file.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/file.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/f2fs_fs.h>
  10. #include <linux/stat.h>
  11. #include <linux/buffer_head.h>
  12. #include <linux/writeback.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/falloc.h>
  15. #include <linux/types.h>
  16. #include <linux/compat.h>
  17. #include <linux/uaccess.h>
  18. #include <linux/mount.h>
  19. #include <linux/pagevec.h>
  20. #include <linux/uio.h>
  21. #include <linux/uuid.h>
  22. #include <linux/file.h>
  23. #include <linux/nls.h>
  24. #include <linux/sched/signal.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "xattr.h"
  29. #include "acl.h"
  30. #include "gc.h"
  31. #include <trace/events/f2fs.h>
  32. #include <uapi/linux/f2fs.h>
  33. static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  34. {
  35. struct inode *inode = file_inode(vmf->vma->vm_file);
  36. vm_fault_t ret;
  37. f2fs_down_read(&F2FS_I(inode)->i_mmap_sem);
  38. ret = filemap_fault(vmf);
  39. f2fs_up_read(&F2FS_I(inode)->i_mmap_sem);
  40. if (!ret)
  41. f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
  42. F2FS_BLKSIZE);
  43. trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
  44. return ret;
  45. }
  46. static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  47. {
  48. struct page *page = vmf->page;
  49. struct inode *inode = file_inode(vmf->vma->vm_file);
  50. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  51. struct dnode_of_data dn;
  52. bool need_alloc = true;
  53. int err = 0;
  54. if (unlikely(IS_IMMUTABLE(inode)))
  55. return VM_FAULT_SIGBUS;
  56. if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
  57. return VM_FAULT_SIGBUS;
  58. if (unlikely(f2fs_cp_error(sbi))) {
  59. err = -EIO;
  60. goto err;
  61. }
  62. if (!f2fs_is_checkpoint_ready(sbi)) {
  63. err = -ENOSPC;
  64. goto err;
  65. }
  66. err = f2fs_convert_inline_inode(inode);
  67. if (err)
  68. goto err;
  69. #ifdef CONFIG_F2FS_FS_COMPRESSION
  70. if (f2fs_compressed_file(inode)) {
  71. int ret = f2fs_is_compressed_cluster(inode, page->index);
  72. if (ret < 0) {
  73. err = ret;
  74. goto err;
  75. } else if (ret) {
  76. need_alloc = false;
  77. }
  78. }
  79. #endif
  80. /* should do out of any locked page */
  81. if (need_alloc)
  82. f2fs_balance_fs(sbi, true);
  83. sb_start_pagefault(inode->i_sb);
  84. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  85. file_update_time(vmf->vma->vm_file);
  86. f2fs_down_read(&F2FS_I(inode)->i_mmap_sem);
  87. lock_page(page);
  88. if (unlikely(page->mapping != inode->i_mapping ||
  89. page_offset(page) > i_size_read(inode) ||
  90. !PageUptodate(page))) {
  91. unlock_page(page);
  92. err = -EFAULT;
  93. goto out_sem;
  94. }
  95. if (need_alloc) {
  96. /* block allocation */
  97. f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  98. set_new_dnode(&dn, inode, NULL, NULL, 0);
  99. err = f2fs_get_block(&dn, page->index);
  100. f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  101. }
  102. #ifdef CONFIG_F2FS_FS_COMPRESSION
  103. if (!need_alloc) {
  104. set_new_dnode(&dn, inode, NULL, NULL, 0);
  105. err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  106. f2fs_put_dnode(&dn);
  107. }
  108. #endif
  109. if (err) {
  110. unlock_page(page);
  111. goto out_sem;
  112. }
  113. f2fs_wait_on_page_writeback(page, DATA, false, true);
  114. /* wait for GCed page writeback via META_MAPPING */
  115. f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
  116. /*
  117. * check to see if the page is mapped already (no holes)
  118. */
  119. if (PageMappedToDisk(page))
  120. goto out_sem;
  121. /* page is wholly or partially inside EOF */
  122. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  123. i_size_read(inode)) {
  124. loff_t offset;
  125. offset = i_size_read(inode) & ~PAGE_MASK;
  126. zero_user_segment(page, offset, PAGE_SIZE);
  127. }
  128. set_page_dirty(page);
  129. if (!PageUptodate(page))
  130. SetPageUptodate(page);
  131. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  132. f2fs_update_time(sbi, REQ_TIME);
  133. trace_f2fs_vm_page_mkwrite(page, DATA);
  134. out_sem:
  135. f2fs_up_read(&F2FS_I(inode)->i_mmap_sem);
  136. sb_end_pagefault(inode->i_sb);
  137. err:
  138. return block_page_mkwrite_return(err);
  139. }
  140. static const struct vm_operations_struct f2fs_file_vm_ops = {
  141. .fault = f2fs_filemap_fault,
  142. .map_pages = filemap_map_pages,
  143. .page_mkwrite = f2fs_vm_page_mkwrite,
  144. #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
  145. .allow_speculation = filemap_allow_speculation,
  146. #endif
  147. };
  148. static int get_parent_ino(struct inode *inode, nid_t *pino)
  149. {
  150. struct dentry *dentry;
  151. /*
  152. * Make sure to get the non-deleted alias. The alias associated with
  153. * the open file descriptor being fsync()'ed may be deleted already.
  154. */
  155. dentry = d_find_alias(inode);
  156. if (!dentry)
  157. return 0;
  158. *pino = parent_ino(dentry);
  159. dput(dentry);
  160. return 1;
  161. }
  162. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  163. {
  164. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  165. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  166. if (!S_ISREG(inode->i_mode))
  167. cp_reason = CP_NON_REGULAR;
  168. else if (f2fs_compressed_file(inode))
  169. cp_reason = CP_COMPRESSED;
  170. else if (inode->i_nlink != 1)
  171. cp_reason = CP_HARDLINK;
  172. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  173. cp_reason = CP_SB_NEED_CP;
  174. else if (file_wrong_pino(inode))
  175. cp_reason = CP_WRONG_PINO;
  176. else if (!f2fs_space_for_roll_forward(sbi))
  177. cp_reason = CP_NO_SPC_ROLL;
  178. else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  179. cp_reason = CP_NODE_NEED_CP;
  180. else if (test_opt(sbi, FASTBOOT))
  181. cp_reason = CP_FASTBOOT_MODE;
  182. else if (F2FS_OPTION(sbi).active_logs == 2)
  183. cp_reason = CP_SPEC_LOG_NUM;
  184. else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
  185. f2fs_need_dentry_mark(sbi, inode->i_ino) &&
  186. f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
  187. TRANS_DIR_INO))
  188. cp_reason = CP_RECOVER_DIR;
  189. return cp_reason;
  190. }
  191. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  192. {
  193. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  194. bool ret = false;
  195. /* But we need to avoid that there are some inode updates */
  196. if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
  197. ret = true;
  198. f2fs_put_page(i, 0);
  199. return ret;
  200. }
  201. static void try_to_fix_pino(struct inode *inode)
  202. {
  203. struct f2fs_inode_info *fi = F2FS_I(inode);
  204. nid_t pino;
  205. f2fs_down_write(&fi->i_sem);
  206. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  207. get_parent_ino(inode, &pino)) {
  208. f2fs_i_pino_write(inode, pino);
  209. file_got_pino(inode);
  210. }
  211. f2fs_up_write(&fi->i_sem);
  212. }
  213. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  214. int datasync, bool atomic)
  215. {
  216. struct inode *inode = file->f_mapping->host;
  217. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  218. nid_t ino = inode->i_ino;
  219. int ret = 0;
  220. enum cp_reason_type cp_reason = 0;
  221. struct writeback_control wbc = {
  222. .sync_mode = WB_SYNC_ALL,
  223. .nr_to_write = LONG_MAX,
  224. .for_reclaim = 0,
  225. };
  226. unsigned int seq_id = 0;
  227. if (unlikely(f2fs_readonly(inode->i_sb)))
  228. return 0;
  229. trace_f2fs_sync_file_enter(inode);
  230. if (S_ISDIR(inode->i_mode))
  231. goto go_write;
  232. /* if fdatasync is triggered, let's do in-place-update */
  233. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  234. set_inode_flag(inode, FI_NEED_IPU);
  235. ret = file_write_and_wait_range(file, start, end);
  236. clear_inode_flag(inode, FI_NEED_IPU);
  237. if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
  238. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  239. return ret;
  240. }
  241. /* if the inode is dirty, let's recover all the time */
  242. if (!f2fs_skip_inode_update(inode, datasync)) {
  243. f2fs_write_inode(inode, NULL);
  244. goto go_write;
  245. }
  246. /*
  247. * if there is no written data, don't waste time to write recovery info.
  248. */
  249. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  250. !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
  251. /* it may call write_inode just prior to fsync */
  252. if (need_inode_page_update(sbi, ino))
  253. goto go_write;
  254. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  255. f2fs_exist_written_data(sbi, ino, UPDATE_INO))
  256. goto flush_out;
  257. goto out;
  258. }
  259. go_write:
  260. /*
  261. * Both of fdatasync() and fsync() are able to be recovered from
  262. * sudden-power-off.
  263. */
  264. f2fs_down_read(&F2FS_I(inode)->i_sem);
  265. cp_reason = need_do_checkpoint(inode);
  266. f2fs_up_read(&F2FS_I(inode)->i_sem);
  267. if (cp_reason) {
  268. /* all the dirty node pages should be flushed for POR */
  269. ret = f2fs_sync_fs(inode->i_sb, 1);
  270. /*
  271. * We've secured consistency through sync_fs. Following pino
  272. * will be used only for fsynced inodes after checkpoint.
  273. */
  274. try_to_fix_pino(inode);
  275. clear_inode_flag(inode, FI_APPEND_WRITE);
  276. clear_inode_flag(inode, FI_UPDATE_WRITE);
  277. goto out;
  278. }
  279. sync_nodes:
  280. atomic_inc(&sbi->wb_sync_req[NODE]);
  281. ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
  282. atomic_dec(&sbi->wb_sync_req[NODE]);
  283. if (ret)
  284. goto out;
  285. /* if cp_error was enabled, we should avoid infinite loop */
  286. if (unlikely(f2fs_cp_error(sbi))) {
  287. ret = -EIO;
  288. goto out;
  289. }
  290. if (f2fs_need_inode_block_update(sbi, ino)) {
  291. f2fs_mark_inode_dirty_sync(inode, true);
  292. f2fs_write_inode(inode, NULL);
  293. goto sync_nodes;
  294. }
  295. /*
  296. * If it's atomic_write, it's just fine to keep write ordering. So
  297. * here we don't need to wait for node write completion, since we use
  298. * node chain which serializes node blocks. If one of node writes are
  299. * reordered, we can see simply broken chain, resulting in stopping
  300. * roll-forward recovery. It means we'll recover all or none node blocks
  301. * given fsync mark.
