721. switch (x->km.state) {
  722. case XFRM_STATE_VALID:
  723. sa->sadb_sa_state = x->km.dying ?
  724. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  725. break;
  726. case XFRM_STATE_ACQ:
  727. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  728. break;
  729. default:
  730. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  731. break;
  732. }
  733. sa->sadb_sa_auth = 0;
  734. if (x->aalg) {
  735. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  736. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  737. a->desc.sadb_alg_id : 0;
  738. }
  739. sa->sadb_sa_encrypt = 0;
  740. BUG_ON(x->ealg && x->calg);
  741. if (x->ealg) {
  742. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  743. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  744. a->desc.sadb_alg_id : 0;
  745. }
  746. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  747. if (x->calg) {
  748. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  749. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  750. a->desc.sadb_alg_id : 0;
  751. }
  752. sa->sadb_sa_flags = 0;
  753. if (x->props.flags & XFRM_STATE_NOECN)
  754. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  755. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  756. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  757. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  758. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  759. /* hard time */
  760. if (hsc & 2) {
  761. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  762. lifetime->sadb_lifetime_len =
  763. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  764. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  765. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  766. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  767. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  768. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  769. }
  770. /* soft time */
  771. if (hsc & 1) {
  772. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  773. lifetime->sadb_lifetime_len =
  774. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  775. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  776. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  777. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  778. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  779. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  780. }
  781. /* current time */
  782. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  783. lifetime->sadb_lifetime_len =
  784. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  785. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  786. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  787. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  788. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  789. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  790. /* src address */
  791. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  792. addr->sadb_address_len =
  793. (sizeof(struct sadb_address)+sockaddr_size)/
  794. sizeof(uint64_t);
  795. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  796. /* "if the ports are non-zero, then the sadb_address_proto field,
  797. normally zero, MUST be filled in with the transport
  798. protocol's number." - RFC2367 */
  799. addr->sadb_address_proto = 0;
  800. addr->sadb_address_reserved = 0;
  801. addr->sadb_address_prefixlen =
  802. pfkey_sockaddr_fill(&x->props.saddr, 0,
  803. (struct sockaddr *) (addr + 1),
  804. x->props.family);
  805. BUG_ON(!addr->sadb_address_prefixlen);
  806. /* dst address */
  807. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  808. addr->sadb_address_len =
  809. (sizeof(struct sadb_address)+sockaddr_size)/
  810. sizeof(uint64_t);
  811. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  812. addr->sadb_address_proto = 0;
  813. addr->sadb_address_reserved = 0;
  814. addr->sadb_address_prefixlen =
  815. pfkey_sockaddr_fill(&x->id.daddr, 0,
  816. (struct sockaddr *) (addr + 1),
  817. x->props.family);
  818. BUG_ON(!addr->sadb_address_prefixlen);
  819. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  820. x->props.family)) {
  821. addr = skb_put(skb,
  822. sizeof(struct sadb_address) + sockaddr_size);
  823. addr->sadb_address_len =
  824. (sizeof(struct sadb_address)+sockaddr_size)/
  825. sizeof(uint64_t);
  826. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  827. addr->sadb_address_proto =
  828. pfkey_proto_from_xfrm(x->sel.proto);
  829. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  830. addr->sadb_address_reserved = 0;
  831. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  832. (struct sockaddr *) (addr + 1),
  833. x->props.family);
  834. }
  835. /* auth key */
  836. if (add_keys && auth_key_size) {
  837. key = skb_put(skb, sizeof(struct sadb_key) + auth_key_size);
  838. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  839. sizeof(uint64_t);
  840. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  841. key->sadb_key_bits = x->aalg->alg_key_len;
  842. key->sadb_key_reserved = 0;
  843. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  844. }
  845. /* encrypt key */
  846. if (add_keys && encrypt_key_size) {
  847. key = skb_put(skb, sizeof(struct sadb_key) + encrypt_key_size);
  848. key->sadb_key_len = (sizeof(struct sadb_key) +
  849. encrypt_key_size) / sizeof(uint64_t);
  850. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  851. key->sadb_key_bits = x->ealg->alg_key_len;
  852. key->sadb_key_reserved = 0;
  853. memcpy(key + 1, x->ealg->alg_key,
  854. (x->ealg->alg_key_len+7)/8);
  855. }
  856. /* sa */
  857. sa2 = skb_put(skb, sizeof(struct sadb_x_sa2));
  858. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  859. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  860. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  861. kfree_skb(skb);
  862. return ERR_PTR(-EINVAL);
  863. }
  864. sa2->sadb_x_sa2_mode = mode;
  865. sa2->sadb_x_sa2_reserved1 = 0;
  866. sa2->sadb_x_sa2_reserved2 = 0;
  867. sa2->sadb_x_sa2_sequence = 0;
  868. sa2->sadb_x_sa2_reqid = x->props.reqid;
  869. if (natt && natt->encap_type) {
  870. struct sadb_x_nat_t_type *n_type;
  871. struct sadb_x_nat_t_port *n_port;
  872. /* type */
  873. n_type = skb_put(skb, sizeof(*n_type));
  874. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  875. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  876. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  877. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  878. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  879. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  880. /* source port */
  881. n_port = skb_put(skb, sizeof(*n_port));
  882. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  883. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  884. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  885. n_port->sadb_x_nat_t_port_reserved = 0;
  886. /* dest port */
  887. n_port = skb_put(skb, sizeof(*n_port));
  888. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  889. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  890. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  891. n_port->sadb_x_nat_t_port_reserved = 0;
  892. }
  893. /* security context */
  894. if (xfrm_ctx) {
  895. sec_ctx = skb_put(skb,
  896. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  897. sec_ctx->sadb_x_sec_len =
  898. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  899. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  900. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  901. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  902. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  903. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  904. xfrm_ctx->ctx_len);
  905. }
  906. return skb;
  907. }
  908. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  909. {
  910. struct sk_buff *skb;
  911. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  912. return skb;
  913. }
  914. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  915. int hsc)
  916. {
  917. return __pfkey_xfrm_state2msg(x, 0, hsc);
  918. }
  919. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  920. const struct sadb_msg *hdr,
  921. void * const *ext_hdrs)
  922. {
  923. struct xfrm_state *x;
  924. const struct sadb_lifetime *lifetime;
  925. const struct sadb_sa *sa;
  926. const struct sadb_key *key;
  927. const struct sadb_x_sec_ctx *sec_ctx;
  928. uint16_t proto;
  929. int err;
  930. sa = ext_hdrs[SADB_EXT_SA - 1];
  931. if (!sa ||
  932. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  933. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  934. return ERR_PTR(-EINVAL);
  935. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  936. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  937. return ERR_PTR(-EINVAL);
  938. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  939. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  940. return ERR_PTR(-EINVAL);
  941. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  942. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  943. return ERR_PTR(-EINVAL);
  944. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  945. if (proto == 0)
  946. return ERR_PTR(-EINVAL);
  947. /* default error is no buffer space */
  948. err = -ENOBUFS;
  949. /* RFC2367:
  950. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  951. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  952. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  953. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  954. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  955. not true.
  956. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  957. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  958. */
  959. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  960. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  961. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  962. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  963. return ERR_PTR(-EINVAL);
  964. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  965. if (key != NULL &&
  966. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  967. key->sadb_key_bits == 0)
  968. return ERR_PTR(-EINVAL);
  969. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  970. if (key != NULL &&
  971. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  972. key->sadb_key_bits == 0)
  973. return ERR_PTR(-EINVAL);
  974. x = xfrm_state_alloc(net);
  975. if (x == NULL)
  976. return ERR_PTR(-ENOBUFS);
  977. x->id.proto = proto;
  978. x->id.spi = sa->sadb_sa_spi;
  979. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  980. (sizeof(x->replay.bitmap) * 8));
  981. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  982. x->props.flags |= XFRM_STATE_NOECN;
  983. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  984. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  985. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  986. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  987. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  988. if (lifetime != NULL) {
  989. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  990. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  991. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  992. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  993. }
  994. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  995. if (lifetime != NULL) {
  996. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  997. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  998. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  999. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1000. }