  302. */
  303. if (!atomic) {
  304. ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
  305. if (ret)
  306. goto out;
  307. }
  308. /* once recovery info is written, don't need to tack this */
  309. f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
  310. clear_inode_flag(inode, FI_APPEND_WRITE);
  311. flush_out:
  312. if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
  313. ret = f2fs_issue_flush(sbi, inode->i_ino);
  314. if (!ret) {
  315. f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
  316. clear_inode_flag(inode, FI_UPDATE_WRITE);
  317. f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
  318. }
  319. f2fs_update_time(sbi, REQ_TIME);
  320. out:
  321. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  322. return ret;
  323. }
  324. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  325. {
  326. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  327. return -EIO;
  328. return f2fs_do_sync_file(file, start, end, datasync, false);
  329. }
  330. static bool __found_offset(struct address_space *mapping, block_t blkaddr,
  331. pgoff_t index, int whence)
  332. {
  333. switch (whence) {
  334. case SEEK_DATA:
  335. if (__is_valid_data_blkaddr(blkaddr))
  336. return true;
  337. if (blkaddr == NEW_ADDR &&
  338. xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
  339. return true;
  340. break;
  341. case SEEK_HOLE:
  342. if (blkaddr == NULL_ADDR)
  343. return true;
  344. break;
  345. }
  346. return false;
  347. }
  348. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  349. {
  350. struct inode *inode = file->f_mapping->host;
  351. loff_t maxbytes = inode->i_sb->s_maxbytes;
  352. struct dnode_of_data dn;
  353. pgoff_t pgofs, end_offset;
  354. loff_t data_ofs = offset;
  355. loff_t isize;
  356. int err = 0;
  357. inode_lock(inode);
  358. isize = i_size_read(inode);
  359. if (offset >= isize)
  360. goto fail;
  361. /* handle inline data case */
  362. if (f2fs_has_inline_data(inode)) {
  363. if (whence == SEEK_HOLE) {
  364. data_ofs = isize;
  365. goto found;
  366. } else if (whence == SEEK_DATA) {
  367. data_ofs = offset;
  368. goto found;
  369. }
  370. }
  371. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  372. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  373. set_new_dnode(&dn, inode, NULL, NULL, 0);
  374. err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  375. if (err && err != -ENOENT) {
  376. goto fail;
  377. } else if (err == -ENOENT) {
  378. /* direct node does not exists */
  379. if (whence == SEEK_DATA) {
  380. pgofs = f2fs_get_next_page_offset(&dn, pgofs);
  381. continue;
  382. } else {
  383. goto found;
  384. }
  385. }
  386. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  387. /* find data/hole in dnode block */
  388. for (; dn.ofs_in_node < end_offset;
  389. dn.ofs_in_node++, pgofs++,
  390. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  391. block_t blkaddr;
  392. blkaddr = f2fs_data_blkaddr(&dn);
  393. if (__is_valid_data_blkaddr(blkaddr) &&
  394. !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
  395. blkaddr, DATA_GENERIC_ENHANCE)) {
  396. f2fs_put_dnode(&dn);
  397. goto fail;
  398. }
  399. if (__found_offset(file->f_mapping, blkaddr,
  400. pgofs, whence)) {
  401. f2fs_put_dnode(&dn);
  402. goto found;
  403. }
  404. }
  405. f2fs_put_dnode(&dn);
  406. }
  407. if (whence == SEEK_DATA)
  408. goto fail;
  409. found:
  410. if (whence == SEEK_HOLE && data_ofs > isize)
  411. data_ofs = isize;
  412. inode_unlock(inode);
  413. return vfs_setpos(file, data_ofs, maxbytes);
  414. fail:
  415. inode_unlock(inode);
  416. return -ENXIO;
  417. }
  418. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  419. {
  420. struct inode *inode = file->f_mapping->host;
  421. loff_t maxbytes = inode->i_sb->s_maxbytes;
  422. if (f2fs_compressed_file(inode))
  423. maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
  424. switch (whence) {
  425. case SEEK_SET:
  426. case SEEK_CUR:
  427. case SEEK_END:
  428. return generic_file_llseek_size(file, offset, whence,
  429. maxbytes, i_size_read(inode));
  430. case SEEK_DATA:
  431. case SEEK_HOLE:
  432. if (offset < 0)
  433. return -ENXIO;
  434. return f2fs_seek_block(file, offset, whence);
  435. }
  436. return -EINVAL;
  437. }
  438. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  439. {
  440. struct inode *inode = file_inode(file);
  441. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  442. return -EIO;
  443. if (!f2fs_is_compress_backend_ready(inode))
  444. return -EOPNOTSUPP;
  445. file_accessed(file);
  446. vma->vm_ops = &f2fs_file_vm_ops;
  447. set_inode_flag(inode, FI_MMAP_FILE);
  448. return 0;
  449. }
  450. static int f2fs_file_open(struct inode *inode, struct file *filp)
  451. {
  452. int err = fscrypt_file_open(inode, filp);
  453. if (err)
  454. return err;
  455. if (!f2fs_is_compress_backend_ready(inode))
  456. return -EOPNOTSUPP;
  457. err = fsverity_file_open(inode, filp);
  458. if (err)
  459. return err;
  460. filp->f_mode |= FMODE_NOWAIT;
  461. return dquot_file_open(inode, filp);
  462. }
  463. void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  464. {
  465. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  466. struct f2fs_node *raw_node;
  467. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  468. __le32 *addr;
  469. int base = 0;
  470. bool compressed_cluster = false;
  471. int cluster_index = 0, valid_blocks = 0;
  472. int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
  473. bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
  474. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  475. base = get_extra_isize(dn->inode);
  476. raw_node = F2FS_NODE(dn->node_page);
  477. addr = blkaddr_in_node(raw_node) + base + ofs;
  478. /* Assumption: truncateion starts with cluster */
  479. for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
  480. block_t blkaddr = le32_to_cpu(*addr);
  481. if (f2fs_compressed_file(dn->inode) &&
  482. !(cluster_index & (cluster_size - 1))) {
  483. if (compressed_cluster)
  484. f2fs_i_compr_blocks_update(dn->inode,
  485. valid_blocks, false);
  486. compressed_cluster = (blkaddr == COMPRESS_ADDR);
  487. valid_blocks = 0;
  488. }
  489. if (blkaddr == NULL_ADDR)
  490. continue;
  491. dn->data_blkaddr = NULL_ADDR;
  492. f2fs_set_data_blkaddr(dn);
  493. if (__is_valid_data_blkaddr(blkaddr)) {
  494. if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
  495. DATA_GENERIC_ENHANCE))
  496. continue;
  497. if (compressed_cluster)
  498. valid_blocks++;
  499. }
  500. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  501. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  502. f2fs_invalidate_blocks(sbi, blkaddr);
  503. if (!released || blkaddr != COMPRESS_ADDR)
  504. nr_free++;
  505. }
  506. if (compressed_cluster)
  507. f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
  508. if (nr_free) {
  509. pgoff_t fofs;
  510. /*
  511. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  512. * we will invalidate all blkaddr in the whole range.
  513. */
  514. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
  515. dn->inode) + ofs;
  516. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  517. dec_valid_block_count(sbi, dn->inode, nr_free);
  518. }
  519. dn->ofs_in_node = ofs;
  520. f2fs_update_time(sbi, REQ_TIME);
  521. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  522. dn->ofs_in_node, nr_free);
  523. }
  524. void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
  525. {
  526. f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
  527. }
  528. static int truncate_partial_data_page(struct inode *inode, u64 from,
  529. bool cache_only)
  530. {
  531. loff_t offset = from & (PAGE_SIZE - 1);
  532. pgoff_t index = from >> PAGE_SHIFT;
  533. struct address_space *mapping = inode->i_mapping;
  534. struct page *page;
  535. if (!offset && !cache_only)
  536. return 0;
  537. if (cache_only) {
  538. page = find_lock_page(mapping, index);
  539. if (page && PageUptodate(page))
  540. goto truncate_out;
  541. f2fs_put_page(page, 1);
  542. return 0;
  543. }
  544. page = f2fs_get_lock_data_page(inode, index, true);
  545. if (IS_ERR(page))
  546. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  547. truncate_out:
  548. f2fs_wait_on_page_writeback(page, DATA, true, true);
  549. zero_user(page, offset, PAGE_SIZE - offset);
  550. /* An encrypted inode should have a key and truncate the last page. */
  551. f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
  552. if (!cache_only)
  553. set_page_dirty(page);
  554. f2fs_put_page(page, 1);
  555. return 0;
  556. }
  557. int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
  558. {
  559. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  560. struct dnode_of_data dn;
  561. pgoff_t free_from;
  562. int count = 0, err = 0;
  563. struct page *ipage;
  564. bool truncate_page = false;
  565. trace_f2fs_truncate_blocks_enter(inode, from);
  566. free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
  567. if (free_from >= max_file_blocks(inode))
  568. goto free_partial;
  569. if (lock)
  570. f2fs_lock_op(sbi);
  571. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  572. if (IS_ERR(ipage)) {
  573. err = PTR_ERR(ipage);
  574. goto out;
  575. }
  576. if (f2fs_has_inline_data(inode)) {
  577. f2fs_truncate_inline_inode(inode, ipage, from);
  578. f2fs_put_page(ipage, 1);
  579. truncate_page = true;
  580. goto out;
  581. }
  582. set_new_dnode(&dn, inode, ipage, NULL, 0);
  583. err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  584. if (err) {
  585. if (err == -ENOENT)
  586. goto free_next;
  587. goto out;
  588. }
  589. count = ADDRS_PER_PAGE(dn.node_page, inode);
  590. count -= dn.ofs_in_node;
  591. f2fs_bug_on(sbi, count < 0);
  592. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  593. f2fs_truncate_data_blocks_range(&dn, count);
  594. free_from += count;
  595. }
  596. f2fs_put_dnode(&dn);
  597. free_next:
  598. err = f2fs_truncate_inode_blocks(inode, free_from);
  599. out:
  600. if (lock)
  601. f2fs_unlock_op(sbi);
  602. free_partial:
  603. /* lastly zero out the first data page */
  604. if (!err)
  605. err = truncate_partial_data_page(inode, from, truncate_page);
  606. trace_f2fs_truncate_blocks_exit(inode, err);
  607. return err;
  608. }
  609. int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
  610. {
  611. u64 free_from = from;
  612. int err;
  613. #ifdef CONFIG_F2FS_FS_COMPRESSION
  614. /*
  615. * for compressed file, only support cluster size
  616. * aligned truncation.
  617. */
  618. if (f2fs_compressed_file(inode))
  619. free_from = round_up(from,
  620. F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
  621. #endif
  622. err = f2fs_do_truncate_blocks(inode, free_from, lock);
  623. if (err)
  624. return err;
  625. #ifdef CONFIG_F2FS_FS_COMPRESSION
  626. if (from != free_from) {
  627. err = f2fs_truncate_partial_cluster(inode, from, lock);
  628. if (err)
  629. return err;
  630. }
  631. #endif
  632. return 0;
  633. }
  634. int f2fs_truncate(struct inode *inode)
  635. {
  636. int err;
  637. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  638. return -EIO;
  639. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  640. S_ISLNK(inode->i_mode)))
  641. return 0;
  642. trace_f2fs_truncate(inode);
  643. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  644. f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
  645. return -EIO;
  646. }
  647. err = dquot_initialize(inode);
  648. if (err)
  649. return err;
  650. /* we should check inline_data size */
  651. if (!f2fs_may_inline_data(inode)) {
  652. err = f2fs_convert_inline_inode(inode);
  653. if (err)
  654. return err;
  655. }
  656. err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  657. if (err)
  658. return err;
  659. inode->i_mtime = inode->i_ctime = current_time(inode);
  660. f2fs_mark_inode_dirty_sync(inode, false);
  661. return 0;
  662. }
  663. int f2fs_getattr(const struct path *path, struct kstat *stat,
  664. u32 request_mask, unsigned int query_flags)
  665. {
  666. struct inode *inode = d_inode(path->dentry);
  667. struct f2fs_inode_info *fi = F2FS_I(inode);
  668. struct f2fs_inode *ri;
  669. unsigned int flags;
  670. if (f2fs_has_extra_attr(inode) &&
  671. f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
  672. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  673. stat->result_mask |= STATX_BTIME;
  674. stat->btime.tv_sec = fi->i_crtime.tv_sec;
  675. stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
  676. }
  677. flags = fi->i_flags;
  678. if (flags & F2FS_COMPR_FL)
  679. stat->attributes |= STATX_ATTR_COMPRESSED;
  680. if (flags & F2FS_APPEND_FL)
  681. stat->attributes |= STATX_ATTR_APPEND;
  682. if (IS_ENCRYPTED(inode))
  683. stat->attributes |= STATX_ATTR_ENCRYPTED;
  684. if (flags & F2FS_IMMUTABLE_FL)
  685. stat->attributes |= STATX_ATTR_IMMUTABLE;
  686. if (flags & F2FS_NODUMP_FL)
  687. stat->attributes |= STATX_ATTR_NODUMP;
  688. if (IS_VERITY(inode))
  689. stat->attributes |= STATX_ATTR_VERITY;
  690. stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
  691. STATX_ATTR_APPEND |
  692. STATX_ATTR_ENCRYPTED |
  693. STATX_ATTR_IMMUTABLE |
  694. STATX_ATTR_NODUMP |
  695. STATX_ATTR_VERITY);
  696. generic_fillattr(inode, stat);
  697. /* we need to show initial sectors used for inline_data/dentries */
  698. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  699. f2fs_has_inline_dentry(inode))
  700. stat->blocks += (stat->size + 511) >> 9;
  701. return 0;
  702. }
  703. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  704. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  705. {
  706. unsigned int ia_valid = attr->ia_valid;
  707. if (ia_valid & ATTR_UID)
  708. inode->i_uid = attr->ia_uid;
  709. if (ia_valid & ATTR_GID)
  710. inode->i_gid = attr->ia_gid;
  711. if (ia_valid & ATTR_ATIME)
  712. inode->i_atime = attr->ia_atime;
  713. if (ia_valid & ATTR_MTIME)
  714. inode->i_mtime = attr->ia_mtime;
  715. if (ia_valid & ATTR_CTIME)
  716. inode->i_ctime = attr->ia_ctime;
  717. if (ia_valid & ATTR_MODE) {
  718. umode_t mode = attr->ia_mode;
  719. if (!in_group_p(inode->i_gid) &&
  720. !capable_wrt_inode_uidgid(inode, CAP_FSETID))
  721. mode &= ~S_ISGID;
  722. set_acl_inode(inode, mode);
  723. }
  724. }
  725. #else
  726. #define __setattr_copy setattr_copy
  727. #endif
  728. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  729. {
  730. struct inode *inode = d_inode(dentry);
  731. int err;
  732. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  733. return -EIO;
  734. if (unlikely(IS_IMMUTABLE(inode)))
  735. return -EPERM;
  736. if (unlikely(IS_APPEND(inode) &&
  737. (attr->ia_valid & (ATTR_MODE | ATTR_UID |
  738. ATTR_GID | ATTR_TIMES_SET))))
  739. return -EPERM;
  740. if ((attr->ia_valid & ATTR_SIZE) &&
  741. !f2fs_is_compress_backend_ready(inode))
  742. return -EOPNOTSUPP;
  743. err = setattr_prepare(dentry, attr);
  744. if (err)
  745. return err;
  746. err = fscrypt_prepare_setattr(dentry, attr);
  747. if (err)
  748. return err;
  749. err = fsverity_prepare_setattr(dentry, attr);
  750. if (err)
  751. return err;
  752. if (is_quota_modification(inode, attr)) {
  753. err = dquot_initialize(inode);
  754. if (err)
  755. return err;
  756. }
  757. if ((attr->ia_valid & ATTR_UID &&
  758. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  759. (attr->ia_valid & ATTR_GID &&
  760. !gid_eq(attr->ia_gid, inode->i_gid))) {
  761. f2fs_lock_op(F2FS_I_SB(inode));
  762. err = dquot_transfer(inode, attr);
  763. if (err) {
  764. set_sbi_flag(F2FS_I_SB(inode),
  765. SBI_QUOTA_NEED_REPAIR);
  766. f2fs_unlock_op(F2FS_I_SB(inode));
  767. return err;
  768. }
  769. /*
  770. * update uid/gid under lock_op(), so that dquot and inode can
  771. * be updated atomically.
  772. */
  773. if (attr->ia_valid & ATTR_UID)
  774. inode->i_uid = attr->ia_uid;
  775. if (attr->ia_valid & ATTR_GID)
  776. inode->i_gid = attr->ia_gid;
  777. f2fs_mark_inode_dirty_sync(inode, true);
  778. f2fs_unlock_op(F2FS_I_SB(inode));
  779. }
  780. if (attr->ia_valid & ATTR_SIZE) {
  781. loff_t old_size = i_size_read(inode);
  782. if (attr->ia_size > MAX_INLINE_DATA(inode)) {
  783. /*
  784. * should convert inline inode before i_size_write to
  785. * keep smaller than inline_data size with inline flag.
  786. */
  787. err = f2fs_convert_inline_inode(inode);
  788. if (err)
  789. return err;
  790. }
  791. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  792. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  793. truncate_setsize(inode, attr->ia_size);
  794. if (attr->ia_size <= old_size)
  795. err = f2fs_truncate(inode);
  796. /*
  797. * do not trim all blocks after i_size if target size is
  798. * larger than i_size.
  799. */
  800. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  801. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  802. if (err)
  803. return err;
  804. spin_lock(&F2FS_I(inode)->i_size_lock);
  805. inode->i_mtime = inode->i_ctime = current_time(inode);
  806. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  807. spin_unlock(&F2FS_I(inode)->i_size_lock);
  808. }
  809. __setattr_copy(inode, attr);
  810. if (attr->ia_valid & ATTR_MODE) {
  811. err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
  812. if (is_inode_flag_set(inode, FI_ACL_MODE)) {
  813. if (!err)
  814. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  815. clear_inode_flag(inode, FI_ACL_MODE);
  816. }
  817. }
  818. /* file size may changed here */
  819. f2fs_mark_inode_dirty_sync(inode, true);
  820. /* inode change will produce dirty node pages flushed by checkpoint */
  821. f2fs_balance_fs(F2FS_I_SB(inode), true);
  822. return err;
  823. }
  824. const struct inode_operations f2fs_file_inode_operations = {
  825. .getattr = f2fs_getattr,
  826. .setattr = f2fs_setattr,
  827. .get_acl = f2fs_get_acl,
  828. .set_acl = f2fs_set_acl,
  829. .listxattr = f2fs_listxattr,
  830. .fiemap = f2fs_fiemap,
  831. };
  832. static int fill_zero(struct inode *inode, pgoff_t index,
  833. loff_t start, loff_t len)
  834. {
  835. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  836. struct page *page;
  837. if (!len)
  838. return 0;
  839. f2fs_balance_fs(sbi, true);
  840. f2fs_lock_op(sbi);
  841. page = f2fs_get_new_data_page(inode, NULL, index, false);
  842. f2fs_unlock_op(sbi);
  843. if (IS_ERR(page))
  844. return PTR_ERR(page);
  845. f2fs_wait_on_page_writeback(page, DATA, true, true);
  846. zero_user(page, start, len);
  847. set_page_dirty(page);
  848. f2fs_put_page(page, 1);
  849. return 0;
  850. }
  851. int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  852. {
  853. int err;
  854. while (pg_start < pg_end) {
  855. struct dnode_of_data dn;
  856. pgoff_t end_offset, count;
  857. set_new_dnode(&dn, inode, NULL, NULL, 0);
  858. err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  859. if (err) {
  860. if (err == -ENOENT) {
  861. pg_start = f2fs_get_next_page_offset(&dn,
  862. pg_start);
  863. continue;
  864. }
  865. return err;
  866. }
  867. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  868. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  869. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  870. f2fs_truncate_data_blocks_range(&dn, count);
  871. f2fs_put_dnode(&dn);
  872. pg_start += count;
  873. }
  874. return 0;
  875. }
  876. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  877. {
  878. pgoff_t pg_start, pg_end;
  879. loff_t off_start, off_end;
  880. int ret;
  881. ret = f2fs_convert_inline_inode(inode);
  882. if (ret)
  883. return ret;
  884. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  885. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  886. off_start = offset & (PAGE_SIZE - 1);
  887. off_end = (offset + len) & (PAGE_SIZE - 1);
  888. if (pg_start == pg_end) {
  889. ret = fill_zero(inode, pg_start, off_start,
  890. off_end - off_start);
  891. if (ret)
  892. return ret;
  893. } else {
  894. if (off_start) {
  895. ret = fill_zero(inode, pg_start++, off_start,
  896. PAGE_SIZE - off_start);
  897. if (ret)
  898. return ret;
  899. }
  900. if (off_end) {
  901. ret = fill_zero(inode, pg_end, 0, off_end);
  902. if (ret)
  903. return ret;
  904. }
  905. if (pg_start < pg_end) {
  906. loff_t blk_start, blk_end;
  907. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  908. f2fs_balance_fs(sbi, true);
  909. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  910. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  911. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  912. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  913. truncate_pagecache_range(inode, blk_start, blk_end - 1);
  914. f2fs_lock_op(sbi);
  915. ret = f2fs_truncate_hole(inode, pg_start, pg_end);
  916. f2fs_unlock_op(sbi);
  917. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  918. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  919. }
  920. }
  921. return ret;
  922. }
  923. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  924. int *do_replace, pgoff_t off, pgoff_t len)
  925. {
  926. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  927. struct dnode_of_data dn;
  928. int ret, done, i;
  929. next_dnode:
  930. set_new_dnode(&dn, inode, NULL, NULL, 0);
  931. ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  932. if (ret && ret != -ENOENT) {
  933. return ret;
  934. } else if (ret == -ENOENT) {
  935. if (dn.max_level == 0)
  936. return -ENOENT;
  937. done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
  938. dn.ofs_in_node, len);
  939. blkaddr += done;
  940. do_replace += done;
  941. goto next;
  942. }
  943. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  944. dn.ofs_in_node, len);
  945. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  946. *blkaddr = f2fs_data_blkaddr(&dn);
  947. if (__is_valid_data_blkaddr(*blkaddr) &&
  948. !f2fs_is_valid_blkaddr(sbi, *blkaddr,
  949. DATA_GENERIC_ENHANCE)) {
  950. f2fs_put_dnode(&dn);
  951. return -EFSCORRUPTED;
  952. }
  953. if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
  954. if (f2fs_lfs_mode(sbi)) {
  955. f2fs_put_dnode(&dn);
  956. return -EOPNOTSUPP;
  957. }
  958. /* do not invalidate this block address */
  959. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  960. *do_replace = 1;
  961. }
  962. }
  963. f2fs_put_dnode(&dn);
  964. next:
  965. len -= done;
  966. off += done;
  967. if (len)
  968. goto next_dnode;
  969. return 0;
  970. }
  971. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  972. int *do_replace, pgoff_t off, int len)
  973. {
  974. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  975. struct dnode_of_data dn;
  976. int ret, i;
  977. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  978. if (*do_replace == 0)
  979. continue;
  980. set_new_dnode(&dn, inode, NULL, NULL, 0);
  981. ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  982. if (ret) {
  983. dec_valid_block_count(sbi, inode, 1);
  984. f2fs_invalidate_blocks(sbi, *blkaddr);
  985. } else {
  986. f2fs_update_data_blkaddr(&dn, *blkaddr);
  987. }
  988. f2fs_put_dnode(&dn);
  989. }
  990. return 0;
  991. }
  992. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  993. block_t *blkaddr, int *do_replace,
  994. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  995. {
  996. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  997. pgoff_t i = 0;
  998. int ret;
  999. while (i < len) {
  1000. if (blkaddr[i] == NULL_ADDR && !full) {
  1001. i++;
  1002. continue;
  1003. }
  1004. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  1005. struct dnode_of_data dn;
  1006. struct node_info ni;
  1007. size_t new_size;
  1008. pgoff_t ilen;
  1009. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  1010. ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  1011. if (ret)
  1012. return ret;
  1013. ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
  1014. if (ret) {
  1015. f2fs_put_dnode(&dn);
  1016. return ret;
  1017. }
  1018. ilen = min((pgoff_t)
  1019. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  1020. dn.ofs_in_node, len - i);
  1021. do {
  1022. dn.data_blkaddr = f2fs_data_blkaddr(&dn);
  1023. f2fs_truncate_data_blocks_range(&dn, 1);
  1024. if (do_replace[i]) {
  1025. f2fs_i_blocks_write(src_inode,
  1026. 1, false, false);
  1027. f2fs_i_blocks_write(dst_inode,
  1028. 1, true, false);
  1029. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  1030. blkaddr[i], ni.version, true, false);
  1031. do_replace[i] = 0;
  1032. }
  1033. dn.ofs_in_node++;
  1034. i++;
  1035. new_size = (loff_t)(dst + i) << PAGE_SHIFT;
  1036. if (dst_inode->i_size < new_size)
  1037. f2fs_i_size_write(dst_inode, new_size);
  1038. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  1039. f2fs_put_dnode(&dn);
  1040. } else {
  1041. struct page *psrc, *pdst;
  1042. psrc = f2fs_get_lock_data_page(src_inode,
  1043. src + i, true);
  1044. if (IS_ERR(psrc))
  1045. return PTR_ERR(psrc);
  1046. pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
  1047. true);
  1048. if (IS_ERR(pdst)) {
  1049. f2fs_put_page(psrc, 1);
  1050. return PTR_ERR(pdst);
  1051. }
  1052. f2fs_copy_page(psrc, pdst);
  1053. set_page_dirty(pdst);
  1054. f2fs_put_page(pdst, 1);
  1055. f2fs_put_page(psrc, 1);
  1056. ret = f2fs_truncate_hole(src_inode,
  1057. src + i, src + i + 1);
  1058. if (ret)
  1059. return ret;
  1060. i++;
  1061. }
  1062. }
  1063. return 0;
  1064. }
  1065. static int __exchange_data_block(struct inode *src_inode,
  1066. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  1067. pgoff_t len, bool full)
  1068. {
  1069. block_t *src_blkaddr;
  1070. int *do_replace;
  1071. pgoff_t olen;
  1072. int ret;
  1073. while (len) {
  1074. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
  1075. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  1076. array_size(olen, sizeof(block_t)),
  1077. GFP_NOFS);
  1078. if (!src_blkaddr)
  1079. return -ENOMEM;
  1080. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  1081. array_size(olen, sizeof(int)),
  1082. GFP_NOFS);
  1083. if (!do_replace) {
  1084. kvfree(src_blkaddr);
  1085. return -ENOMEM;
  1086. }
  1087. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  1088. do_replace, src, olen);
  1089. if (ret)
  1090. goto roll_back;
  1091. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  1092. do_replace, src, dst, olen, full);
  1093. if (ret)
  1094. goto roll_back;
  1095. src += olen;
  1096. dst += olen;
  1097. len -= olen;
  1098. kvfree(src_blkaddr);
  1099. kvfree(do_replace);
  1100. }
  1101. return 0;
  1102. roll_back:
  1103. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
  1104. kvfree(src_blkaddr);
  1105. kvfree(do_replace);
  1106. return ret;
  1107. }
  1108. static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
  1109. {
  1110. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1111. pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  1112. pgoff_t start = offset >> PAGE_SHIFT;
  1113. pgoff_t end = (offset + len) >> PAGE_SHIFT;
  1114. int ret;
  1115. f2fs_balance_fs(sbi, true);
  1116. /* avoid gc operation during block exchange */
  1117. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1118. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1119. f2fs_lock_op(sbi);
  1120. f2fs_drop_extent_tree(inode);
  1121. truncate_pagecache(inode, offset);
  1122. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  1123. f2fs_unlock_op(sbi);
  1124. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1125. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1126. return ret;
  1127. }
  1128. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  1129. {
  1130. loff_t new_size;
  1131. int ret;
  1132. if (offset + len >= i_size_read(inode))
  1133. return -EINVAL;
  1134. /* collapse range should be aligned to block size of f2fs. */
  1135. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1136. return -EINVAL;
  1137. ret = f2fs_convert_inline_inode(inode);
  1138. if (ret)
  1139. return ret;
  1140. /* write out all dirty pages from offset */
  1141. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1142. if (ret)
  1143. return ret;
  1144. ret = f2fs_do_collapse(inode, offset, len);
  1145. if (ret)
  1146. return ret;
  1147. /* write out all moved pages, if possible */
  1148. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1149. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1150. truncate_pagecache(inode, offset);
  1151. new_size = i_size_read(inode) - len;
  1152. ret = f2fs_truncate_blocks(inode, new_size, true);
  1153. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1154. if (!ret)
  1155. f2fs_i_size_write(inode, new_size);
  1156. return ret;
  1157. }
  1158. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1159. pgoff_t end)
  1160. {
  1161. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1162. pgoff_t index = start;
  1163. unsigned int ofs_in_node = dn->ofs_in_node;
  1164. blkcnt_t count = 0;
  1165. int ret;
  1166. for (; index < end; index++, dn->ofs_in_node++) {
  1167. if (f2fs_data_blkaddr(dn) == NULL_ADDR)
  1168. count++;
  1169. }
  1170. dn->ofs_in_node = ofs_in_node;
  1171. ret = f2fs_reserve_new_blocks(dn, count);
  1172. if (ret)
  1173. return ret;
  1174. dn->ofs_in_node = ofs_in_node;
  1175. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1176. dn->data_blkaddr = f2fs_data_blkaddr(dn);
  1177. /*
  1178. * f2fs_reserve_new_blocks will not guarantee entire block
  1179. * allocation.