  1001. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1002. if (sec_ctx != NULL) {
  1003. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1004. if (!uctx)
  1005. goto out;
  1006. err = security_xfrm_state_alloc(x, uctx);
  1007. kfree(uctx);
  1008. if (err)
  1009. goto out;
  1010. }
  1011. err = -ENOBUFS;
  1012. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  1013. if (sa->sadb_sa_auth) {
  1014. int keysize = 0;
  1015. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1016. if (!a || !a->pfkey_supported) {
  1017. err = -ENOSYS;
  1018. goto out;
  1019. }
  1020. if (key)
  1021. keysize = (key->sadb_key_bits + 7) / 8;
  1022. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1023. if (!x->aalg) {
  1024. err = -ENOMEM;
  1025. goto out;
  1026. }
  1027. strcpy(x->aalg->alg_name, a->name);
  1028. x->aalg->alg_key_len = 0;
  1029. if (key) {
  1030. x->aalg->alg_key_len = key->sadb_key_bits;
  1031. memcpy(x->aalg->alg_key, key+1, keysize);
  1032. }
  1033. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1034. x->props.aalgo = sa->sadb_sa_auth;
  1035. /* x->algo.flags = sa->sadb_sa_flags; */
  1036. }
  1037. if (sa->sadb_sa_encrypt) {
  1038. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1039. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1040. if (!a || !a->pfkey_supported) {
  1041. err = -ENOSYS;
  1042. goto out;
  1043. }
  1044. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1045. if (!x->calg) {
  1046. err = -ENOMEM;
  1047. goto out;
  1048. }
  1049. strcpy(x->calg->alg_name, a->name);
  1050. x->props.calgo = sa->sadb_sa_encrypt;
  1051. } else {
  1052. int keysize = 0;
  1053. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1054. if (!a || !a->pfkey_supported) {
  1055. err = -ENOSYS;
  1056. goto out;
  1057. }
  1058. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1059. if (key)
  1060. keysize = (key->sadb_key_bits + 7) / 8;
  1061. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1062. if (!x->ealg) {
  1063. err = -ENOMEM;
  1064. goto out;
  1065. }
  1066. strcpy(x->ealg->alg_name, a->name);
  1067. x->ealg->alg_key_len = 0;
  1068. if (key) {
  1069. x->ealg->alg_key_len = key->sadb_key_bits;
  1070. memcpy(x->ealg->alg_key, key+1, keysize);
  1071. }
  1072. x->props.ealgo = sa->sadb_sa_encrypt;
  1073. x->geniv = a->uinfo.encr.geniv;
  1074. }
  1075. }
  1076. /* x->algo.flags = sa->sadb_sa_flags; */
  1077. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1078. &x->props.saddr);
  1079. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1080. &x->id.daddr);
  1081. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1082. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1083. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1084. if (mode < 0) {
  1085. err = -EINVAL;
  1086. goto out;
  1087. }
  1088. x->props.mode = mode;
  1089. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1090. }
  1091. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1092. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1093. /* Nobody uses this, but we try. */
  1094. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1095. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1096. }
  1097. if (!x->sel.family)
  1098. x->sel.family = x->props.family;
  1099. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1100. const struct sadb_x_nat_t_type* n_type;
  1101. struct xfrm_encap_tmpl *natt;
  1102. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1103. if (!x->encap) {
  1104. err = -ENOMEM;
  1105. goto out;
  1106. }
  1107. natt = x->encap;
  1108. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1109. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1110. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1111. const struct sadb_x_nat_t_port *n_port =
  1112. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1113. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1114. }
  1115. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1116. const struct sadb_x_nat_t_port *n_port =
  1117. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1118. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1119. }
  1120. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1121. }
  1122. err = xfrm_init_state(x);
  1123. if (err)
  1124. goto out;
  1125. x->km.seq = hdr->sadb_msg_seq;
  1126. return x;
  1127. out:
  1128. x->km.state = XFRM_STATE_DEAD;
  1129. xfrm_state_put(x);
  1130. return ERR_PTR(err);
  1131. }
  1132. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1133. {
  1134. return -EOPNOTSUPP;
  1135. }
  1136. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1137. {
  1138. struct net *net = sock_net(sk);
  1139. struct sk_buff *resp_skb;
  1140. struct sadb_x_sa2 *sa2;
  1141. struct sadb_address *saddr, *daddr;
  1142. struct sadb_msg *out_hdr;
  1143. struct sadb_spirange *range;
  1144. struct xfrm_state *x = NULL;
  1145. int mode;
  1146. int err;
  1147. u32 min_spi, max_spi;
  1148. u32 reqid;
  1149. u8 proto;
  1150. unsigned short family;
  1151. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1152. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1153. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1154. return -EINVAL;
  1155. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1156. if (proto == 0)
  1157. return -EINVAL;
  1158. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1159. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1160. if (mode < 0)
  1161. return -EINVAL;
  1162. reqid = sa2->sadb_x_sa2_reqid;
  1163. } else {
  1164. mode = 0;
  1165. reqid = 0;
  1166. }
  1167. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1168. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1169. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1170. switch (family) {
  1171. case AF_INET:
  1172. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1173. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1174. break;
  1175. #if IS_ENABLED(CONFIG_IPV6)
  1176. case AF_INET6:
  1177. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1178. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1179. break;
  1180. #endif
  1181. }
  1182. if (hdr->sadb_msg_seq) {
  1183. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1184. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1185. xfrm_state_put(x);
  1186. x = NULL;
  1187. }
  1188. }
  1189. if (!x)
  1190. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, 0, proto, xdaddr, xsaddr, 1, family);
  1191. if (x == NULL)
  1192. return -ENOENT;
  1193. min_spi = 0x100;
  1194. max_spi = 0x0fffffff;
  1195. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1196. if (range) {
  1197. min_spi = range->sadb_spirange_min;
  1198. max_spi = range->sadb_spirange_max;
  1199. }
  1200. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1201. if (err) {
  1202. xfrm_state_put(x);
  1203. return err;
  1204. }
  1205. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1206. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1207. if (IS_ERR(resp_skb)) {
  1208. xfrm_state_put(x);
  1209. return PTR_ERR(resp_skb);
  1210. }
  1211. out_hdr = (struct sadb_msg *) resp_skb->data;
  1212. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1213. out_hdr->sadb_msg_type = SADB_GETSPI;
  1214. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1215. out_hdr->sadb_msg_errno = 0;
  1216. out_hdr->sadb_msg_reserved = 0;
  1217. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1218. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1219. xfrm_state_put(x);
  1220. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1221. return 0;
  1222. }
  1223. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1224. {
  1225. struct net *net = sock_net(sk);
  1226. struct xfrm_state *x;
  1227. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1228. return -EOPNOTSUPP;
  1229. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1230. return 0;
  1231. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1232. if (x == NULL)
  1233. return 0;
  1234. spin_lock_bh(&x->lock);
  1235. if (x->km.state == XFRM_STATE_ACQ)
  1236. x->km.state = XFRM_STATE_ERROR;
  1237. spin_unlock_bh(&x->lock);
  1238. xfrm_state_put(x);
  1239. return 0;
  1240. }
  1241. static inline int event2poltype(int event)
  1242. {
  1243. switch (event) {
  1244. case XFRM_MSG_DELPOLICY:
  1245. return SADB_X_SPDDELETE;
  1246. case XFRM_MSG_NEWPOLICY:
  1247. return SADB_X_SPDADD;
  1248. case XFRM_MSG_UPDPOLICY:
  1249. return SADB_X_SPDUPDATE;
  1250. case XFRM_MSG_POLEXPIRE:
  1251. // return SADB_X_SPDEXPIRE;
  1252. default:
  1253. pr_err("pfkey: Unknown policy event %d\n", event);
  1254. break;
  1255. }
  1256. return 0;
  1257. }
  1258. static inline int event2keytype(int event)
  1259. {
  1260. switch (event) {
  1261. case XFRM_MSG_DELSA:
  1262. return SADB_DELETE;
  1263. case XFRM_MSG_NEWSA:
  1264. return SADB_ADD;
  1265. case XFRM_MSG_UPDSA:
  1266. return SADB_UPDATE;
  1267. case XFRM_MSG_EXPIRE:
  1268. return SADB_EXPIRE;
  1269. default:
  1270. pr_err("pfkey: Unknown SA event %d\n", event);
  1271. break;
  1272. }
  1273. return 0;
  1274. }
  1275. /* ADD/UPD/DEL */
  1276. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1277. {
  1278. struct sk_buff *skb;
  1279. struct sadb_msg *hdr;
  1280. skb = pfkey_xfrm_state2msg(x);
  1281. if (IS_ERR(skb))
  1282. return PTR_ERR(skb);
  1283. hdr = (struct sadb_msg *) skb->data;
  1284. hdr->sadb_msg_version = PF_KEY_V2;
  1285. hdr->sadb_msg_type = event2keytype(c->event);
  1286. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1287. hdr->sadb_msg_errno = 0;
  1288. hdr->sadb_msg_reserved = 0;
  1289. hdr->sadb_msg_seq = c->seq;
  1290. hdr->sadb_msg_pid = c->portid;
  1291. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1292. return 0;
  1293. }
  1294. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1295. {
  1296. struct net *net = sock_net(sk);
  1297. struct xfrm_state *x;
  1298. int err;
  1299. struct km_event c;
  1300. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1301. if (IS_ERR(x))
  1302. return PTR_ERR(x);
  1303. xfrm_state_hold(x);
  1304. if (hdr->sadb_msg_type == SADB_ADD)
  1305. err = xfrm_state_add(x);
  1306. else
  1307. err = xfrm_state_update(x);
  1308. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1309. if (err < 0) {
  1310. x->km.state = XFRM_STATE_DEAD;
  1311. __xfrm_state_put(x);
  1312. goto out;
  1313. }
  1314. if (hdr->sadb_msg_type == SADB_ADD)
  1315. c.event = XFRM_MSG_NEWSA;
  1316. else
  1317. c.event = XFRM_MSG_UPDSA;
  1318. c.seq = hdr->sadb_msg_seq;
  1319. c.portid = hdr->sadb_msg_pid;
  1320. km_state_notify(x, &c);
  1321. out:
  1322. xfrm_state_put(x);
  1323. return err;
  1324. }
  1325. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1326. {
  1327. struct net *net = sock_net(sk);
  1328. struct xfrm_state *x;
  1329. struct km_event c;
  1330. int err;
  1331. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1332. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1333. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1334. return -EINVAL;
  1335. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1336. if (x == NULL)
  1337. return -ESRCH;
  1338. if ((err = security_xfrm_state_delete(x)))
  1339. goto out;
  1340. if (xfrm_state_kern(x)) {
  1341. err = -EPERM;
  1342. goto out;
  1343. }
  1344. err = xfrm_state_delete(x);
  1345. if (err < 0)
  1346. goto out;
  1347. c.seq = hdr->sadb_msg_seq;
  1348. c.portid = hdr->sadb_msg_pid;
  1349. c.event = XFRM_MSG_DELSA;
  1350. km_state_notify(x, &c);
  1351. out:
  1352. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1353. xfrm_state_put(x);
  1354. return err;
  1355. }
  1356. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1357. {
  1358. struct net *net = sock_net(sk);