  1180. */
  1181. if (dn->data_blkaddr == NULL_ADDR) {
  1182. ret = -ENOSPC;
  1183. break;
  1184. }
  1185. if (dn->data_blkaddr != NEW_ADDR) {
  1186. f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
  1187. dn->data_blkaddr = NEW_ADDR;
  1188. f2fs_set_data_blkaddr(dn);
  1189. }
  1190. }
  1191. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1192. return ret;
  1193. }
  1194. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1195. int mode)
  1196. {
  1197. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1198. struct address_space *mapping = inode->i_mapping;
  1199. pgoff_t index, pg_start, pg_end;
  1200. loff_t new_size = i_size_read(inode);
  1201. loff_t off_start, off_end;
  1202. int ret = 0;
  1203. ret = inode_newsize_ok(inode, (len + offset));
  1204. if (ret)
  1205. return ret;
  1206. ret = f2fs_convert_inline_inode(inode);
  1207. if (ret)
  1208. return ret;
  1209. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1210. if (ret)
  1211. return ret;
  1212. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1213. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1214. off_start = offset & (PAGE_SIZE - 1);
  1215. off_end = (offset + len) & (PAGE_SIZE - 1);
  1216. if (pg_start == pg_end) {
  1217. ret = fill_zero(inode, pg_start, off_start,
  1218. off_end - off_start);
  1219. if (ret)
  1220. return ret;
  1221. new_size = max_t(loff_t, new_size, offset + len);
  1222. } else {
  1223. if (off_start) {
  1224. ret = fill_zero(inode, pg_start++, off_start,
  1225. PAGE_SIZE - off_start);
  1226. if (ret)
  1227. return ret;
  1228. new_size = max_t(loff_t, new_size,
  1229. (loff_t)pg_start << PAGE_SHIFT);
  1230. }
  1231. for (index = pg_start; index < pg_end;) {
  1232. struct dnode_of_data dn;
  1233. unsigned int end_offset;
  1234. pgoff_t end;
  1235. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1236. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1237. truncate_pagecache_range(inode,
  1238. (loff_t)index << PAGE_SHIFT,
  1239. ((loff_t)pg_end << PAGE_SHIFT) - 1);
  1240. f2fs_lock_op(sbi);
  1241. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1242. ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
  1243. if (ret) {
  1244. f2fs_unlock_op(sbi);
  1245. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1246. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1247. goto out;
  1248. }
  1249. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1250. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1251. ret = f2fs_do_zero_range(&dn, index, end);
  1252. f2fs_put_dnode(&dn);
  1253. f2fs_unlock_op(sbi);
  1254. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1255. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1256. f2fs_balance_fs(sbi, dn.node_changed);
  1257. if (ret)
  1258. goto out;
  1259. index = end;
  1260. new_size = max_t(loff_t, new_size,
  1261. (loff_t)index << PAGE_SHIFT);
  1262. }
  1263. if (off_end) {
  1264. ret = fill_zero(inode, pg_end, 0, off_end);
  1265. if (ret)
  1266. goto out;
  1267. new_size = max_t(loff_t, new_size, offset + len);
  1268. }
  1269. }
  1270. out:
  1271. if (new_size > i_size_read(inode)) {
  1272. if (mode & FALLOC_FL_KEEP_SIZE)
  1273. file_set_keep_isize(inode);
  1274. else
  1275. f2fs_i_size_write(inode, new_size);
  1276. }
  1277. return ret;
  1278. }
  1279. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1280. {
  1281. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1282. pgoff_t nr, pg_start, pg_end, delta, idx;
  1283. loff_t new_size;
  1284. int ret = 0;
  1285. new_size = i_size_read(inode) + len;
  1286. ret = inode_newsize_ok(inode, new_size);
  1287. if (ret)
  1288. return ret;
  1289. if (offset >= i_size_read(inode))
  1290. return -EINVAL;
  1291. /* insert range should be aligned to block size of f2fs. */
  1292. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1293. return -EINVAL;
  1294. ret = f2fs_convert_inline_inode(inode);
  1295. if (ret)
  1296. return ret;
  1297. f2fs_balance_fs(sbi, true);
  1298. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1299. ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  1300. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1301. if (ret)
  1302. return ret;
  1303. /* write out all dirty pages from offset */
  1304. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1305. if (ret)
  1306. return ret;
  1307. pg_start = offset >> PAGE_SHIFT;
  1308. pg_end = (offset + len) >> PAGE_SHIFT;
  1309. delta = pg_end - pg_start;
  1310. idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  1311. /* avoid gc operation during block exchange */
  1312. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1313. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1314. truncate_pagecache(inode, offset);
  1315. while (!ret && idx > pg_start) {
  1316. nr = idx - pg_start;
  1317. if (nr > delta)
  1318. nr = delta;
  1319. idx -= nr;
  1320. f2fs_lock_op(sbi);
  1321. f2fs_drop_extent_tree(inode);
  1322. ret = __exchange_data_block(inode, inode, idx,
  1323. idx + delta, nr, false);
  1324. f2fs_unlock_op(sbi);
  1325. }
  1326. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1327. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1328. /* write out all moved pages, if possible */
  1329. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  1330. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1331. truncate_pagecache(inode, offset);
  1332. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  1333. if (!ret)
  1334. f2fs_i_size_write(inode, new_size);
  1335. return ret;
  1336. }
  1337. static int expand_inode_data(struct inode *inode, loff_t offset,
  1338. loff_t len, int mode)
  1339. {
  1340. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1341. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1342. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
  1343. .m_may_create = true };
  1344. pgoff_t pg_start, pg_end;
  1345. loff_t new_size = i_size_read(inode);
  1346. loff_t off_end;
  1347. block_t expanded = 0;
  1348. int err;
  1349. err = inode_newsize_ok(inode, (len + offset));
  1350. if (err)
  1351. return err;
  1352. err = f2fs_convert_inline_inode(inode);
  1353. if (err)
  1354. return err;
  1355. f2fs_balance_fs(sbi, true);
  1356. pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
  1357. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1358. off_end = (offset + len) & (PAGE_SIZE - 1);
  1359. map.m_lblk = pg_start;
  1360. map.m_len = pg_end - pg_start;
  1361. if (off_end)
  1362. map.m_len++;
  1363. if (!map.m_len)
  1364. return 0;
  1365. if (f2fs_is_pinned_file(inode)) {
  1366. block_t sec_blks = BLKS_PER_SEC(sbi);
  1367. block_t sec_len = roundup(map.m_len, sec_blks);
  1368. map.m_len = sec_blks;
  1369. next_alloc:
  1370. if (has_not_enough_free_secs(sbi, 0,
  1371. GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
  1372. f2fs_down_write(&sbi->gc_lock);
  1373. err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
  1374. if (err && err != -ENODATA && err != -EAGAIN)
  1375. goto out_err;
  1376. }
  1377. f2fs_down_write(&sbi->pin_sem);
  1378. f2fs_lock_op(sbi);
  1379. f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
  1380. f2fs_unlock_op(sbi);
  1381. map.m_seg_type = CURSEG_COLD_DATA_PINNED;
  1382. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
  1383. f2fs_up_write(&sbi->pin_sem);
  1384. expanded += map.m_len;
  1385. sec_len -= map.m_len;
  1386. map.m_lblk += map.m_len;
  1387. if (!err && sec_len)
  1388. goto next_alloc;
  1389. map.m_len = expanded;
  1390. } else {
  1391. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1392. expanded = map.m_len;
  1393. }
  1394. out_err:
  1395. if (err) {
  1396. pgoff_t last_off;
  1397. if (!expanded)
  1398. return err;
  1399. last_off = pg_start + expanded - 1;
  1400. /* update new size to the failed position */
  1401. new_size = (last_off == pg_end) ? offset + len :
  1402. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1403. } else {
  1404. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1405. }
  1406. if (new_size > i_size_read(inode)) {
  1407. if (mode & FALLOC_FL_KEEP_SIZE)
  1408. file_set_keep_isize(inode);
  1409. else
  1410. f2fs_i_size_write(inode, new_size);
  1411. }
  1412. return err;
  1413. }
  1414. static long f2fs_fallocate(struct file *file, int mode,
  1415. loff_t offset, loff_t len)
  1416. {
  1417. struct inode *inode = file_inode(file);
  1418. long ret = 0;
  1419. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1420. return -EIO;
  1421. if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
  1422. return -ENOSPC;
  1423. if (!f2fs_is_compress_backend_ready(inode))
  1424. return -EOPNOTSUPP;
  1425. /* f2fs only support ->fallocate for regular file */
  1426. if (!S_ISREG(inode->i_mode))
  1427. return -EINVAL;
  1428. if (IS_ENCRYPTED(inode) &&
  1429. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1430. return -EOPNOTSUPP;
  1431. if (f2fs_compressed_file(inode) &&
  1432. (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
  1433. FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
  1434. return -EOPNOTSUPP;
  1435. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1436. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1437. FALLOC_FL_INSERT_RANGE))
  1438. return -EOPNOTSUPP;
  1439. inode_lock(inode);
  1440. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1441. if (offset >= inode->i_size)
  1442. goto out;
  1443. ret = punch_hole(inode, offset, len);
  1444. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1445. ret = f2fs_collapse_range(inode, offset, len);
  1446. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1447. ret = f2fs_zero_range(inode, offset, len, mode);
  1448. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1449. ret = f2fs_insert_range(inode, offset, len);
  1450. } else {
  1451. ret = expand_inode_data(inode, offset, len, mode);
  1452. }
  1453. if (!ret) {
  1454. inode->i_mtime = inode->i_ctime = current_time(inode);
  1455. f2fs_mark_inode_dirty_sync(inode, false);
  1456. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1457. }
  1458. out:
  1459. inode_unlock(inode);
  1460. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1461. return ret;
  1462. }
  1463. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1464. {
  1465. /*
  1466. * f2fs_relase_file is called at every close calls. So we should
  1467. * not drop any inmemory pages by close called by other process.
  1468. */
  1469. if (!(filp->f_mode & FMODE_WRITE) ||
  1470. atomic_read(&inode->i_writecount) != 1)
  1471. return 0;
  1472. /* some remained atomic pages should discarded */
  1473. if (f2fs_is_atomic_file(inode))
  1474. f2fs_drop_inmem_pages(inode);
  1475. if (f2fs_is_volatile_file(inode)) {
  1476. set_inode_flag(inode, FI_DROP_CACHE);
  1477. filemap_fdatawrite(inode->i_mapping);
  1478. clear_inode_flag(inode, FI_DROP_CACHE);
  1479. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1480. stat_dec_volatile_write(inode);
  1481. }
  1482. return 0;
  1483. }
  1484. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1485. {
  1486. struct inode *inode = file_inode(file);
  1487. /*
  1488. * If the process doing a transaction is crashed, we should do
  1489. * roll-back. Otherwise, other reader/write can see corrupted database
  1490. * until all the writers close its file. Since this should be done
  1491. * before dropping file lock, it needs to do in ->flush.