  1359. __u8 proto;
  1360. struct sk_buff *out_skb;
  1361. struct sadb_msg *out_hdr;
  1362. struct xfrm_state *x;
  1363. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1364. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1365. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1366. return -EINVAL;
  1367. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1368. if (x == NULL)
  1369. return -ESRCH;
  1370. out_skb = pfkey_xfrm_state2msg(x);
  1371. proto = x->id.proto;
  1372. xfrm_state_put(x);
  1373. if (IS_ERR(out_skb))
  1374. return PTR_ERR(out_skb);
  1375. out_hdr = (struct sadb_msg *) out_skb->data;
  1376. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1377. out_hdr->sadb_msg_type = SADB_GET;
  1378. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1379. out_hdr->sadb_msg_errno = 0;
  1380. out_hdr->sadb_msg_reserved = 0;
  1381. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1382. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1383. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1384. return 0;
  1385. }
  1386. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1387. gfp_t allocation)
  1388. {
  1389. struct sk_buff *skb;
  1390. struct sadb_msg *hdr;
  1391. int len, auth_len, enc_len, i;
  1392. auth_len = xfrm_count_pfkey_auth_supported();
  1393. if (auth_len) {
  1394. auth_len *= sizeof(struct sadb_alg);
  1395. auth_len += sizeof(struct sadb_supported);
  1396. }
  1397. enc_len = xfrm_count_pfkey_enc_supported();
  1398. if (enc_len) {
  1399. enc_len *= sizeof(struct sadb_alg);
  1400. enc_len += sizeof(struct sadb_supported);
  1401. }
  1402. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1403. skb = alloc_skb(len + 16, allocation);
  1404. if (!skb)
  1405. goto out_put_algs;
  1406. hdr = skb_put(skb, sizeof(*hdr));
  1407. pfkey_hdr_dup(hdr, orig);
  1408. hdr->sadb_msg_errno = 0;
  1409. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1410. if (auth_len) {
  1411. struct sadb_supported *sp;
  1412. struct sadb_alg *ap;
  1413. sp = skb_put(skb, auth_len);
  1414. ap = (struct sadb_alg *) (sp + 1);
  1415. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1416. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1417. for (i = 0; ; i++) {
  1418. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1419. if (!aalg)
  1420. break;
  1421. if (!aalg->pfkey_supported)
  1422. continue;
  1423. if (aalg->available)
  1424. *ap++ = aalg->desc;
  1425. }
  1426. }
  1427. if (enc_len) {
  1428. struct sadb_supported *sp;
  1429. struct sadb_alg *ap;
  1430. sp = skb_put(skb, enc_len);
  1431. ap = (struct sadb_alg *) (sp + 1);
  1432. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1433. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1434. for (i = 0; ; i++) {
  1435. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1436. if (!ealg)
  1437. break;
  1438. if (!ealg->pfkey_supported)
  1439. continue;
  1440. if (ealg->available)
  1441. *ap++ = ealg->desc;
  1442. }
  1443. }
  1444. out_put_algs:
  1445. return skb;
  1446. }
  1447. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1448. {
  1449. struct pfkey_sock *pfk = pfkey_sk(sk);
  1450. struct sk_buff *supp_skb;
  1451. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1452. return -EINVAL;
  1453. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1454. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1455. return -EEXIST;
  1456. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1457. }
  1458. xfrm_probe_algs();
  1459. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL | __GFP_ZERO);
  1460. if (!supp_skb) {
  1461. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1462. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1463. return -ENOBUFS;
  1464. }
  1465. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk,
  1466. sock_net(sk));
  1467. return 0;
  1468. }
  1469. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1470. {
  1471. struct sk_buff *skb;
  1472. struct sadb_msg *hdr;
  1473. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1474. if (!skb)
  1475. return -ENOBUFS;
  1476. hdr = skb_put_data(skb, ihdr, sizeof(struct sadb_msg));
  1477. hdr->sadb_msg_errno = (uint8_t) 0;
  1478. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1479. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk,
  1480. sock_net(sk));
  1481. }
  1482. static int key_notify_sa_flush(const struct km_event *c)
  1483. {
  1484. struct sk_buff *skb;
  1485. struct sadb_msg *hdr;
  1486. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1487. if (!skb)
  1488. return -ENOBUFS;
  1489. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1490. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1491. hdr->sadb_msg_type = SADB_FLUSH;
  1492. hdr->sadb_msg_seq = c->seq;
  1493. hdr->sadb_msg_pid = c->portid;
  1494. hdr->sadb_msg_version = PF_KEY_V2;
  1495. hdr->sadb_msg_errno = (uint8_t) 0;
  1496. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1497. hdr->sadb_msg_reserved = 0;
  1498. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1499. return 0;
  1500. }
  1501. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1502. {
  1503. struct net *net = sock_net(sk);
  1504. unsigned int proto;
  1505. struct km_event c;
  1506. int err, err2;
  1507. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1508. if (proto == 0)
  1509. return -EINVAL;
  1510. err = xfrm_state_flush(net, proto, true, false);
  1511. err2 = unicast_flush_resp(sk, hdr);
  1512. if (err || err2) {
  1513. if (err == -ESRCH) /* empty table - go quietly */
  1514. err = 0;
  1515. return err ? err : err2;
  1516. }
  1517. c.data.proto = proto;
  1518. c.seq = hdr->sadb_msg_seq;
  1519. c.portid = hdr->sadb_msg_pid;
  1520. c.event = XFRM_MSG_FLUSHSA;
  1521. c.net = net;
  1522. km_state_notify(NULL, &c);
  1523. return 0;
  1524. }
  1525. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1526. {
  1527. struct pfkey_sock *pfk = ptr;
  1528. struct sk_buff *out_skb;
  1529. struct sadb_msg *out_hdr;
  1530. if (!pfkey_can_dump(&pfk->sk))
  1531. return -ENOBUFS;
  1532. out_skb = pfkey_xfrm_state2msg(x);
  1533. if (IS_ERR(out_skb))
  1534. return PTR_ERR(out_skb);
  1535. out_hdr = (struct sadb_msg *) out_skb->data;
  1536. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1537. out_hdr->sadb_msg_type = SADB_DUMP;
  1538. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1539. out_hdr->sadb_msg_errno = 0;
  1540. out_hdr->sadb_msg_reserved = 0;
  1541. out_hdr->sadb_msg_seq = count + 1;
  1542. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1543. if (pfk->dump.skb)
  1544. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1545. &pfk->sk, sock_net(&pfk->sk));
  1546. pfk->dump.skb = out_skb;
  1547. return 0;
  1548. }
  1549. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1550. {
  1551. struct net *net = sock_net(&pfk->sk);
  1552. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1553. }
  1554. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1555. {
  1556. struct net *net = sock_net(&pfk->sk);
  1557. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1558. }
  1559. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1560. {
  1561. u8 proto;
  1562. struct xfrm_address_filter *filter = NULL;
  1563. struct pfkey_sock *pfk = pfkey_sk(sk);
  1564. mutex_lock(&pfk->dump_lock);
  1565. if (pfk->dump.dump != NULL) {
  1566. mutex_unlock(&pfk->dump_lock);
  1567. return -EBUSY;
  1568. }
  1569. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1570. if (proto == 0) {
  1571. mutex_unlock(&pfk->dump_lock);
  1572. return -EINVAL;
  1573. }
  1574. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1575. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1576. if ((xfilter->sadb_x_filter_splen >=
  1577. (sizeof(xfrm_address_t) << 3)) ||
  1578. (xfilter->sadb_x_filter_dplen >=
  1579. (sizeof(xfrm_address_t) << 3))) {
  1580. mutex_unlock(&pfk->dump_lock);
  1581. return -EINVAL;
  1582. }
  1583. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1584. if (filter == NULL) {
  1585. mutex_unlock(&pfk->dump_lock);
  1586. return -ENOMEM;
  1587. }
  1588. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1589. sizeof(xfrm_address_t));
  1590. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1591. sizeof(xfrm_address_t));
  1592. filter->family = xfilter->sadb_x_filter_family;
  1593. filter->splen = xfilter->sadb_x_filter_splen;
  1594. filter->dplen = xfilter->sadb_x_filter_dplen;
  1595. }
  1596. pfk->dump.msg_version = hdr->sadb_msg_version;
  1597. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1598. pfk->dump.dump = pfkey_dump_sa;
  1599. pfk->dump.done = pfkey_dump_sa_done;
  1600. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1601. mutex_unlock(&pfk->dump_lock);
  1602. return pfkey_do_dump(pfk);
  1603. }
  1604. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1605. {
  1606. struct pfkey_sock *pfk = pfkey_sk(sk);
  1607. int satype = hdr->sadb_msg_satype;
  1608. bool reset_errno = false;
  1609. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1610. reset_errno = true;
  1611. if (satype != 0 && satype != 1)
  1612. return -EINVAL;
  1613. pfk->promisc = satype;
  1614. }
  1615. if (reset_errno && skb_cloned(skb))
  1616. skb = skb_copy(skb, GFP_KERNEL);
  1617. else
  1618. skb = skb_clone(skb, GFP_KERNEL);
  1619. if (reset_errno && skb) {
  1620. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1621. new_hdr->sadb_msg_errno = 0;
  1622. }
  1623. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1624. return 0;
  1625. }
  1626. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1627. {
  1628. int i;
  1629. u32 reqid = *(u32*)ptr;
  1630. for (i=0; i<xp->xfrm_nr; i++) {
  1631. if (xp->xfrm_vec[i].reqid == reqid)
  1632. return -EEXIST;
  1633. }
  1634. return 0;
  1635. }
  1636. static u32 gen_reqid(struct net *net)
  1637. {
  1638. struct xfrm_policy_walk walk;
  1639. u32 start;
  1640. int rc;
  1641. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1642. start = reqid;
  1643. do {
  1644. ++reqid;
  1645. if (reqid == 0)
  1646. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1647. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1648. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1649. xfrm_policy_walk_done(&walk, net);
  1650. if (rc != -EEXIST)
  1651. return reqid;
  1652. } while (reqid != start);
  1653. return 0;
  1654. }
  1655. static int
  1656. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1657. {
  1658. struct net *net = xp_net(xp);
  1659. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1660. int mode;
  1661. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1662. return -ELOOP;
  1663. if (rq->sadb_x_ipsecrequest_mode == 0)
  1664. return -EINVAL;
  1665. if (!xfrm_id_proto_valid(rq->sadb_x_ipsecrequest_proto))
  1666. return -EINVAL;
  1667. t->id.proto = rq->sadb_x_ipsecrequest_proto;
  1668. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1669. return -EINVAL;
  1670. t->mode = mode;
  1671. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1672. t->optional = 1;
  1673. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1674. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1675. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1676. t->reqid = 0;
  1677. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1678. return -ENOBUFS;
  1679. }
  1680. /* addresses present only in tunnel mode */
  1681. if (t->mode == XFRM_MODE_TUNNEL) {
  1682. int err;
  1683. err = parse_sockaddr_pair(
  1684. (struct sockaddr *)(rq + 1),
  1685. rq->sadb_x_ipsecrequest_len - sizeof(*rq),
  1686. &t->saddr, &t->id.daddr, &t->encap_family);
  1687. if (err)
  1688. return err;
  1689. } else
  1690. t->encap_family = xp->family;
  1691. /* No way to set this via kame pfkey */
  1692. t->allalgs = 1;
  1693. xp->xfrm_nr++;
  1694. return 0;
  1695. }
  1696. static int
  1697. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1698. {
  1699. int err;
  1700. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1701. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1702. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1703. return -EINVAL;
  1704. while (len >= sizeof(*rq)) {
  1705. if (len < rq->sadb_x_ipsecrequest_len ||
  1706. rq->sadb_x_ipsecrequest_len < sizeof(*rq))
  1707. return -EINVAL;
  1708. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1709. return err;
  1710. len -= rq->sadb_x_ipsecrequest_len;
  1711. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1712. }
  1713. return 0;
  1714. }
  1715. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1716. {
  1717. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1718. if (xfrm_ctx) {
  1719. int len = sizeof(struct sadb_x_sec_ctx);
  1720. len += xfrm_ctx->ctx_len;
  1721. return PFKEY_ALIGN8(len);
  1722. }
  1723. return 0;
  1724. }
  1725. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1726. {
  1727. const struct xfrm_tmpl *t;
  1728. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1729. int socklen = 0;
  1730. int i;
  1731. for (i=0; i<xp->xfrm_nr; i++) {
  1732. t = xp->xfrm_vec + i;
  1733. socklen += pfkey_sockaddr_len(t->encap_family);
  1734. }
  1735. return sizeof(struct sadb_msg) +
  1736. (sizeof(struct sadb_lifetime) * 3) +
  1737. (sizeof(struct sadb_address) * 2) +
  1738. (sockaddr_size * 2) +
  1739. sizeof(struct sadb_x_policy) +
  1740. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1741. (socklen * 2) +
  1742. pfkey_xfrm_policy2sec_ctx_size(xp);
  1743. }
  1744. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1745. {
  1746. struct sk_buff *skb;
  1747. int size;
  1748. size = pfkey_xfrm_policy2msg_size(xp);
  1749. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1750. if (skb == NULL)
  1751. return ERR_PTR(-ENOBUFS);
  1752. return skb;
  1753. }
  1754. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1755. {
  1756. struct sadb_msg *hdr;
  1757. struct sadb_address *addr;
  1758. struct sadb_lifetime *lifetime;
  1759. struct sadb_x_policy *pol;
  1760. struct sadb_x_sec_ctx *sec_ctx;
  1761. struct xfrm_sec_ctx *xfrm_ctx;
  1762. int i;
  1763. int size;
  1764. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1765. int socklen = pfkey_sockaddr_len(xp->family);
  1766. size = pfkey_xfrm_policy2msg_size(xp);
  1767. /* call should fill header later */
  1768. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1769. memset(hdr, 0, size); /* XXX do we need this ? */
  1770. /* src address */
  1771. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1772. addr->sadb_address_len =
  1773. (sizeof(struct sadb_address)+sockaddr_size)/
  1774. sizeof(uint64_t);
  1775. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1776. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1777. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1778. addr->sadb_address_reserved = 0;
  1779. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1780. xp->selector.sport,
  1781. (struct sockaddr *) (addr + 1),
  1782. xp->family))
  1783. BUG();
  1784. /* dst address */
  1785. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1786. addr->sadb_address_len =
  1787. (sizeof(struct sadb_address)+sockaddr_size)/
  1788. sizeof(uint64_t);
  1789. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1790. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1791. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1792. addr->sadb_address_reserved = 0;
  1793. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1794. (struct sockaddr *) (addr + 1),
  1795. xp->family);
  1796. /* hard time */
  1797. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1798. lifetime->sadb_lifetime_len =
  1799. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1800. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1801. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1802. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1803. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1804. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1805. /* soft time */
  1806. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1807. lifetime->sadb_lifetime_len =
  1808. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1809. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1810. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1811. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1812. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1813. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1814. /* current time */
  1815. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1816. lifetime->sadb_lifetime_len =
  1817. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1818. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1819. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1820. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1821. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1822. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1823. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  1824. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1825. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1826. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1827. if (xp->action == XFRM_POLICY_ALLOW) {
  1828. if (xp->xfrm_nr)
  1829. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1830. else
  1831. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1832. }
  1833. pol->sadb_x_policy_dir = dir+1;
  1834. pol->sadb_x_policy_reserved = 0;
  1835. pol->sadb_x_policy_id = xp->index;
  1836. pol->sadb_x_policy_priority = xp->priority;
  1837. for (i=0; i<xp->xfrm_nr; i++) {
  1838. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1839. struct sadb_x_ipsecrequest *rq;
  1840. int req_size;
  1841. int mode;
  1842. req_size = sizeof(struct sadb_x_ipsecrequest);
  1843. if (t->mode == XFRM_MODE_TUNNEL) {
  1844. socklen = pfkey_sockaddr_len(t->encap_family);
  1845. req_size += socklen * 2;
  1846. } else {
  1847. size -= 2*socklen;
  1848. }
  1849. rq = skb_put(skb, req_size);
  1850. pol->sadb_x_policy_len += req_size/8;
  1851. memset(rq, 0, sizeof(*rq));
  1852. rq->sadb_x_ipsecrequest_len = req_size;
  1853. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1854. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1855. return -EINVAL;
  1856. rq->sadb_x_ipsecrequest_mode = mode;
  1857. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1858. if (t->reqid)
  1859. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1860. if (t->optional)
  1861. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1862. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1863. if (t->mode == XFRM_MODE_TUNNEL) {
  1864. u8 *sa = (void *)(rq + 1);
  1865. pfkey_sockaddr_fill(&t->saddr, 0,
  1866. (struct sockaddr *)sa,
  1867. t->encap_family);
  1868. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1869. (struct sockaddr *) (sa + socklen),
  1870. t->encap_family);
  1871. }
  1872. }
  1873. /* security context */
  1874. if ((xfrm_ctx = xp->security)) {
  1875. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1876. sec_ctx = skb_put(skb, ctx_size);
  1877. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1878. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1879. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1880. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1881. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1882. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1883. xfrm_ctx->ctx_len);
  1884. }
  1885. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1886. hdr->sadb_msg_reserved = refcount_read(&xp->refcnt);
  1887. return 0;
  1888. }
  1889. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1890. {
  1891. struct sk_buff *out_skb;
  1892. struct sadb_msg *out_hdr;
  1893. int err;
  1894. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1895. if (IS_ERR(out_skb))
  1896. return PTR_ERR(out_skb);
  1897. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1898. if (err < 0) {
  1899. kfree_skb(out_skb);
  1900. return err;
  1901. }
  1902. out_hdr = (struct sadb_msg *) out_skb->data;
  1903. out_hdr->sadb_msg_version = PF_KEY_V2;
  1904. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1905. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1906. else
  1907. out_hdr->sadb_msg_type = event2poltype(c->event);
  1908. out_hdr->sadb_msg_errno = 0;
  1909. out_hdr->sadb_msg_seq = c->seq;
  1910. out_hdr->sadb_msg_pid = c->portid;
  1911. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1912. return 0;
  1913. }
  1914. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1915. {
  1916. struct net *net = sock_net(sk);
  1917. int err = 0;
  1918. struct sadb_lifetime *lifetime;
  1919. struct sadb_address *sa;
  1920. struct sadb_x_policy *pol;
  1921. struct xfrm_policy *xp;
  1922. struct km_event c;
  1923. struct sadb_x_sec_ctx *sec_ctx;
  1924. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1925. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1926. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1927. return -EINVAL;
  1928. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1929. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1930. return -EINVAL;
  1931. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1932. return -EINVAL;
  1933. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1934. if (xp == NULL)
  1935. return -ENOBUFS;
  1936. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1937. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1938. xp->priority = pol->sadb_x_policy_priority;
  1939. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1940. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1941. xp->selector.family = xp->family;
  1942. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1943. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1944. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1945. if (xp->selector.sport)
  1946. xp->selector.sport_mask = htons(0xffff);
  1947. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1948. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1949. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1950. /* Amusing, we set this twice. KAME apps appear to set same value
  1951. * in both addresses.
  1952. */
  1953. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1954. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1955. if (xp->selector.dport)
  1956. xp->selector.dport_mask = htons(0xffff);
  1957. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1958. if (sec_ctx != NULL) {
  1959. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1960. if (!uctx) {
  1961. err = -ENOBUFS;
  1962. goto out;
  1963. }
  1964. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1965. kfree(uctx);
  1966. if (err)
  1967. goto out;
  1968. }
  1969. xp->lft.soft_byte_limit = XFRM_INF;
  1970. xp->lft.hard_byte_limit = XFRM_INF;
  1971. xp->lft.soft_packet_limit = XFRM_INF;
  1972. xp->lft.hard_packet_limit = XFRM_INF;
  1973. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1974. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1975. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1976. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1977. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1978. }
  1979. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1980. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1981. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1982. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1983. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1984. }