  1492. */
  1493. if (f2fs_is_atomic_file(inode) &&
  1494. F2FS_I(inode)->inmem_task == current)
  1495. f2fs_drop_inmem_pages(inode);
  1496. return 0;
  1497. }
  1498. static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
  1499. {
  1500. struct f2fs_inode_info *fi = F2FS_I(inode);
  1501. u32 masked_flags = fi->i_flags & mask;
  1502. /* mask can be shrunk by flags_valid selector */
  1503. iflags &= mask;
  1504. /* Is it quota file? Do not allow user to mess with it */
  1505. if (IS_NOQUOTA(inode))
  1506. return -EPERM;
  1507. if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
  1508. if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
  1509. return -EOPNOTSUPP;
  1510. if (!f2fs_empty_dir(inode))
  1511. return -ENOTEMPTY;
  1512. }
  1513. if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
  1514. if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
  1515. return -EOPNOTSUPP;
  1516. if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
  1517. return -EINVAL;
  1518. }
  1519. if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
  1520. if (masked_flags & F2FS_COMPR_FL) {
  1521. if (!f2fs_disable_compressed_file(inode))
  1522. return -EINVAL;
  1523. }
  1524. if (iflags & F2FS_NOCOMP_FL)
  1525. return -EINVAL;
  1526. if (iflags & F2FS_COMPR_FL) {
  1527. if (!f2fs_may_compress(inode))
  1528. return -EINVAL;
  1529. if (S_ISREG(inode->i_mode) && inode->i_size)
  1530. return -EINVAL;
  1531. set_compress_context(inode);
  1532. }
  1533. }
  1534. if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
  1535. if (masked_flags & F2FS_COMPR_FL)
  1536. return -EINVAL;
  1537. }
  1538. fi->i_flags = iflags | (fi->i_flags & ~mask);
  1539. f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
  1540. (fi->i_flags & F2FS_NOCOMP_FL));
  1541. if (fi->i_flags & F2FS_PROJINHERIT_FL)
  1542. set_inode_flag(inode, FI_PROJ_INHERIT);
  1543. else
  1544. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1545. inode->i_ctime = current_time(inode);
  1546. f2fs_set_inode_flags(inode);
  1547. f2fs_mark_inode_dirty_sync(inode, true);
  1548. return 0;
  1549. }
  1550. /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
  1551. /*
  1552. * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
  1553. * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
  1554. * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
  1555. * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
  1556. */
  1557. static const struct {
  1558. u32 iflag;
  1559. u32 fsflag;
  1560. } f2fs_fsflags_map[] = {
  1561. { F2FS_COMPR_FL, FS_COMPR_FL },
  1562. { F2FS_SYNC_FL, FS_SYNC_FL },
  1563. { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
  1564. { F2FS_APPEND_FL, FS_APPEND_FL },
  1565. { F2FS_NODUMP_FL, FS_NODUMP_FL },
  1566. { F2FS_NOATIME_FL, FS_NOATIME_FL },
  1567. { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
  1568. { F2FS_INDEX_FL, FS_INDEX_FL },
  1569. { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
  1570. { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
  1571. { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
  1572. };
  1573. #define F2FS_GETTABLE_FS_FL ( \
  1574. FS_COMPR_FL | \
  1575. FS_SYNC_FL | \
  1576. FS_IMMUTABLE_FL | \
  1577. FS_APPEND_FL | \
  1578. FS_NODUMP_FL | \
  1579. FS_NOATIME_FL | \
  1580. FS_NOCOMP_FL | \
  1581. FS_INDEX_FL | \
  1582. FS_DIRSYNC_FL | \
  1583. FS_PROJINHERIT_FL | \
  1584. FS_ENCRYPT_FL | \
  1585. FS_INLINE_DATA_FL | \
  1586. FS_NOCOW_FL | \
  1587. FS_VERITY_FL | \
  1588. FS_CASEFOLD_FL)
  1589. #define F2FS_SETTABLE_FS_FL ( \
  1590. FS_COMPR_FL | \
  1591. FS_SYNC_FL | \
  1592. FS_IMMUTABLE_FL | \
  1593. FS_APPEND_FL | \
  1594. FS_NODUMP_FL | \
  1595. FS_NOATIME_FL | \
  1596. FS_NOCOMP_FL | \
  1597. FS_DIRSYNC_FL | \
  1598. FS_PROJINHERIT_FL | \
  1599. FS_CASEFOLD_FL)
  1600. /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
  1601. static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
  1602. {
  1603. u32 fsflags = 0;
  1604. int i;
  1605. for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
  1606. if (iflags & f2fs_fsflags_map[i].iflag)
  1607. fsflags |= f2fs_fsflags_map[i].fsflag;
  1608. return fsflags;
  1609. }
  1610. /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
  1611. static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
  1612. {
  1613. u32 iflags = 0;
  1614. int i;
  1615. for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
  1616. if (fsflags & f2fs_fsflags_map[i].fsflag)
  1617. iflags |= f2fs_fsflags_map[i].iflag;
  1618. return iflags;
  1619. }
  1620. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1621. {
  1622. struct inode *inode = file_inode(filp);
  1623. struct f2fs_inode_info *fi = F2FS_I(inode);
  1624. u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
  1625. if (IS_ENCRYPTED(inode))
  1626. fsflags |= FS_ENCRYPT_FL;
  1627. if (IS_VERITY(inode))
  1628. fsflags |= FS_VERITY_FL;
  1629. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
  1630. fsflags |= FS_INLINE_DATA_FL;
  1631. if (is_inode_flag_set(inode, FI_PIN_FILE))
  1632. fsflags |= FS_NOCOW_FL;
  1633. fsflags &= F2FS_GETTABLE_FS_FL;
  1634. return put_user(fsflags, (int __user *)arg);
  1635. }
  1636. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1637. {
  1638. struct inode *inode = file_inode(filp);
  1639. struct f2fs_inode_info *fi = F2FS_I(inode);
  1640. u32 fsflags, old_fsflags;
  1641. u32 iflags;
  1642. int ret;
  1643. if (!inode_owner_or_capable(inode))
  1644. return -EACCES;
  1645. if (get_user(fsflags, (int __user *)arg))
  1646. return -EFAULT;
  1647. if (fsflags & ~F2FS_GETTABLE_FS_FL)
  1648. return -EOPNOTSUPP;
  1649. fsflags &= F2FS_SETTABLE_FS_FL;
  1650. iflags = f2fs_fsflags_to_iflags(fsflags);
  1651. if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
  1652. return -EOPNOTSUPP;
  1653. ret = mnt_want_write_file(filp);
  1654. if (ret)
  1655. return ret;
  1656. inode_lock(inode);
  1657. old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
  1658. ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
  1659. if (ret)
  1660. goto out;
  1661. ret = f2fs_setflags_common(inode, iflags,
  1662. f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
  1663. out:
  1664. inode_unlock(inode);
  1665. mnt_drop_write_file(filp);
  1666. return ret;
  1667. }
  1668. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1669. {
  1670. struct inode *inode = file_inode(filp);
  1671. return put_user(inode->i_generation, (int __user *)arg);
  1672. }
  1673. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1674. {
  1675. struct inode *inode = file_inode(filp);
  1676. struct f2fs_inode_info *fi = F2FS_I(inode);
  1677. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1678. int ret;
  1679. if (!inode_owner_or_capable(inode))
  1680. return -EACCES;
  1681. if (!S_ISREG(inode->i_mode))
  1682. return -EINVAL;
  1683. if (filp->f_flags & O_DIRECT)
  1684. return -EINVAL;
  1685. ret = mnt_want_write_file(filp);
  1686. if (ret)
  1687. return ret;
  1688. inode_lock(inode);
  1689. if (!f2fs_disable_compressed_file(inode)) {
  1690. ret = -EINVAL;
  1691. goto out;
  1692. }
  1693. if (f2fs_is_atomic_file(inode)) {
  1694. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
  1695. ret = -EINVAL;
  1696. goto out;
  1697. }
  1698. ret = f2fs_convert_inline_inode(inode);
  1699. if (ret)
  1700. goto out;
  1701. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1702. /*
  1703. * Should wait end_io to count F2FS_WB_CP_DATA correctly by
  1704. * f2fs_is_atomic_file.
  1705. */
  1706. if (get_dirty_pages(inode))
  1707. f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1708. inode->i_ino, get_dirty_pages(inode));
  1709. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1710. if (ret) {
  1711. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1712. goto out;
  1713. }
  1714. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  1715. if (list_empty(&fi->inmem_ilist))
  1716. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  1717. sbi->atomic_files++;
  1718. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  1719. /* add inode in inmem_list first and set atomic_file */
  1720. set_inode_flag(inode, FI_ATOMIC_FILE);
  1721. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1722. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1723. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1724. F2FS_I(inode)->inmem_task = current;
  1725. stat_update_max_atomic_write(inode);
  1726. out:
  1727. inode_unlock(inode);
  1728. mnt_drop_write_file(filp);
  1729. return ret;
  1730. }
  1731. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1732. {
  1733. struct inode *inode = file_inode(filp);
  1734. int ret;
  1735. if (!inode_owner_or_capable(inode))
  1736. return -EACCES;
  1737. ret = mnt_want_write_file(filp);
  1738. if (ret)
  1739. return ret;
  1740. f2fs_balance_fs(F2FS_I_SB(inode), true);
  1741. inode_lock(inode);
  1742. if (f2fs_is_volatile_file(inode)) {
  1743. ret = -EINVAL;
  1744. goto err_out;
  1745. }
  1746. if (f2fs_is_atomic_file(inode)) {
  1747. ret = f2fs_commit_inmem_pages(inode);
  1748. if (ret)
  1749. goto err_out;
  1750. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1751. if (!ret)
  1752. f2fs_drop_inmem_pages(inode);
  1753. } else {
  1754. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1755. }
  1756. err_out:
  1757. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
  1758. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1759. ret = -EINVAL;
  1760. }
  1761. inode_unlock(inode);
  1762. mnt_drop_write_file(filp);
  1763. return ret;
  1764. }
  1765. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1766. {
  1767. struct inode *inode = file_inode(filp);
  1768. int ret;
  1769. if (!inode_owner_or_capable(inode))
  1770. return -EACCES;
  1771. if (!S_ISREG(inode->i_mode))
  1772. return -EINVAL;
  1773. ret = mnt_want_write_file(filp);
  1774. if (ret)
  1775. return ret;
  1776. inode_lock(inode);
  1777. if (f2fs_is_volatile_file(inode))
  1778. goto out;
  1779. ret = f2fs_convert_inline_inode(inode);
  1780. if (ret)
  1781. goto out;
  1782. stat_inc_volatile_write(inode);
  1783. stat_update_max_volatile_write(inode);
  1784. set_inode_flag(inode, FI_VOLATILE_FILE);
  1785. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1786. out:
  1787. inode_unlock(inode);
  1788. mnt_drop_write_file(filp);
  1789. return ret;
  1790. }
  1791. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1792. {
  1793. struct inode *inode = file_inode(filp);
  1794. int ret;
  1795. if (!inode_owner_or_capable(inode))
  1796. return -EACCES;
  1797. ret = mnt_want_write_file(filp);
  1798. if (ret)
  1799. return ret;
  1800. inode_lock(inode);
  1801. if (!f2fs_is_volatile_file(inode))
  1802. goto out;
  1803. if (!f2fs_is_first_block_written(inode)) {
  1804. ret = truncate_partial_data_page(inode, 0, true);
  1805. goto out;
  1806. }
  1807. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1808. out:
  1809. inode_unlock(inode);
  1810. mnt_drop_write_file(filp);
  1811. return ret;
  1812. }
  1813. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1814. {
  1815. struct inode *inode = file_inode(filp);
  1816. int ret;
  1817. if (!inode_owner_or_capable(inode))
  1818. return -EACCES;
  1819. ret = mnt_want_write_file(filp);
  1820. if (ret)
  1821. return ret;
  1822. inode_lock(inode);
  1823. if (f2fs_is_atomic_file(inode))
  1824. f2fs_drop_inmem_pages(inode);
  1825. if (f2fs_is_volatile_file(inode)) {
  1826. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1827. stat_dec_volatile_write(inode);
  1828. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1829. }
  1830. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1831. inode_unlock(inode);
  1832. mnt_drop_write_file(filp);
  1833. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1834. return ret;
  1835. }
  1836. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1837. {
  1838. struct inode *inode = file_inode(filp);
  1839. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1840. struct super_block *sb = sbi->sb;
  1841. __u32 in;
  1842. int ret = 0;
  1843. if (!capable(CAP_SYS_ADMIN))
  1844. return -EPERM;
  1845. if (get_user(in, (__u32 __user *)arg))
  1846. return -EFAULT;
  1847. if (in != F2FS_GOING_DOWN_FULLSYNC) {
  1848. ret = mnt_want_write_file(filp);
  1849. if (ret) {
  1850. if (ret == -EROFS) {
  1851. ret = 0;
  1852. f2fs_stop_checkpoint(sbi, false);
  1853. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1854. trace_f2fs_shutdown(sbi, in, ret);
  1855. }
  1856. return ret;
  1857. }
  1858. }
  1859. switch (in) {
  1860. case F2FS_GOING_DOWN_FULLSYNC:
  1861. ret = freeze_bdev(sb->s_bdev);
  1862. if (ret)
  1863. goto out;
  1864. f2fs_stop_checkpoint(sbi, false);
  1865. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1866. thaw_bdev(sb->s_bdev);
  1867. break;
  1868. case F2FS_GOING_DOWN_METASYNC:
  1869. /* do checkpoint only */
  1870. ret = f2fs_sync_fs(sb, 1);
  1871. if (ret)
  1872. goto out;
  1873. f2fs_stop_checkpoint(sbi, false);
  1874. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1875. break;
  1876. case F2FS_GOING_DOWN_NOSYNC:
  1877. f2fs_stop_checkpoint(sbi, false);
  1878. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1879. break;
  1880. case F2FS_GOING_DOWN_METAFLUSH:
  1881. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1882. f2fs_stop_checkpoint(sbi, false);
  1883. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1884. break;
  1885. case F2FS_GOING_DOWN_NEED_FSCK:
  1886. set_sbi_flag(sbi, SBI_NEED_FSCK);
  1887. set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
  1888. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1889. /* do checkpoint only */
  1890. ret = f2fs_sync_fs(sb, 1);
  1891. goto out;
  1892. default:
  1893. ret = -EINVAL;
  1894. goto out;
  1895. }
  1896. f2fs_stop_gc_thread(sbi);
  1897. f2fs_stop_discard_thread(sbi);
  1898. f2fs_drop_discard_cmd(sbi);
  1899. clear_opt(sbi, DISCARD);
  1900. f2fs_update_time(sbi, REQ_TIME);
  1901. out:
  1902. if (in != F2FS_GOING_DOWN_FULLSYNC)
  1903. mnt_drop_write_file(filp);
  1904. trace_f2fs_shutdown(sbi, in, ret);
  1905. return ret;
  1906. }
  1907. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1908. {
  1909. struct inode *inode = file_inode(filp);
  1910. struct super_block *sb = inode->i_sb;
  1911. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1912. struct fstrim_range range;
  1913. int ret;
  1914. if (!capable(CAP_SYS_ADMIN))
  1915. return -EPERM;
  1916. if (!f2fs_hw_support_discard(F2FS_SB(sb)))
  1917. return -EOPNOTSUPP;
  1918. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1919. sizeof(range)))
  1920. return -EFAULT;
  1921. ret = mnt_want_write_file(filp);
  1922. if (ret)
  1923. return ret;
  1924. range.minlen = max((unsigned int)range.minlen,
  1925. q->limits.discard_granularity);
  1926. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1927. mnt_drop_write_file(filp);
  1928. if (ret < 0)
  1929. return ret;
  1930. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1931. sizeof(range)))
  1932. return -EFAULT;
  1933. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1934. return 0;
  1935. }
  1936. static bool uuid_is_nonzero(__u8 u[16])
  1937. {
  1938. int i;
  1939. for (i = 0; i < 16; i++)
  1940. if (u[i])
  1941. return true;
  1942. return false;
  1943. }
  1944. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1945. {
  1946. struct inode *inode = file_inode(filp);
  1947. if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
  1948. return -EOPNOTSUPP;
  1949. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1950. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1951. }
  1952. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1953. {
  1954. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  1955. return -EOPNOTSUPP;
  1956. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1957. }
  1958. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1959. {
  1960. struct inode *inode = file_inode(filp);
  1961. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1962. int err;
  1963. if (!f2fs_sb_has_encrypt(sbi))
  1964. return -EOPNOTSUPP;
  1965. err = mnt_want_write_file(filp);
  1966. if (err)
  1967. return err;
  1968. f2fs_down_write(&sbi->sb_lock);
  1969. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1970. goto got_it;
  1971. /* update superblock with uuid */
  1972. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1973. err = f2fs_commit_super(sbi, false);
  1974. if (err) {
  1975. /* undo new data */
  1976. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1977. goto out_err;
  1978. }
  1979. got_it:
  1980. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1981. 16))
  1982. err = -EFAULT;
  1983. out_err:
  1984. f2fs_up_write(&sbi->sb_lock);
  1985. mnt_drop_write_file(filp);
  1986. return err;
  1987. }
  1988. static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
  1989. unsigned long arg)
  1990. {
  1991. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  1992. return -EOPNOTSUPP;
  1993. return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
  1994. }
  1995. static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
  1996. {
  1997. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  1998. return -EOPNOTSUPP;
  1999. return fscrypt_ioctl_add_key(filp, (void __user *)arg);
  2000. }
  2001. static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
  2002. {
  2003. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  2004. return -EOPNOTSUPP;
  2005. return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
  2006. }
  2007. static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
  2008. unsigned long arg)
  2009. {
  2010. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  2011. return -EOPNOTSUPP;
  2012. return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
  2013. }
  2014. static int f2fs_ioc_get_encryption_key_status(struct file *filp,
  2015. unsigned long arg)
  2016. {
  2017. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  2018. return -EOPNOTSUPP;
  2019. return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
  2020. }
  2021. static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
  2022. {
  2023. if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
  2024. return -EOPNOTSUPP;
  2025. return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
  2026. }
  2027. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  2028. {
  2029. struct inode *inode = file_inode(filp);
  2030. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2031. __u32 sync;
  2032. int ret;
  2033. if (!capable(CAP_SYS_ADMIN))
  2034. return -EPERM;
  2035. if (get_user(sync, (__u32 __user *)arg))
  2036. return -EFAULT;
  2037. if (f2fs_readonly(sbi->sb))
  2038. return -EROFS;
  2039. ret = mnt_want_write_file(filp);
  2040. if (ret)
  2041. return ret;
  2042. if (!sync) {
  2043. if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
  2044. ret = -EBUSY;
  2045. goto out;
  2046. }
  2047. } else {
  2048. f2fs_down_write(&sbi->gc_lock);
  2049. }
  2050. ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
  2051. out:
  2052. mnt_drop_write_file(filp);
  2053. return ret;
  2054. }
  2055. static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
  2056. {
  2057. struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
  2058. u64 end;
  2059. int ret;
  2060. if (!capable(CAP_SYS_ADMIN))
  2061. return -EPERM;
  2062. if (f2fs_readonly(sbi->sb))
  2063. return -EROFS;
  2064. end = range->start + range->len;
  2065. if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
  2066. end >= MAX_BLKADDR(sbi))
  2067. return -EINVAL;
  2068. ret = mnt_want_write_file(filp);
  2069. if (ret)
  2070. return ret;
  2071. do_more:
  2072. if (!range->sync) {
  2073. if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
  2074. ret = -EBUSY;
  2075. goto out;
  2076. }
  2077. } else {
  2078. f2fs_down_write(&sbi->gc_lock);
  2079. }
  2080. ret = f2fs_gc(sbi, range->sync, true, false,
  2081. GET_SEGNO(sbi, range->start));
  2082. if (ret) {
  2083. if (ret == -EBUSY)
  2084. ret = -EAGAIN;
  2085. goto out;
  2086. }
  2087. range->start += BLKS_PER_SEC(sbi);
  2088. if (range->start <= end)
  2089. goto do_more;
  2090. out:
  2091. mnt_drop_write_file(filp);
  2092. return ret;
  2093. }
  2094. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  2095. {
  2096. struct f2fs_gc_range range;
  2097. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  2098. sizeof(range)))
  2099. return -EFAULT;
  2100. return __f2fs_ioc_gc_range(filp, &range);
  2101. }
  2102. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  2103. {
  2104. struct inode *inode = file_inode(filp);
  2105. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2106. int ret;
  2107. if (!capable(CAP_SYS_ADMIN))
  2108. return -EPERM;
  2109. if (f2fs_readonly(sbi->sb))
  2110. return -EROFS;
  2111. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
  2112. f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
  2113. return -EINVAL;
  2114. }
  2115. ret = mnt_want_write_file(filp);
  2116. if (ret)
  2117. return ret;
  2118. ret = f2fs_sync_fs(sbi->sb, 1);
  2119. mnt_drop_write_file(filp);
  2120. return ret;
  2121. }
  2122. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  2123. struct file *filp,
  2124. struct f2fs_defragment *range)
  2125. {
  2126. struct inode *inode = file_inode(filp);
  2127. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  2128. .m_seg_type = NO_CHECK_TYPE,
  2129. .m_may_create = false };
  2130. struct extent_info ei = {0, 0, 0};
  2131. pgoff_t pg_start, pg_end, next_pgofs;
  2132. unsigned int blk_per_seg = sbi->blocks_per_seg;
  2133. unsigned int total = 0, sec_num;
  2134. block_t blk_end = 0;
  2135. bool fragmented = false;
  2136. int err;
  2137. /* if in-place-update policy is enabled, don't waste time here */
  2138. if (f2fs_should_update_inplace(inode, NULL))
  2139. return -EINVAL;
  2140. pg_start = range->start >> PAGE_SHIFT;
  2141. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  2142. f2fs_balance_fs(sbi, true);
  2143. inode_lock(inode);
  2144. /* writeback all dirty pages in the range */
  2145. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  2146. range->start + range->len - 1);
  2147. if (err)
  2148. goto out;
  2149. /*
  2150. * lookup mapping info in extent cache, skip defragmenting if physical
  2151. * block addresses are continuous.
  2152. */
  2153. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  2154. if (ei.fofs + ei.len >= pg_end)
  2155. goto out;
  2156. }
  2157. map.m_lblk = pg_start;
  2158. map.m_next_pgofs = &next_pgofs;
  2159. /*
  2160. * lookup mapping info in dnode page cache, skip defragmenting if all
  2161. * physical block addresses are continuous even if there are hole(s)
  2162. * in logical blocks.
  2163. */
  2164. while (map.m_lblk < pg_end) {
  2165. map.m_len = pg_end - map.m_lblk;
  2166. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  2167. if (err)
  2168. goto out;
  2169. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  2170. map.m_lblk = next_pgofs;
  2171. continue;
  2172. }
  2173. if (blk_end && blk_end != map.m_pblk)
  2174. fragmented = true;
  2175. /* record total count of block that we're going to move */
  2176. total += map.m_len;
  2177. blk_end = map.m_pblk + map.m_len;
  2178. map.m_lblk += map.m_len;
  2179. }
  2180. if (!fragmented) {
  2181. total = 0;
  2182. goto out;
  2183. }
  2184. sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
  2185. /*
  2186. * make sure there are enough free section for LFS allocation, this can
  2187. * avoid defragment running in SSR mode when free section are allocated
  2188. * intensively
  2189. */
  2190. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  2191. err = -EAGAIN;
  2192. goto out;
  2193. }
  2194. map.m_lblk = pg_start;
  2195. map.m_len = pg_end - pg_start;
  2196. total = 0;
  2197. while (map.m_lblk < pg_end) {
  2198. pgoff_t idx;
  2199. int cnt = 0;
  2200. do_map:
  2201. map.m_len = pg_end - map.m_lblk;
  2202. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  2203. if (err)
  2204. goto clear_out;
  2205. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  2206. map.m_lblk = next_pgofs;
  2207. goto check;
  2208. }
  2209. set_inode_flag(inode, FI_DO_DEFRAG);
  2210. idx = map.m_lblk;
  2211. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  2212. struct page *page;
  2213. page = f2fs_get_lock_data_page(inode, idx, true);
  2214. if (IS_ERR(page)) {
  2215. err = PTR_ERR(page);
  2216. goto clear_out;
  2217. }
  2218. set_page_dirty(page);
  2219. f2fs_put_page(page, 1);
  2220. idx++;
  2221. cnt++;
  2222. total++;
  2223. }
  2224. map.m_lblk = idx;
  2225. check:
  2226. if (map.m_lblk < pg_end && cnt < blk_per_seg)
  2227. goto do_map;
  2228. clear_inode_flag(inode, FI_DO_DEFRAG);
  2229. err = filemap_fdatawrite(inode->i_mapping);
  2230. if (err)
  2231. goto out;
  2232. }
  2233. clear_out:
  2234. clear_inode_flag(inode, FI_DO_DEFRAG);
  2235. out:
  2236. inode_unlock(inode);
  2237. if (!err)
  2238. range->len = (u64)total << PAGE_SHIFT;
  2239. return err;
  2240. }
  2241. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  2242. {
  2243. struct inode *inode = file_inode(filp);
  2244. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2245. struct f2fs_defragment range;
  2246. int err;
  2247. if (!capable(CAP_SYS_ADMIN))
  2248. return -EPERM;
  2249. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  2250. return -EINVAL;
  2251. if (f2fs_readonly(sbi->sb))
  2252. return -EROFS;
  2253. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  2254. sizeof(range)))
  2255. return -EFAULT;
  2256. /* verify alignment of offset & size */
  2257. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  2258. return -EINVAL;
  2259. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  2260. max_file_blocks(inode)))
  2261. return -EINVAL;
  2262. err = mnt_want_write_file(filp);
  2263. if (err)
  2264. return err;
  2265. err = f2fs_defragment_range(sbi, filp, &range);
  2266. mnt_drop_write_file(filp);
  2267. f2fs_update_time(sbi, REQ_TIME);
  2268. if (err < 0)
  2269. return err;
  2270. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  2271. sizeof(range)))
  2272. return -EFAULT;
  2273. return 0;
  2274. }
  2275. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  2276. struct file *file_out, loff_t pos_out, size_t len)
  2277. {
  2278. struct inode *src = file_inode(file_in);
  2279. struct inode *dst = file_inode(file_out);
  2280. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  2281. size_t olen = len, dst_max_i_size = 0;
  2282. size_t dst_osize;
  2283. int ret;
  2284. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  2285. src->i_sb != dst->i_sb)
  2286. return -EXDEV;
  2287. if (unlikely(f2fs_readonly(src->i_sb)))
  2288. return -EROFS;
  2289. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  2290. return -EINVAL;
  2291. if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
  2292. return -EOPNOTSUPP;
  2293. if (pos_out < 0 || pos_in < 0)
  2294. return -EINVAL;
  2295. if (src == dst) {
  2296. if (pos_in == pos_out)
  2297. return 0;
  2298. if (pos_out > pos_in && pos_out < pos_in + len)
  2299. return -EINVAL;
  2300. }
  2301. inode_lock(src);
  2302. if (src != dst) {
  2303. ret = -EBUSY;
  2304. if (!inode_trylock(dst))
  2305. goto out;
  2306. }
  2307. ret = -EINVAL;
  2308. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  2309. goto out_unlock;
  2310. if (len == 0)
  2311. olen = len = src->i_size - pos_in;
  2312. if (pos_in + len == src->i_size)
  2313. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  2314. if (len == 0) {
  2315. ret = 0;
  2316. goto out_unlock;
  2317. }
  2318. dst_osize = dst->i_size;
  2319. if (pos_out + olen > dst->i_size)
  2320. dst_max_i_size = pos_out + olen;
  2321. /* verify the end result is block aligned */
  2322. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  2323. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  2324. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  2325. goto out_unlock;
  2326. ret = f2fs_convert_inline_inode(src);
  2327. if (ret)
  2328. goto out_unlock;