  1985. xp->xfrm_nr = 0;
  1986. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1987. (err = parse_ipsecrequests(xp, pol)) < 0)
  1988. goto out;
  1989. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1990. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1991. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  1992. if (err)
  1993. goto out;
  1994. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1995. c.event = XFRM_MSG_UPDPOLICY;
  1996. else
  1997. c.event = XFRM_MSG_NEWPOLICY;
  1998. c.seq = hdr->sadb_msg_seq;
  1999. c.portid = hdr->sadb_msg_pid;
  2000. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2001. xfrm_pol_put(xp);
  2002. return 0;
  2003. out:
  2004. xp->walk.dead = 1;
  2005. xfrm_policy_destroy(xp);
  2006. return err;
  2007. }
  2008. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2009. {
  2010. struct net *net = sock_net(sk);
  2011. int err;
  2012. struct sadb_address *sa;
  2013. struct sadb_x_policy *pol;
  2014. struct xfrm_policy *xp;
  2015. struct xfrm_selector sel;
  2016. struct km_event c;
  2017. struct sadb_x_sec_ctx *sec_ctx;
  2018. struct xfrm_sec_ctx *pol_ctx = NULL;
  2019. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2020. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2021. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2022. return -EINVAL;
  2023. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2024. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2025. return -EINVAL;
  2026. memset(&sel, 0, sizeof(sel));
  2027. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  2028. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2029. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2030. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2031. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2032. if (sel.sport)
  2033. sel.sport_mask = htons(0xffff);
  2034. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  2035. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2036. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2037. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2038. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2039. if (sel.dport)
  2040. sel.dport_mask = htons(0xffff);
  2041. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  2042. if (sec_ctx != NULL) {
  2043. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2044. if (!uctx)
  2045. return -ENOMEM;
  2046. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2047. kfree(uctx);
  2048. if (err)
  2049. return err;
  2050. }
  2051. xp = xfrm_policy_bysel_ctx(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN,
  2052. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2053. 1, &err);
  2054. security_xfrm_policy_free(pol_ctx);
  2055. if (xp == NULL)
  2056. return -ENOENT;
  2057. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2058. if (err)
  2059. goto out;
  2060. c.seq = hdr->sadb_msg_seq;
  2061. c.portid = hdr->sadb_msg_pid;
  2062. c.data.byid = 0;
  2063. c.event = XFRM_MSG_DELPOLICY;
  2064. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2065. out:
  2066. xfrm_pol_put(xp);
  2067. return err;
  2068. }
  2069. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2070. {
  2071. int err;
  2072. struct sk_buff *out_skb;
  2073. struct sadb_msg *out_hdr;
  2074. err = 0;
  2075. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2076. if (IS_ERR(out_skb)) {
  2077. err = PTR_ERR(out_skb);
  2078. goto out;
  2079. }
  2080. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2081. if (err < 0) {
  2082. kfree_skb(out_skb);
  2083. goto out;
  2084. }
  2085. out_hdr = (struct sadb_msg *) out_skb->data;
  2086. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2087. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2088. out_hdr->sadb_msg_satype = 0;
  2089. out_hdr->sadb_msg_errno = 0;
  2090. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2091. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2092. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2093. err = 0;
  2094. out:
  2095. return err;
  2096. }
  2097. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2098. {
  2099. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2100. }
  2101. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2102. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2103. u16 *family)
  2104. {
  2105. int af, socklen;
  2106. if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2107. return -EINVAL;
  2108. af = pfkey_sockaddr_extract(sa, saddr);
  2109. if (!af)
  2110. return -EINVAL;
  2111. socklen = pfkey_sockaddr_len(af);
  2112. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2113. daddr) != af)
  2114. return -EINVAL;
  2115. *family = af;
  2116. return 0;
  2117. }
  2118. #ifdef CONFIG_NET_KEY_MIGRATE
  2119. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2120. struct xfrm_migrate *m)
  2121. {
  2122. int err;
  2123. struct sadb_x_ipsecrequest *rq2;
  2124. int mode;
  2125. if (len < sizeof(*rq1) ||
  2126. len < rq1->sadb_x_ipsecrequest_len ||
  2127. rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
  2128. return -EINVAL;
  2129. /* old endoints */
  2130. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2131. rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
  2132. &m->old_saddr, &m->old_daddr,
  2133. &m->old_family);
  2134. if (err)
  2135. return err;
  2136. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2137. len -= rq1->sadb_x_ipsecrequest_len;
  2138. if (len <= sizeof(*rq2) ||
  2139. len < rq2->sadb_x_ipsecrequest_len ||
  2140. rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
  2141. return -EINVAL;
  2142. /* new endpoints */
  2143. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2144. rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
  2145. &m->new_saddr, &m->new_daddr,
  2146. &m->new_family);
  2147. if (err)
  2148. return err;
  2149. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2150. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2151. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2152. return -EINVAL;
  2153. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2154. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2155. return -EINVAL;
  2156. m->mode = mode;
  2157. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2158. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2159. rq2->sadb_x_ipsecrequest_len));
  2160. }
  2161. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2162. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2163. {
  2164. int i, len, ret, err = -EINVAL;
  2165. u8 dir;
  2166. struct sadb_address *sa;
  2167. struct sadb_x_kmaddress *kma;
  2168. struct sadb_x_policy *pol;
  2169. struct sadb_x_ipsecrequest *rq;
  2170. struct xfrm_selector sel;
  2171. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2172. struct xfrm_kmaddress k;
  2173. struct net *net = sock_net(sk);
  2174. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2175. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2176. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2177. err = -EINVAL;
  2178. goto out;
  2179. }
  2180. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2181. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2182. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2183. err = -EINVAL;
  2184. goto out;
  2185. }
  2186. if (kma) {
  2187. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2188. k.reserved = kma->sadb_x_kmaddress_reserved;
  2189. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2190. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2191. &k.local, &k.remote, &k.family);
  2192. if (ret < 0) {
  2193. err = ret;
  2194. goto out;
  2195. }
  2196. }
  2197. dir = pol->sadb_x_policy_dir - 1;
  2198. memset(&sel, 0, sizeof(sel));
  2199. /* set source address info of selector */
  2200. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2201. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2202. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2203. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2204. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2205. if (sel.sport)
  2206. sel.sport_mask = htons(0xffff);
  2207. /* set destination address info of selector */
  2208. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2209. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2210. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2211. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2212. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2213. if (sel.dport)
  2214. sel.dport_mask = htons(0xffff);
  2215. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2216. /* extract ipsecrequests */
  2217. i = 0;
  2218. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2219. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2220. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2221. if (ret < 0) {
  2222. err = ret;
  2223. goto out;
  2224. } else {
  2225. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2226. len -= ret;
  2227. i++;
  2228. }
  2229. }
  2230. if (!i || len > 0) {
  2231. err = -EINVAL;
  2232. goto out;
  2233. }
  2234. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2235. kma ? &k : NULL, net, NULL, 0);
  2236. out:
  2237. return err;
  2238. }
  2239. #else
  2240. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2241. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2242. {
  2243. return -ENOPROTOOPT;
  2244. }
  2245. #endif
  2246. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2247. {
  2248. struct net *net = sock_net(sk);
  2249. unsigned int dir;
  2250. int err = 0, delete;
  2251. struct sadb_x_policy *pol;
  2252. struct xfrm_policy *xp;
  2253. struct km_event c;
  2254. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2255. return -EINVAL;
  2256. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2257. if (dir >= XFRM_POLICY_MAX)
  2258. return -EINVAL;
  2259. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2260. xp = xfrm_policy_byid(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN,
  2261. dir, pol->sadb_x_policy_id, delete, &err);
  2262. if (xp == NULL)
  2263. return -ENOENT;
  2264. if (delete) {
  2265. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2266. if (err)
  2267. goto out;
  2268. c.seq = hdr->sadb_msg_seq;
  2269. c.portid = hdr->sadb_msg_pid;
  2270. c.data.byid = 1;
  2271. c.event = XFRM_MSG_DELPOLICY;
  2272. km_policy_notify(xp, dir, &c);
  2273. } else {
  2274. err = key_pol_get_resp(sk, xp, hdr, dir);
  2275. }
  2276. out:
  2277. xfrm_pol_put(xp);
  2278. return err;
  2279. }
  2280. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2281. {
  2282. struct pfkey_sock *pfk = ptr;
  2283. struct sk_buff *out_skb;
  2284. struct sadb_msg *out_hdr;
  2285. int err;
  2286. if (!pfkey_can_dump(&pfk->sk))
  2287. return -ENOBUFS;
  2288. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2289. if (IS_ERR(out_skb))
  2290. return PTR_ERR(out_skb);
  2291. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2292. if (err < 0) {
  2293. kfree_skb(out_skb);
  2294. return err;
  2295. }
  2296. out_hdr = (struct sadb_msg *) out_skb->data;
  2297. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2298. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2299. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2300. out_hdr->sadb_msg_errno = 0;
  2301. out_hdr->sadb_msg_seq = count + 1;
  2302. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2303. if (pfk->dump.skb)
  2304. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2305. &pfk->sk, sock_net(&pfk->sk));
  2306. pfk->dump.skb = out_skb;
  2307. return 0;
  2308. }
  2309. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2310. {
  2311. struct net *net = sock_net(&pfk->sk);