  2329. ret = f2fs_convert_inline_inode(dst);
  2330. if (ret)
  2331. goto out_unlock;
  2332. /* write out all dirty pages from offset */
  2333. ret = filemap_write_and_wait_range(src->i_mapping,
  2334. pos_in, pos_in + len);
  2335. if (ret)
  2336. goto out_unlock;
  2337. ret = filemap_write_and_wait_range(dst->i_mapping,
  2338. pos_out, pos_out + len);
  2339. if (ret)
  2340. goto out_unlock;
  2341. f2fs_balance_fs(sbi, true);
  2342. f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  2343. if (src != dst) {
  2344. ret = -EBUSY;
  2345. if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
  2346. goto out_src;
  2347. }
  2348. f2fs_lock_op(sbi);
  2349. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  2350. pos_out >> F2FS_BLKSIZE_BITS,
  2351. len >> F2FS_BLKSIZE_BITS, false);
  2352. if (!ret) {
  2353. if (dst_max_i_size)
  2354. f2fs_i_size_write(dst, dst_max_i_size);
  2355. else if (dst_osize != dst->i_size)
  2356. f2fs_i_size_write(dst, dst_osize);
  2357. }
  2358. f2fs_unlock_op(sbi);
  2359. if (src != dst)
  2360. f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
  2361. out_src:
  2362. f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  2363. out_unlock:
  2364. if (src != dst)
  2365. inode_unlock(dst);
  2366. out:
  2367. inode_unlock(src);
  2368. return ret;
  2369. }
  2370. static int __f2fs_ioc_move_range(struct file *filp,
  2371. struct f2fs_move_range *range)
  2372. {
  2373. struct fd dst;
  2374. int err;
  2375. if (!(filp->f_mode & FMODE_READ) ||
  2376. !(filp->f_mode & FMODE_WRITE))
  2377. return -EBADF;
  2378. dst = fdget(range->dst_fd);
  2379. if (!dst.file)
  2380. return -EBADF;
  2381. if (!(dst.file->f_mode & FMODE_WRITE)) {
  2382. err = -EBADF;
  2383. goto err_out;
  2384. }
  2385. err = mnt_want_write_file(filp);
  2386. if (err)
  2387. goto err_out;
  2388. err = f2fs_move_file_range(filp, range->pos_in, dst.file,
  2389. range->pos_out, range->len);
  2390. mnt_drop_write_file(filp);
  2391. err_out:
  2392. fdput(dst);
  2393. return err;
  2394. }
  2395. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  2396. {
  2397. struct f2fs_move_range range;
  2398. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  2399. sizeof(range)))
  2400. return -EFAULT;
  2401. return __f2fs_ioc_move_range(filp, &range);
  2402. }
  2403. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  2404. {
  2405. struct inode *inode = file_inode(filp);
  2406. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2407. struct sit_info *sm = SIT_I(sbi);
  2408. unsigned int start_segno = 0, end_segno = 0;
  2409. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  2410. struct f2fs_flush_device range;
  2411. int ret;
  2412. if (!capable(CAP_SYS_ADMIN))
  2413. return -EPERM;
  2414. if (f2fs_readonly(sbi->sb))
  2415. return -EROFS;
  2416. if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
  2417. return -EINVAL;
  2418. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  2419. sizeof(range)))
  2420. return -EFAULT;
  2421. if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
  2422. __is_large_section(sbi)) {
  2423. f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
  2424. range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
  2425. return -EINVAL;
  2426. }
  2427. ret = mnt_want_write_file(filp);
  2428. if (ret)
  2429. return ret;
  2430. if (range.dev_num != 0)
  2431. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2432. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2433. start_segno = sm->last_victim[FLUSH_DEVICE];
  2434. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2435. start_segno = dev_start_segno;
  2436. end_segno = min(start_segno + range.segments, dev_end_segno);
  2437. while (start_segno < end_segno) {
  2438. if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
  2439. ret = -EBUSY;
  2440. goto out;
  2441. }
  2442. sm->last_victim[GC_CB] = end_segno + 1;
  2443. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2444. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2445. ret = f2fs_gc(sbi, true, true, true, start_segno);
  2446. if (ret == -EAGAIN)
  2447. ret = 0;
  2448. else if (ret < 0)
  2449. break;
  2450. start_segno++;
  2451. }
  2452. out:
  2453. mnt_drop_write_file(filp);
  2454. return ret;
  2455. }
  2456. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2457. {
  2458. struct inode *inode = file_inode(filp);
  2459. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2460. /* Must validate to set it with SQLite behavior in Android. */
  2461. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2462. return put_user(sb_feature, (u32 __user *)arg);
  2463. }
  2464. #ifdef CONFIG_QUOTA
  2465. int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
  2466. {
  2467. struct dquot *transfer_to[MAXQUOTAS] = {};
  2468. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2469. struct super_block *sb = sbi->sb;
  2470. int err = 0;
  2471. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2472. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2473. err = __dquot_transfer(inode, transfer_to);
  2474. if (err)
  2475. set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
  2476. dqput(transfer_to[PRJQUOTA]);
  2477. }
  2478. return err;
  2479. }
  2480. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2481. {
  2482. struct inode *inode = file_inode(filp);
  2483. struct f2fs_inode_info *fi = F2FS_I(inode);
  2484. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2485. struct page *ipage;
  2486. kprojid_t kprojid;
  2487. int err;
  2488. if (!f2fs_sb_has_project_quota(sbi)) {
  2489. if (projid != F2FS_DEF_PROJID)
  2490. return -EOPNOTSUPP;
  2491. else
  2492. return 0;
  2493. }
  2494. if (!f2fs_has_extra_attr(inode))
  2495. return -EOPNOTSUPP;
  2496. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2497. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2498. return 0;
  2499. err = -EPERM;
  2500. /* Is it quota file? Do not allow user to mess with it */
  2501. if (IS_NOQUOTA(inode))
  2502. return err;
  2503. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  2504. if (IS_ERR(ipage))
  2505. return PTR_ERR(ipage);
  2506. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2507. i_projid)) {
  2508. err = -EOVERFLOW;
  2509. f2fs_put_page(ipage, 1);
  2510. return err;
  2511. }
  2512. f2fs_put_page(ipage, 1);
  2513. err = dquot_initialize(inode);
  2514. if (err)
  2515. return err;
  2516. f2fs_lock_op(sbi);
  2517. err = f2fs_transfer_project_quota(inode, kprojid);
  2518. if (err)
  2519. goto out_unlock;
  2520. F2FS_I(inode)->i_projid = kprojid;
  2521. inode->i_ctime = current_time(inode);
  2522. f2fs_mark_inode_dirty_sync(inode, true);
  2523. out_unlock:
  2524. f2fs_unlock_op(sbi);
  2525. return err;
  2526. }
  2527. #else
  2528. int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
  2529. {
  2530. return 0;
  2531. }
  2532. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2533. {
  2534. if (projid != F2FS_DEF_PROJID)
  2535. return -EOPNOTSUPP;
  2536. return 0;
  2537. }
  2538. #endif
  2539. /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
  2540. /*
  2541. * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
  2542. * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
  2543. * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
  2544. */
  2545. static const struct {
  2546. u32 iflag;
  2547. u32 xflag;
  2548. } f2fs_xflags_map[] = {
  2549. { F2FS_SYNC_FL, FS_XFLAG_SYNC },
  2550. { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
  2551. { F2FS_APPEND_FL, FS_XFLAG_APPEND },
  2552. { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
  2553. { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
  2554. { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
  2555. };
  2556. #define F2FS_SUPPORTED_XFLAGS ( \
  2557. FS_XFLAG_SYNC | \
  2558. FS_XFLAG_IMMUTABLE | \
  2559. FS_XFLAG_APPEND | \
  2560. FS_XFLAG_NODUMP | \
  2561. FS_XFLAG_NOATIME | \
  2562. FS_XFLAG_PROJINHERIT)
  2563. /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
  2564. static inline u32 f2fs_iflags_to_xflags(u32 iflags)
  2565. {
  2566. u32 xflags = 0;
  2567. int i;
  2568. for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
  2569. if (iflags & f2fs_xflags_map[i].iflag)
  2570. xflags |= f2fs_xflags_map[i].xflag;
  2571. return xflags;
  2572. }
  2573. /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
  2574. static inline u32 f2fs_xflags_to_iflags(u32 xflags)
  2575. {
  2576. u32 iflags = 0;
  2577. int i;
  2578. for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
  2579. if (xflags & f2fs_xflags_map[i].xflag)
  2580. iflags |= f2fs_xflags_map[i].iflag;
  2581. return iflags;
  2582. }
  2583. static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
  2584. {
  2585. struct f2fs_inode_info *fi = F2FS_I(inode);
  2586. simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
  2587. if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
  2588. fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
  2589. }
  2590. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2591. {
  2592. struct inode *inode = file_inode(filp);
  2593. struct fsxattr fa;
  2594. f2fs_fill_fsxattr(inode, &fa);
  2595. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2596. return -EFAULT;
  2597. return 0;
  2598. }
  2599. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2600. {
  2601. struct inode *inode = file_inode(filp);
  2602. struct fsxattr fa, old_fa;
  2603. u32 iflags;
  2604. int err;
  2605. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2606. return -EFAULT;
  2607. /* Make sure caller has proper permission */
  2608. if (!inode_owner_or_capable(inode))
  2609. return -EACCES;
  2610. if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
  2611. return -EOPNOTSUPP;
  2612. iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2613. if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
  2614. return -EOPNOTSUPP;
  2615. err = mnt_want_write_file(filp);
  2616. if (err)
  2617. return err;
  2618. inode_lock(inode);
  2619. f2fs_fill_fsxattr(inode, &old_fa);
  2620. err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
  2621. if (err)
  2622. goto out;
  2623. err = f2fs_setflags_common(inode, iflags,
  2624. f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
  2625. if (err)
  2626. goto out;
  2627. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2628. out:
  2629. inode_unlock(inode);
  2630. mnt_drop_write_file(filp);
  2631. return err;
  2632. }
  2633. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2634. {
  2635. struct f2fs_inode_info *fi = F2FS_I(inode);
  2636. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2637. /* Use i_gc_failures for normal file as a risk signal. */
  2638. if (inc)
  2639. f2fs_i_gc_failures_write(inode,
  2640. fi->i_gc_failures[GC_FAILURE_PIN] + 1);
  2641. if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
  2642. f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
  2643. __func__, inode->i_ino,
  2644. fi->i_gc_failures[GC_FAILURE_PIN]);
  2645. clear_inode_flag(inode, FI_PIN_FILE);
  2646. return -EAGAIN;
  2647. }
  2648. return 0;
  2649. }
  2650. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2651. {
  2652. struct inode *inode = file_inode(filp);
  2653. __u32 pin;
  2654. int ret = 0;
  2655. if (get_user(pin, (__u32 __user *)arg))
  2656. return -EFAULT;
  2657. if (!S_ISREG(inode->i_mode))
  2658. return -EINVAL;
  2659. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2660. return -EROFS;
  2661. ret = mnt_want_write_file(filp);
  2662. if (ret)
  2663. return ret;
  2664. inode_lock(inode);
  2665. if (!pin) {
  2666. clear_inode_flag(inode, FI_PIN_FILE);
  2667. f2fs_i_gc_failures_write(inode, 0);
  2668. goto done;
  2669. }
  2670. if (f2fs_should_update_outplace(inode, NULL)) {
  2671. ret = -EINVAL;
  2672. goto out;
  2673. }
  2674. if (f2fs_pin_file_control(inode, false)) {
  2675. ret = -EAGAIN;
  2676. goto out;
  2677. }
  2678. ret = f2fs_convert_inline_inode(inode);
  2679. if (ret)
  2680. goto out;
  2681. if (!f2fs_disable_compressed_file(inode)) {
  2682. ret = -EOPNOTSUPP;
  2683. goto out;
  2684. }
  2685. set_inode_flag(inode, FI_PIN_FILE);
  2686. ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2687. done:
  2688. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2689. out:
  2690. inode_unlock(inode);
  2691. mnt_drop_write_file(filp);
  2692. return ret;
  2693. }
  2694. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2695. {
  2696. struct inode *inode = file_inode(filp);
  2697. __u32 pin = 0;
  2698. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2699. pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2700. return put_user(pin, (u32 __user *)arg);
  2701. }
  2702. int f2fs_precache_extents(struct inode *inode)
  2703. {
  2704. struct f2fs_inode_info *fi = F2FS_I(inode);
  2705. struct f2fs_map_blocks map;
  2706. pgoff_t m_next_extent;
  2707. loff_t end;
  2708. int err;
  2709. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2710. return -EOPNOTSUPP;
  2711. map.m_lblk = 0;
  2712. map.m_next_pgofs = NULL;
  2713. map.m_next_extent = &m_next_extent;
  2714. map.m_seg_type = NO_CHECK_TYPE;
  2715. map.m_may_create = false;
  2716. end = max_file_blocks(inode);
  2717. while (map.m_lblk < end) {
  2718. map.m_len = end - map.m_lblk;
  2719. f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
  2720. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2721. f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
  2722. if (err)
  2723. return err;
  2724. map.m_lblk = m_next_extent;
  2725. }
  2726. return 0;
  2727. }
  2728. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2729. {
  2730. return f2fs_precache_extents(file_inode(filp));
  2731. }
  2732. static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
  2733. {
  2734. struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
  2735. __u64 block_count;
  2736. if (!capable(CAP_SYS_ADMIN))
  2737. return -EPERM;
  2738. if (f2fs_readonly(sbi->sb))
  2739. return -EROFS;
  2740. if (copy_from_user(&block_count, (void __user *)arg,