  2312. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2313. }
  2314. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2315. {
  2316. struct net *net = sock_net((struct sock *)pfk);
  2317. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2318. }
  2319. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2320. {
  2321. struct pfkey_sock *pfk = pfkey_sk(sk);
  2322. mutex_lock(&pfk->dump_lock);
  2323. if (pfk->dump.dump != NULL) {
  2324. mutex_unlock(&pfk->dump_lock);
  2325. return -EBUSY;
  2326. }
  2327. pfk->dump.msg_version = hdr->sadb_msg_version;
  2328. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2329. pfk->dump.dump = pfkey_dump_sp;
  2330. pfk->dump.done = pfkey_dump_sp_done;
  2331. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2332. mutex_unlock(&pfk->dump_lock);
  2333. return pfkey_do_dump(pfk);
  2334. }
  2335. static int key_notify_policy_flush(const struct km_event *c)
  2336. {
  2337. struct sk_buff *skb_out;
  2338. struct sadb_msg *hdr;
  2339. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2340. if (!skb_out)
  2341. return -ENOBUFS;
  2342. hdr = skb_put(skb_out, sizeof(struct sadb_msg));
  2343. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2344. hdr->sadb_msg_seq = c->seq;
  2345. hdr->sadb_msg_pid = c->portid;
  2346. hdr->sadb_msg_version = PF_KEY_V2;
  2347. hdr->sadb_msg_errno = (uint8_t) 0;
  2348. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2349. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2350. hdr->sadb_msg_reserved = 0;
  2351. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2352. return 0;
  2353. }
  2354. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2355. {
  2356. struct net *net = sock_net(sk);
  2357. struct km_event c;
  2358. int err, err2;
  2359. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2360. err2 = unicast_flush_resp(sk, hdr);
  2361. if (err || err2) {
  2362. if (err == -ESRCH) /* empty table - old silent behavior */
  2363. return 0;
  2364. return err;
  2365. }
  2366. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2367. c.event = XFRM_MSG_FLUSHPOLICY;
  2368. c.portid = hdr->sadb_msg_pid;
  2369. c.seq = hdr->sadb_msg_seq;
  2370. c.net = net;
  2371. km_policy_notify(NULL, 0, &c);
  2372. return 0;
  2373. }
  2374. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2375. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2376. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2377. [SADB_RESERVED] = pfkey_reserved,
  2378. [SADB_GETSPI] = pfkey_getspi,
  2379. [SADB_UPDATE] = pfkey_add,
  2380. [SADB_ADD] = pfkey_add,
  2381. [SADB_DELETE] = pfkey_delete,
  2382. [SADB_GET] = pfkey_get,
  2383. [SADB_ACQUIRE] = pfkey_acquire,
  2384. [SADB_REGISTER] = pfkey_register,
  2385. [SADB_EXPIRE] = NULL,
  2386. [SADB_FLUSH] = pfkey_flush,
  2387. [SADB_DUMP] = pfkey_dump,
  2388. [SADB_X_PROMISC] = pfkey_promisc,
  2389. [SADB_X_PCHANGE] = NULL,
  2390. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2391. [SADB_X_SPDADD] = pfkey_spdadd,
  2392. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2393. [SADB_X_SPDGET] = pfkey_spdget,
  2394. [SADB_X_SPDACQUIRE] = NULL,
  2395. [SADB_X_SPDDUMP] = pfkey_spddump,
  2396. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2397. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2398. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2399. [SADB_X_MIGRATE] = pfkey_migrate,
  2400. };
  2401. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2402. {
  2403. void *ext_hdrs[SADB_EXT_MAX];
  2404. int err;
  2405. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2406. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2407. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2408. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2409. if (!err) {
  2410. err = -EOPNOTSUPP;
  2411. if (pfkey_funcs[hdr->sadb_msg_type])
  2412. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2413. }
  2414. return err;
  2415. }
  2416. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2417. {
  2418. struct sadb_msg *hdr = NULL;
  2419. if (skb->len < sizeof(*hdr)) {
  2420. *errp = -EMSGSIZE;
  2421. } else {
  2422. hdr = (struct sadb_msg *) skb->data;
  2423. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2424. hdr->sadb_msg_reserved != 0 ||
  2425. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2426. hdr->sadb_msg_type > SADB_MAX)) {
  2427. hdr = NULL;
  2428. *errp = -EINVAL;
  2429. } else if (hdr->sadb_msg_len != (skb->len /
  2430. sizeof(uint64_t)) ||
  2431. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2432. sizeof(uint64_t))) {
  2433. hdr = NULL;
  2434. *errp = -EMSGSIZE;
  2435. } else {
  2436. *errp = 0;
  2437. }
  2438. }
  2439. return hdr;
  2440. }
  2441. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2442. const struct xfrm_algo_desc *d)
  2443. {
  2444. unsigned int id = d->desc.sadb_alg_id;
  2445. if (id >= sizeof(t->aalgos) * 8)
  2446. return 0;
  2447. return (t->aalgos >> id) & 1;
  2448. }
  2449. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2450. const struct xfrm_algo_desc *d)
  2451. {
  2452. unsigned int id = d->desc.sadb_alg_id;
  2453. if (id >= sizeof(t->ealgos) * 8)
  2454. return 0;
  2455. return (t->ealgos >> id) & 1;
  2456. }
  2457. static int count_ah_combs(const struct xfrm_tmpl *t)
  2458. {
  2459. int i, sz = 0;
  2460. for (i = 0; ; i++) {
  2461. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2462. if (!aalg)
  2463. break;
  2464. if (!aalg->pfkey_supported)
  2465. continue;
  2466. if (aalg_tmpl_set(t, aalg))
  2467. sz += sizeof(struct sadb_comb);
  2468. }
  2469. return sz + sizeof(struct sadb_prop);
  2470. }
  2471. static int count_esp_combs(const struct xfrm_tmpl *t)
  2472. {
  2473. int i, k, sz = 0;
  2474. for (i = 0; ; i++) {
  2475. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2476. if (!ealg)
  2477. break;
  2478. if (!ealg->pfkey_supported)
  2479. continue;
  2480. if (!(ealg_tmpl_set(t, ealg)))
  2481. continue;
  2482. for (k = 1; ; k++) {
  2483. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2484. if (!aalg)
  2485. break;
  2486. if (!aalg->pfkey_supported)
  2487. continue;
  2488. if (aalg_tmpl_set(t, aalg))
  2489. sz += sizeof(struct sadb_comb);
  2490. }
  2491. }
  2492. return sz + sizeof(struct sadb_prop);
  2493. }
  2494. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2495. {
  2496. struct sadb_prop *p;
  2497. int i;
  2498. p = skb_put(skb, sizeof(struct sadb_prop));
  2499. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2500. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2501. p->sadb_prop_replay = 32;
  2502. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2503. for (i = 0; ; i++) {
  2504. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2505. if (!aalg)
  2506. break;
  2507. if (!aalg->pfkey_supported)
  2508. continue;
  2509. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2510. struct sadb_comb *c;
  2511. c = skb_put_zero(skb, sizeof(struct sadb_comb));
  2512. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2513. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2514. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2515. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2516. c->sadb_comb_hard_addtime = 24*60*60;
  2517. c->sadb_comb_soft_addtime = 20*60*60;
  2518. c->sadb_comb_hard_usetime = 8*60*60;
  2519. c->sadb_comb_soft_usetime = 7*60*60;
  2520. }
  2521. }
  2522. }
  2523. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2524. {
  2525. struct sadb_prop *p;
  2526. int i, k;
  2527. p = skb_put(skb, sizeof(struct sadb_prop));
  2528. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2529. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2530. p->sadb_prop_replay = 32;
  2531. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2532. for (i=0; ; i++) {
  2533. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2534. if (!ealg)
  2535. break;
  2536. if (!ealg->pfkey_supported)
  2537. continue;
  2538. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2539. continue;
  2540. for (k = 1; ; k++) {
  2541. struct sadb_comb *c;
  2542. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2543. if (!aalg)
  2544. break;
  2545. if (!aalg->pfkey_supported)
  2546. continue;
  2547. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2548. continue;
  2549. c = skb_put(skb, sizeof(struct sadb_comb));
  2550. memset(c, 0, sizeof(*c));
  2551. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2552. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2553. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2554. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2555. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2556. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2557. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2558. c->sadb_comb_hard_addtime = 24*60*60;
  2559. c->sadb_comb_soft_addtime = 20*60*60;
  2560. c->sadb_comb_hard_usetime = 8*60*60;
  2561. c->sadb_comb_soft_usetime = 7*60*60;
  2562. }
  2563. }
  2564. }
  2565. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2566. {
  2567. return 0;
  2568. }
  2569. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2570. {
  2571. struct sk_buff *out_skb;
  2572. struct sadb_msg *out_hdr;
  2573. int hard;
  2574. int hsc;
  2575. hard = c->data.hard;
  2576. if (hard)
  2577. hsc = 2;
  2578. else
  2579. hsc = 1;
  2580. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2581. if (IS_ERR(out_skb))
  2582. return PTR_ERR(out_skb);
  2583. out_hdr = (struct sadb_msg *) out_skb->data;
  2584. out_hdr->sadb_msg_version = PF_KEY_V2;
  2585. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2586. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2587. out_hdr->sadb_msg_errno = 0;
  2588. out_hdr->sadb_msg_reserved = 0;
  2589. out_hdr->sadb_msg_seq = 0;
  2590. out_hdr->sadb_msg_pid = 0;
  2591. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2592. xs_net(x));
  2593. return 0;
  2594. }
  2595. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2596. {
  2597. struct net *net = x ? xs_net(x) : c->net;
  2598. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2599. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2600. return 0;
  2601. switch (c->event) {
  2602. case XFRM_MSG_EXPIRE:
  2603. return key_notify_sa_expire(x, c);
  2604. case XFRM_MSG_DELSA:
  2605. case XFRM_MSG_NEWSA:
  2606. case XFRM_MSG_UPDSA:
  2607. return key_notify_sa(x, c);
  2608. case XFRM_MSG_FLUSHSA:
  2609. return key_notify_sa_flush(c);
  2610. case XFRM_MSG_NEWAE: /* not yet supported */
  2611. break;
  2612. default:
  2613. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2614. break;
  2615. }
  2616. return 0;
  2617. }
  2618. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2619. {
  2620. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2621. return 0;
  2622. switch (c->event) {
  2623. case XFRM_MSG_POLEXPIRE:
  2624. return key_notify_policy_expire(xp, c);
  2625. case XFRM_MSG_DELPOLICY:
  2626. case XFRM_MSG_NEWPOLICY:
  2627. case XFRM_MSG_UPDPOLICY:
  2628. return key_notify_policy(xp, dir, c);
  2629. case XFRM_MSG_FLUSHPOLICY:
  2630. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2631. break;
  2632. return key_notify_policy_flush(c);
  2633. default:
  2634. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2635. break;
  2636. }
  2637. return 0;
  2638. }
  2639. static u32 get_acqseq(void)
  2640. {
  2641. u32 res;
  2642. static atomic_t acqseq;
  2643. do {
  2644. res = atomic_inc_return(&acqseq);
  2645. } while (!res);
  2646. return res;
  2647. }
  2648. static bool pfkey_is_alive(const struct km_event *c)
  2649. {
  2650. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2651. struct sock *sk;
  2652. bool is_alive = false;
  2653. rcu_read_lock();
  2654. sk_for_each_rcu(sk, &net_pfkey->table) {
  2655. if (pfkey_sk(sk)->registered) {
  2656. is_alive = true;
  2657. break;
  2658. }
  2659. }
  2660. rcu_read_unlock();
  2661. return is_alive;
  2662. }
  2663. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2664. {
  2665. struct sk_buff *skb;
  2666. struct sadb_msg *hdr;
  2667. struct sadb_address *addr;
  2668. struct sadb_x_policy *pol;
  2669. int sockaddr_size;
  2670. int size;
  2671. struct sadb_x_sec_ctx *sec_ctx;
  2672. struct xfrm_sec_ctx *xfrm_ctx;
  2673. int ctx_size = 0;
  2674. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2675. if (!sockaddr_size)
  2676. return -EINVAL;
  2677. size = sizeof(struct sadb_msg) +
  2678. (sizeof(struct sadb_address) * 2) +
  2679. (sockaddr_size * 2) +
  2680. sizeof(struct sadb_x_policy);
  2681. if (x->id.proto == IPPROTO_AH)
  2682. size += count_ah_combs(t);
  2683. else if (x->id.proto == IPPROTO_ESP)
  2684. size += count_esp_combs(t);
  2685. if ((xfrm_ctx = x->security)) {
  2686. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2687. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2688. }
  2689. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2690. if (skb == NULL)
  2691. return -ENOMEM;
  2692. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2693. hdr->sadb_msg_version = PF_KEY_V2;
  2694. hdr->sadb_msg_type = SADB_ACQUIRE;
  2695. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2696. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2697. hdr->sadb_msg_errno = 0;
  2698. hdr->sadb_msg_reserved = 0;
  2699. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2700. hdr->sadb_msg_pid = 0;
  2701. /* src address */
  2702. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2703. addr->sadb_address_len =
  2704. (sizeof(struct sadb_address)+sockaddr_size)/
  2705. sizeof(uint64_t);
  2706. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2707. addr->sadb_address_proto = 0;
  2708. addr->sadb_address_reserved = 0;
  2709. addr->sadb_address_prefixlen =
  2710. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2711. (struct sockaddr *) (addr + 1),
  2712. x->props.family);
  2713. if (!addr->sadb_address_prefixlen)
  2714. BUG();
  2715. /* dst address */
  2716. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2717. addr->sadb_address_len =
  2718. (sizeof(struct sadb_address)+sockaddr_size)/
  2719. sizeof(uint64_t);
  2720. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2721. addr->sadb_address_proto = 0;
  2722. addr->sadb_address_reserved = 0;
  2723. addr->sadb_address_prefixlen =
  2724. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2725. (struct sockaddr *) (addr + 1),
  2726. x->props.family);
  2727. if (!addr->sadb_address_prefixlen)
  2728. BUG();
  2729. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  2730. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2731. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2732. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2733. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2734. pol->sadb_x_policy_reserved = 0;
  2735. pol->sadb_x_policy_id = xp->index;
  2736. pol->sadb_x_policy_priority = xp->priority;
  2737. /* Set sadb_comb's. */
  2738. if (x->id.proto == IPPROTO_AH)
  2739. dump_ah_combs(skb, t);
  2740. else if (x->id.proto == IPPROTO_ESP)
  2741. dump_esp_combs(skb, t);
  2742. /* security context */
  2743. if (xfrm_ctx) {
  2744. sec_ctx = skb_put(skb,
  2745. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2746. sec_ctx->sadb_x_sec_len =
  2747. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2748. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2749. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2750. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2751. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2752. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2753. xfrm_ctx->ctx_len);
  2754. }
  2755. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2756. xs_net(x));
  2757. }
  2758. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2759. u8 *data, int len, int *dir)
  2760. {
  2761. struct net *net = sock_net(sk);
  2762. struct xfrm_policy *xp;
  2763. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2764. struct sadb_x_sec_ctx *sec_ctx;
  2765. switch (sk->sk_family) {
  2766. case AF_INET:
  2767. if (opt != IP_IPSEC_POLICY) {
  2768. *dir = -EOPNOTSUPP;
  2769. return NULL;
  2770. }
  2771. break;
  2772. #if IS_ENABLED(CONFIG_IPV6)
  2773. case AF_INET6:
  2774. if (opt != IPV6_IPSEC_POLICY) {
  2775. *dir = -EOPNOTSUPP;
  2776. return NULL;
  2777. }
  2778. break;
  2779. #endif
  2780. default:
  2781. *dir = -EINVAL;
  2782. return NULL;
  2783. }
  2784. *dir = -EINVAL;
  2785. if (len < sizeof(struct sadb_x_policy) ||
  2786. pol->sadb_x_policy_len*8 > len ||
  2787. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2788. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2789. return NULL;
  2790. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2791. if (xp == NULL) {
  2792. *dir = -ENOBUFS;
  2793. return NULL;
  2794. }
  2795. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2796. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2797. xp->lft.soft_byte_limit = XFRM_INF;
  2798. xp->lft.hard_byte_limit = XFRM_INF;
  2799. xp->lft.soft_packet_limit = XFRM_INF;
  2800. xp->lft.hard_packet_limit = XFRM_INF;
  2801. xp->family = sk->sk_family;
  2802. xp->xfrm_nr = 0;
  2803. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2804. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2805. goto out;
  2806. /* security context too */
  2807. if (len >= (pol->sadb_x_policy_len*8 +
  2808. sizeof(struct sadb_x_sec_ctx))) {
  2809. char *p = (char *)pol;
  2810. struct xfrm_user_sec_ctx *uctx;
  2811. p += pol->sadb_x_policy_len*8;
  2812. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2813. if (len < pol->sadb_x_policy_len*8 +
  2814. sec_ctx->sadb_x_sec_len*8) {
  2815. *dir = -EINVAL;
  2816. goto out;
  2817. }
  2818. if ((*dir = verify_sec_ctx_len(p)))
  2819. goto out;
  2820. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2821. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2822. kfree(uctx);
  2823. if (*dir)
  2824. goto out;
  2825. }
  2826. *dir = pol->sadb_x_policy_dir-1;
  2827. return xp;
  2828. out:
  2829. xp->walk.dead = 1;
  2830. xfrm_policy_destroy(xp);
  2831. return NULL;
  2832. }
  2833. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2834. {
  2835. struct sk_buff *skb;
  2836. struct sadb_msg *hdr;
  2837. struct sadb_sa *sa;
  2838. struct sadb_address *addr;
  2839. struct sadb_x_nat_t_port *n_port;
  2840. int sockaddr_size;
  2841. int size;
  2842. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2843. struct xfrm_encap_tmpl *natt = NULL;
  2844. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2845. if (!sockaddr_size)
  2846. return -EINVAL;
  2847. if (!satype)
  2848. return -EINVAL;
  2849. if (!x->encap)
  2850. return -EINVAL;
  2851. natt = x->encap;
  2852. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2853. *
  2854. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2855. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2856. */
  2857. size = sizeof(struct sadb_msg) +
  2858. sizeof(struct sadb_sa) +
  2859. (sizeof(struct sadb_address) * 2) +
  2860. (sockaddr_size * 2) +
  2861. (sizeof(struct sadb_x_nat_t_port) * 2);
  2862. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2863. if (skb == NULL)
  2864. return -ENOMEM;
  2865. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2866. hdr->sadb_msg_version = PF_KEY_V2;
  2867. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2868. hdr->sadb_msg_satype = satype;
  2869. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2870. hdr->sadb_msg_errno = 0;
  2871. hdr->sadb_msg_reserved = 0;
  2872. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2873. hdr->sadb_msg_pid = 0;
  2874. /* SA */
  2875. sa = skb_put(skb, sizeof(struct sadb_sa));
  2876. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2877. sa->sadb_sa_exttype = SADB_EXT_SA;
  2878. sa->sadb_sa_spi = x->id.spi;
  2879. sa->sadb_sa_replay = 0;
  2880. sa->sadb_sa_state = 0;
  2881. sa->sadb_sa_auth = 0;
  2882. sa->sadb_sa_encrypt = 0;
  2883. sa->sadb_sa_flags = 0;
  2884. /* ADDRESS_SRC (old addr) */
  2885. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2886. addr->sadb_address_len =
  2887. (sizeof(struct sadb_address)+sockaddr_size)/
  2888. sizeof(uint64_t);
  2889. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2890. addr->sadb_address_proto = 0;
  2891. addr->sadb_address_reserved = 0;
  2892. addr->sadb_address_prefixlen =
  2893. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2894. (struct sockaddr *) (addr + 1),
  2895. x->props.family);
  2896. if (!addr->sadb_address_prefixlen)
  2897. BUG();
  2898. /* NAT_T_SPORT (old port) */
  2899. n_port = skb_put(skb, sizeof(*n_port));
  2900. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2901. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2902. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2903. n_port->sadb_x_nat_t_port_reserved = 0;
  2904. /* ADDRESS_DST (new addr) */
  2905. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2906. addr->sadb_address_len =
  2907. (sizeof(struct sadb_address)+sockaddr_size)/
  2908. sizeof(uint64_t);
  2909. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2910. addr->sadb_address_proto = 0;
  2911. addr->sadb_address_reserved = 0;
  2912. addr->sadb_address_prefixlen =
  2913. pfkey_sockaddr_fill(ipaddr, 0,
  2914. (struct sockaddr *) (addr + 1),
  2915. x->props.family);
  2916. if (!addr->sadb_address_prefixlen)
  2917. BUG();
  2918. /* NAT_T_DPORT (new port) */
  2919. n_port = skb_put(skb, sizeof(*n_port));
  2920. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2921. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2922. n_port->sadb_x_nat_t_port_port = sport;
  2923. n_port->sadb_x_nat_t_port_reserved = 0;
  2924. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2925. xs_net(x));
  2926. }
  2927. #ifdef CONFIG_NET_KEY_MIGRATE
  2928. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2929. const struct xfrm_selector *sel)
  2930. {
  2931. struct sadb_address *addr;
  2932. addr = skb_put(skb, sizeof(struct sadb_address) + sasize);
  2933. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2934. addr->sadb_address_exttype = type;
  2935. addr->sadb_address_proto = sel->proto;
  2936. addr->sadb_address_reserved = 0;
  2937. switch (type) {
  2938. case SADB_EXT_ADDRESS_SRC:
  2939. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2940. pfkey_sockaddr_fill(&sel->saddr, 0,
  2941. (struct sockaddr *)(addr + 1),
  2942. sel->family);
  2943. break;
  2944. case SADB_EXT_ADDRESS_DST:
  2945. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2946. pfkey_sockaddr_fill(&sel->daddr, 0,
  2947. (struct sockaddr *)(addr + 1),
  2948. sel->family);
  2949. break;
  2950. default:
  2951. return -EINVAL;
  2952. }
  2953. return 0;
  2954. }
  2955. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2956. {
  2957. struct sadb_x_kmaddress *kma;
  2958. u8 *sa;
  2959. int family = k->family;
  2960. int socklen = pfkey_sockaddr_len(family);
  2961. int size_req;
  2962. size_req = (sizeof(struct sadb_x_kmaddress) +
  2963. pfkey_sockaddr_pair_size(family));
  2964. kma = skb_put_zero(skb, size_req);
  2965. kma->sadb_x_kmaddress_len = size_req / 8;
  2966. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2967. kma->sadb_x_kmaddress_reserved = k->reserved;
  2968. sa = (u8 *)(kma + 1);
  2969. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2970. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2971. return -EINVAL;
  2972. return 0;
  2973. }
  2974. static int set_ipsecrequest(struct sk_buff *skb,
  2975. uint8_t proto, uint8_t mode, int level,
  2976. uint32_t reqid, uint8_t family,
  2977. const xfrm_address_t *src, const xfrm_address_t *dst)
  2978. {
  2979. struct sadb_x_ipsecrequest *rq;
  2980. u8 *sa;
  2981. int socklen = pfkey_sockaddr_len(family);
  2982. int size_req;
  2983. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2984. pfkey_sockaddr_pair_size(family);
  2985. rq = skb_put_zero(skb, size_req);
  2986. rq->sadb_x_ipsecrequest_len = size_req;
  2987. rq->sadb_x_ipsecrequest_proto = proto;
  2988. rq->sadb_x_ipsecrequest_mode = mode;
  2989. rq->sadb_x_ipsecrequest_level = level;
  2990. rq->sadb_x_ipsecrequest_reqid = reqid;
  2991. sa = (u8 *) (rq + 1);
  2992. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2993. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2994. return -EINVAL;
  2995. return 0;
  2996. }
  2997. #endif
  2998. #ifdef CONFIG_NET_KEY_MIGRATE
  2999. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3000. const struct xfrm_migrate *m, int num_bundles,
  3001. const struct xfrm_kmaddress *k,
  3002. const struct xfrm_encap_tmpl *encap)
  3003. {
  3004. int i;
  3005. int sasize_sel;
  3006. int size = 0;
  3007. int size_pol = 0;
  3008. struct sk_buff *skb;
  3009. struct sadb_msg *hdr;
  3010. struct sadb_x_policy *pol;
  3011. const struct xfrm_migrate *mp;
  3012. if (type != XFRM_POLICY_TYPE_MAIN)
  3013. return 0;
  3014. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3015. return -EINVAL;
  3016. if (k != NULL) {
  3017. /* addresses for KM */
  3018. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  3019. pfkey_sockaddr_pair_size(k->family));
  3020. }
  3021. /* selector */
  3022. sasize_sel = pfkey_sockaddr_size(sel->family);
  3023. if (!sasize_sel)
  3024. return -EINVAL;
  3025. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3026. /* policy info */
  3027. size_pol += sizeof(struct sadb_x_policy);
  3028. /* ipsecrequests */
  3029. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3030. /* old locator pair */
  3031. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3032. pfkey_sockaddr_pair_size(mp->old_family);
  3033. /* new locator pair */
  3034. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3035. pfkey_sockaddr_pair_size(mp->new_family);
  3036. }
  3037. size += sizeof(struct sadb_msg) + size_pol;
  3038. /* alloc buffer */
  3039. skb = alloc_skb(size, GFP_ATOMIC);
  3040. if (skb == NULL)
  3041. return -ENOMEM;
  3042. hdr = skb_put(skb, sizeof(struct sadb_msg));
  3043. hdr->sadb_msg_version = PF_KEY_V2;
  3044. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3045. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3046. hdr->sadb_msg_len = size / 8;
  3047. hdr->sadb_msg_errno = 0;
  3048. hdr->sadb_msg_reserved = 0;
  3049. hdr->sadb_msg_seq = 0;
  3050. hdr->sadb_msg_pid = 0;
  3051. /* Addresses to be used by KM for negotiation, if ext is available */
  3052. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3053. goto err;
  3054. /* selector src */
  3055. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3056. /* selector dst */
  3057. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3058. /* policy information */
  3059. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  3060. pol->sadb_x_policy_len = size_pol / 8;
  3061. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3062. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3063. pol->sadb_x_policy_dir = dir + 1;
  3064. pol->sadb_x_policy_reserved = 0;
  3065. pol->sadb_x_policy_id = 0;
  3066. pol->sadb_x_policy_priority = 0;
  3067. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3068. /* old ipsecrequest */
  3069. int mode = pfkey_mode_from_xfrm(mp->mode);
  3070. if (mode < 0)
  3071. goto err;
  3072. if (set_ipsecrequest(skb, mp->proto, mode,
  3073. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3074. mp->reqid, mp->old_family,
  3075. &mp->old_saddr, &mp->old_daddr) < 0)
  3076. goto err;
  3077. /* new ipsecrequest */
  3078. if (set_ipsecrequest(skb, mp->proto, mode,
  3079. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3080. mp->reqid, mp->new_family,
  3081. &mp->new_saddr, &mp->new_daddr) < 0)
  3082. goto err;
  3083. }
  3084. /* broadcast migrate message to sockets */
  3085. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3086. return 0;
  3087. err:
  3088. kfree_skb(skb);
  3089. return -EINVAL;
  3090. }
  3091. #else
  3092. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3093. const struct xfrm_migrate *m, int num_bundles,
  3094. const struct xfrm_kmaddress *k,
  3095. const struct xfrm_encap_tmpl *encap)
  3096. {
  3097. return -ENOPROTOOPT;
  3098. }
  3099. #endif
  3100. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3101. {
  3102. struct sock *sk = sock->sk;
  3103. struct sk_buff *skb = NULL;
  3104. struct sadb_msg *hdr = NULL;
  3105. int err;
  3106. struct net *net = sock_net(sk);
  3107. err = -EOPNOTSUPP;
  3108. if (msg->msg_flags & MSG_OOB)
  3109. goto out;
  3110. err = -EMSGSIZE;
  3111. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3112. goto out;
  3113. err = -ENOBUFS;
  3114. skb = alloc_skb(len, GFP_KERNEL);
  3115. if (skb == NULL)
  3116. goto out;
  3117. err = -EFAULT;
  3118. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3119. goto out;
  3120. hdr = pfkey_get_base_msg(skb, &err);
  3121. if (!hdr)
  3122. goto out;
  3123. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3124. err = pfkey_process(sk, skb, hdr);
  3125. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3126. out:
  3127. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3128. err = 0;
  3129. kfree_skb(skb);
  3130. return err ? : len;
  3131. }
  3132. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3133. int flags)
  3134. {
  3135. struct sock *sk = sock->sk;
  3136. struct pfkey_sock *pfk = pfkey_sk(sk);
  3137. struct sk_buff *skb;
  3138. int copied, err;
  3139. err = -EINVAL;
  3140. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3141. goto out;
  3142. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3143. if (skb == NULL)
  3144. goto out;
  3145. copied = skb->len;
  3146. if (copied > len) {
  3147. msg->msg_flags |= MSG_TRUNC;
  3148. copied = len;
  3149. }
  3150. skb_reset_transport_header(skb);
  3151. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3152. if (err)
  3153. goto out_free;
  3154. sock_recv_ts_and_drops(msg, sk, skb);
  3155. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3156. if (pfk->dump.dump != NULL &&
  3157. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3158. pfkey_do_dump(pfk);
  3159. out_free:
  3160. skb_free_datagram(sk, skb);
  3161. out:
  3162. return err;
  3163. }
  3164. static const struct proto_ops pfkey_ops = {
  3165. .family = PF_KEY,
  3166. .owner = THIS_MODULE,
  3167. /* Operations that make no sense on pfkey sockets. */
  3168. .bind = sock_no_bind,
  3169. .connect = sock_no_connect,
  3170. .socketpair = sock_no_socketpair,
  3171. .accept = sock_no_accept,
  3172. .getname = sock_no_getname,
  3173. .ioctl = sock_no_ioctl,
  3174. .listen = sock_no_listen,
  3175. .shutdown = sock_no_shutdown,
  3176. .mmap = sock_no_mmap,
  3177. .sendpage = sock_no_sendpage,
  3178. /* Now the operations that really occur. */
  3179. .release = pfkey_release,
  3180. .poll = datagram_poll,
  3181. .sendmsg = pfkey_sendmsg,
  3182. .recvmsg = pfkey_recvmsg,
  3183. };
  3184. static const struct net_proto_family pfkey_family_ops = {
  3185. .family = PF_KEY,
  3186. .create = pfkey_create,
  3187. .owner = THIS_MODULE,
  3188. };
  3189. #ifdef CONFIG_PROC_FS
  3190. static int pfkey_seq_show(struct seq_file *f, void *v)
  3191. {
  3192. struct sock *s = sk_entry(v);
  3193. if (v == SEQ_START_TOKEN)
  3194. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3195. else
  3196. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3197. s,
  3198. refcount_read(&s->sk_refcnt),
  3199. sk_rmem_alloc_get(s),
  3200. sk_wmem_alloc_get(s),
  3201. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3202. sock_i_ino(s)
  3203. );
  3204. return 0;
  3205. }
  3206. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3207. __acquires(rcu)
  3208. {
  3209. struct net *net = seq_file_net(f);
  3210. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3211. rcu_read_lock();
  3212. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3213. }
  3214. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3215. {
  3216. struct net *net = seq_file_net(f);
  3217. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3218. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3219. }
  3220. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3221. __releases(rcu)
  3222. {
  3223. rcu_read_unlock();
  3224. }
  3225. static const struct seq_operations pfkey_seq_ops = {
  3226. .start = pfkey_seq_start,
  3227. .next = pfkey_seq_next,
  3228. .stop = pfkey_seq_stop,
  3229. .show = pfkey_seq_show,
  3230. };
  3231. static int __net_init pfkey_init_proc(struct net *net)
  3232. {
  3233. struct proc_dir_entry *e;
  3234. e = proc_create_net("pfkey", 0, net->proc_net, &pfkey_seq_ops,
  3235. sizeof(struct seq_net_private));
  3236. if (e == NULL)
  3237. return -ENOMEM;
  3238. return 0;
  3239. }
  3240. static void __net_exit pfkey_exit_proc(struct net *net)
  3241. {
  3242. remove_proc_entry("pfkey", net->proc_net);
  3243. }
  3244. #else
  3245. static inline int pfkey_init_proc(struct net *net)
  3246. {
  3247. return 0;
  3248. }
  3249. static inline void pfkey_exit_proc(struct net *net)
  3250. {
  3251. }
  3252. #endif
  3253. static struct xfrm_mgr pfkeyv2_mgr =
  3254. {
  3255. .notify = pfkey_send_notify,
  3256. .acquire = pfkey_send_acquire,
  3257. .compile_policy = pfkey_compile_policy,
  3258. .new_mapping = pfkey_send_new_mapping,
  3259. .notify_policy = pfkey_send_policy_notify,
  3260. .migrate = pfkey_send_migrate,
  3261. .is_alive = pfkey_is_alive,
  3262. };
  3263. static int __net_init pfkey_net_init(struct net *net)
  3264. {
  3265. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3266. int rv;
  3267. INIT_HLIST_HEAD(&net_pfkey->table);
  3268. atomic_set(&net_pfkey->socks_nr, 0);
  3269. rv = pfkey_init_proc(net);
  3270. return rv;
  3271. }
  3272. static void __net_exit pfkey_net_exit(struct net *net)
  3273. {
  3274. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3275. pfkey_exit_proc(net);
  3276. WARN_ON(!hlist_empty(&net_pfkey->table));
  3277. }
  3278. static struct pernet_operations pfkey_net_ops = {
  3279. .init = pfkey_net_init,
  3280. .exit = pfkey_net_exit,
  3281. .id = &pfkey_net_id,
  3282. .size = sizeof(struct netns_pfkey),
  3283. };
  3284. static void __exit ipsec_pfkey_exit(void)
  3285. {
  3286. xfrm_unregister_km(&pfkeyv2_mgr);
  3287. sock_unregister(PF_KEY);
  3288. unregister_pernet_subsys(&pfkey_net_ops);
  3289. proto_unregister(&key_proto);
  3290. }
  3291. static int __init ipsec_pfkey_init(void)
  3292. {
  3293. int err = proto_register(&key_proto, 0);
  3294. if (err != 0)
  3295. goto out;
  3296. err = register_pernet_subsys(&pfkey_net_ops);
  3297. if (err != 0)
  3298. goto out_unregister_key_proto;
  3299. err = sock_register(&pfkey_family_ops);
  3300. if (err != 0)
  3301. goto out_unregister_pernet;
  3302. err = xfrm_register_km(&pfkeyv2_mgr);
  3303. if (err != 0)
  3304. goto out_sock_unregister;
  3305. out:
  3306. return err;
  3307. out_sock_unregister:
  3308. sock_unregister(PF_KEY);
  3309. out_unregister_pernet:
  3310. unregister_pernet_subsys(&pfkey_net_ops);
  3311. out_unregister_key_proto:
  3312. proto_unregister(&key_proto);
  3313. goto out;
  3314. }
  3315. module_init(ipsec_pfkey_init);
  3316. module_exit(ipsec_pfkey_exit);
  3317. MODULE_LICENSE("GPL");
  3318. MODULE_ALIAS_NETPROTO(PF_KEY);