  2741. sizeof(block_count)))
  2742. return -EFAULT;
  2743. return f2fs_resize_fs(sbi, block_count);
  2744. }
  2745. static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
  2746. {
  2747. struct inode *inode = file_inode(filp);
  2748. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2749. if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
  2750. f2fs_warn(F2FS_I_SB(inode),
  2751. "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
  2752. inode->i_ino);
  2753. return -EOPNOTSUPP;
  2754. }
  2755. return fsverity_ioctl_enable(filp, (const void __user *)arg);
  2756. }
  2757. static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
  2758. {
  2759. if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
  2760. return -EOPNOTSUPP;
  2761. return fsverity_ioctl_measure(filp, (void __user *)arg);
  2762. }
  2763. static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
  2764. {
  2765. if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
  2766. return -EOPNOTSUPP;
  2767. return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
  2768. }
  2769. static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
  2770. {
  2771. struct inode *inode = file_inode(filp);
  2772. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2773. char *vbuf;
  2774. int count;
  2775. int err = 0;
  2776. vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
  2777. if (!vbuf)
  2778. return -ENOMEM;
  2779. f2fs_down_read(&sbi->sb_lock);
  2780. count = utf16s_to_utf8s(sbi->raw_super->volume_name,
  2781. ARRAY_SIZE(sbi->raw_super->volume_name),
  2782. UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
  2783. f2fs_up_read(&sbi->sb_lock);
  2784. if (copy_to_user((char __user *)arg, vbuf,
  2785. min(FSLABEL_MAX, count)))
  2786. err = -EFAULT;
  2787. kfree(vbuf);
  2788. return err;
  2789. }
  2790. static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
  2791. {
  2792. struct inode *inode = file_inode(filp);
  2793. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2794. char *vbuf;
  2795. int err = 0;
  2796. if (!capable(CAP_SYS_ADMIN))
  2797. return -EPERM;
  2798. vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
  2799. if (IS_ERR(vbuf))
  2800. return PTR_ERR(vbuf);
  2801. err = mnt_want_write_file(filp);
  2802. if (err)
  2803. goto out;
  2804. f2fs_down_write(&sbi->sb_lock);
  2805. memset(sbi->raw_super->volume_name, 0,
  2806. sizeof(sbi->raw_super->volume_name));
  2807. utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
  2808. sbi->raw_super->volume_name,
  2809. ARRAY_SIZE(sbi->raw_super->volume_name));
  2810. err = f2fs_commit_super(sbi, false);
  2811. f2fs_up_write(&sbi->sb_lock);
  2812. mnt_drop_write_file(filp);
  2813. out:
  2814. kfree(vbuf);
  2815. return err;
  2816. }
  2817. static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
  2818. {
  2819. struct inode *inode = file_inode(filp);
  2820. __u64 blocks;
  2821. if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
  2822. return -EOPNOTSUPP;
  2823. if (!f2fs_compressed_file(inode))
  2824. return -EINVAL;
  2825. blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
  2826. return put_user(blocks, (u64 __user *)arg);
  2827. }
  2828. static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
  2829. {
  2830. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  2831. unsigned int released_blocks = 0;
  2832. int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
  2833. block_t blkaddr;
  2834. int i;
  2835. for (i = 0; i < count; i++) {
  2836. blkaddr = data_blkaddr(dn->inode, dn->node_page,
  2837. dn->ofs_in_node + i);
  2838. if (!__is_valid_data_blkaddr(blkaddr))
  2839. continue;
  2840. if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
  2841. DATA_GENERIC_ENHANCE)))
  2842. return -EFSCORRUPTED;
  2843. }
  2844. while (count) {
  2845. int compr_blocks = 0;
  2846. for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
  2847. blkaddr = f2fs_data_blkaddr(dn);
  2848. if (i == 0) {
  2849. if (blkaddr == COMPRESS_ADDR)
  2850. continue;
  2851. dn->ofs_in_node += cluster_size;
  2852. goto next;
  2853. }
  2854. if (__is_valid_data_blkaddr(blkaddr))
  2855. compr_blocks++;
  2856. if (blkaddr != NEW_ADDR)
  2857. continue;
  2858. dn->data_blkaddr = NULL_ADDR;
  2859. f2fs_set_data_blkaddr(dn);
  2860. }
  2861. f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
  2862. dec_valid_block_count(sbi, dn->inode,
  2863. cluster_size - compr_blocks);
  2864. released_blocks += cluster_size - compr_blocks;
  2865. next:
  2866. count -= cluster_size;
  2867. }
  2868. return released_blocks;
  2869. }
  2870. static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
  2871. {
  2872. struct inode *inode = file_inode(filp);
  2873. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2874. pgoff_t page_idx = 0, last_idx;
  2875. unsigned int released_blocks = 0;
  2876. int ret;
  2877. int writecount;
  2878. if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
  2879. return -EOPNOTSUPP;
  2880. if (!f2fs_compressed_file(inode))
  2881. return -EINVAL;
  2882. if (f2fs_readonly(sbi->sb))
  2883. return -EROFS;
  2884. ret = mnt_want_write_file(filp);
  2885. if (ret)
  2886. return ret;
  2887. f2fs_balance_fs(F2FS_I_SB(inode), true);
  2888. inode_lock(inode);
  2889. writecount = atomic_read(&inode->i_writecount);
  2890. if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
  2891. (!(filp->f_mode & FMODE_WRITE) && writecount)) {
  2892. ret = -EBUSY;
  2893. goto out;
  2894. }
  2895. if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
  2896. ret = -EINVAL;
  2897. goto out;
  2898. }
  2899. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  2900. if (ret)
  2901. goto out;
  2902. set_inode_flag(inode, FI_COMPRESS_RELEASED);
  2903. inode->i_ctime = current_time(inode);
  2904. f2fs_mark_inode_dirty_sync(inode, true);
  2905. if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
  2906. goto out;
  2907. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  2908. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  2909. last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  2910. while (page_idx < last_idx) {
  2911. struct dnode_of_data dn;
  2912. pgoff_t end_offset, count;
  2913. set_new_dnode(&dn, inode, NULL, NULL, 0);
  2914. ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
  2915. if (ret) {
  2916. if (ret == -ENOENT) {
  2917. page_idx = f2fs_get_next_page_offset(&dn,
  2918. page_idx);
  2919. ret = 0;
  2920. continue;
  2921. }
  2922. break;
  2923. }
  2924. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  2925. count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
  2926. count = round_up(count, F2FS_I(inode)->i_cluster_size);
  2927. ret = release_compress_blocks(&dn, count);
  2928. f2fs_put_dnode(&dn);
  2929. if (ret < 0)
  2930. break;
  2931. page_idx += count;
  2932. released_blocks += ret;
  2933. }
  2934. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  2935. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  2936. out:
  2937. inode_unlock(inode);
  2938. mnt_drop_write_file(filp);
  2939. if (ret >= 0) {
  2940. ret = put_user(released_blocks, (u64 __user *)arg);
  2941. } else if (released_blocks &&
  2942. atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
  2943. set_sbi_flag(sbi, SBI_NEED_FSCK);
  2944. f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
  2945. "iblocks=%llu, released=%u, compr_blocks=%u, "
  2946. "run fsck to fix.",
  2947. __func__, inode->i_ino, inode->i_blocks,
  2948. released_blocks,
  2949. atomic_read(&F2FS_I(inode)->i_compr_blocks));
  2950. }
  2951. return ret;
  2952. }
  2953. static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
  2954. {
  2955. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  2956. unsigned int reserved_blocks = 0;
  2957. int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
  2958. block_t blkaddr;
  2959. int i;
  2960. for (i = 0; i < count; i++) {
  2961. blkaddr = data_blkaddr(dn->inode, dn->node_page,
  2962. dn->ofs_in_node + i);
  2963. if (!__is_valid_data_blkaddr(blkaddr))
  2964. continue;
  2965. if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
  2966. DATA_GENERIC_ENHANCE)))
  2967. return -EFSCORRUPTED;
  2968. }
  2969. while (count) {
  2970. int compr_blocks = 0;
  2971. blkcnt_t reserved;
  2972. int ret;
  2973. for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
  2974. blkaddr = f2fs_data_blkaddr(dn);
  2975. if (i == 0) {
  2976. if (blkaddr == COMPRESS_ADDR)
  2977. continue;
  2978. dn->ofs_in_node += cluster_size;
  2979. goto next;
  2980. }
  2981. if (__is_valid_data_blkaddr(blkaddr)) {
  2982. compr_blocks++;
  2983. continue;
  2984. }
  2985. dn->data_blkaddr = NEW_ADDR;
  2986. f2fs_set_data_blkaddr(dn);
  2987. }
  2988. reserved = cluster_size - compr_blocks;
  2989. ret = inc_valid_block_count(sbi, dn->inode, &reserved);
  2990. if (ret)
  2991. return ret;
  2992. if (reserved != cluster_size - compr_blocks)
  2993. return -ENOSPC;
  2994. f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
  2995. reserved_blocks += reserved;
  2996. next:
  2997. count -= cluster_size;
  2998. }
  2999. return reserved_blocks;
  3000. }
  3001. static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
  3002. {
  3003. struct inode *inode = file_inode(filp);
  3004. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  3005. pgoff_t page_idx = 0, last_idx;
  3006. unsigned int reserved_blocks = 0;
  3007. int ret;
  3008. if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
  3009. return -EOPNOTSUPP;
  3010. if (!f2fs_compressed_file(inode))
  3011. return -EINVAL;
  3012. if (f2fs_readonly(sbi->sb))
  3013. return -EROFS;
  3014. ret = mnt_want_write_file(filp);
  3015. if (ret)
  3016. return ret;
  3017. if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
  3018. goto out;
  3019. f2fs_balance_fs(F2FS_I_SB(inode), true);
  3020. inode_lock(inode);
  3021. if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
  3022. ret = -EINVAL;
  3023. goto unlock_inode;
  3024. }
  3025. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3026. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  3027. last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  3028. while (page_idx < last_idx) {
  3029. struct dnode_of_data dn;
  3030. pgoff_t end_offset, count;
  3031. set_new_dnode(&dn, inode, NULL, NULL, 0);
  3032. ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
  3033. if (ret) {
  3034. if (ret == -ENOENT) {
  3035. page_idx = f2fs_get_next_page_offset(&dn,
  3036. page_idx);
  3037. ret = 0;
  3038. continue;
  3039. }
  3040. break;
  3041. }
  3042. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  3043. count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
  3044. count = round_up(count, F2FS_I(inode)->i_cluster_size);
  3045. ret = reserve_compress_blocks(&dn, count);
  3046. f2fs_put_dnode(&dn);
  3047. if (ret < 0)
  3048. break;
  3049. page_idx += count;
  3050. reserved_blocks += ret;
  3051. }
  3052. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  3053. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3054. if (ret >= 0) {
  3055. clear_inode_flag(inode, FI_COMPRESS_RELEASED);
  3056. inode->i_ctime = current_time(inode);
  3057. f2fs_mark_inode_dirty_sync(inode, true);
  3058. }
  3059. unlock_inode:
  3060. inode_unlock(inode);
  3061. out:
  3062. mnt_drop_write_file(filp);
  3063. if (ret >= 0) {
  3064. ret = put_user(reserved_blocks, (u64 __user *)arg);
  3065. } else if (reserved_blocks &&
  3066. atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
  3067. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3068. f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
  3069. "iblocks=%llu, reserved=%u, compr_blocks=%u, "
  3070. "run fsck to fix.",
  3071. __func__, inode->i_ino, inode->i_blocks,
  3072. reserved_blocks,
  3073. atomic_read(&F2FS_I(inode)->i_compr_blocks));
  3074. }
  3075. return ret;
  3076. }
  3077. static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
  3078. pgoff_t off, block_t block, block_t len, u32 flags)
  3079. {
  3080. struct request_queue *q = bdev_get_queue(bdev);
  3081. sector_t sector = SECTOR_FROM_BLOCK(block);
  3082. sector_t nr_sects = SECTOR_FROM_BLOCK(len);
  3083. int ret = 0;
  3084. if (!q)
  3085. return -ENXIO;
  3086. if (flags & F2FS_TRIM_FILE_DISCARD)
  3087. ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
  3088. blk_queue_secure_erase(q) ?
  3089. BLKDEV_DISCARD_SECURE : 0);
  3090. if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
  3091. if (IS_ENCRYPTED(inode))
  3092. ret = fscrypt_zeroout_range(inode, off, block, len);
  3093. else
  3094. ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
  3095. GFP_NOFS, 0);
  3096. }
  3097. return ret;
  3098. }
  3099. static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
  3100. {
  3101. struct inode *inode = file_inode(filp);
  3102. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  3103. struct address_space *mapping = inode->i_mapping;
  3104. struct block_device *prev_bdev = NULL;
  3105. struct f2fs_sectrim_range range;
  3106. pgoff_t index, pg_end, prev_index = 0;
  3107. block_t prev_block = 0, len = 0;
  3108. loff_t end_addr;
  3109. bool to_end = false;
  3110. int ret = 0;
  3111. if (!(filp->f_mode & FMODE_WRITE))
  3112. return -EBADF;
  3113. if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
  3114. sizeof(range)))
  3115. return -EFAULT;
  3116. if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
  3117. !S_ISREG(inode->i_mode))
  3118. return -EINVAL;
  3119. if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
  3120. !f2fs_hw_support_discard(sbi)) ||
  3121. ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
  3122. IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
  3123. return -EOPNOTSUPP;
  3124. file_start_write(filp);
  3125. inode_lock(inode);
  3126. if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
  3127. range.start >= inode->i_size) {
  3128. ret = -EINVAL;
  3129. goto err;
  3130. }
  3131. if (range.len == 0)
  3132. goto err;
  3133. if (inode->i_size - range.start > range.len) {
  3134. end_addr = range.start + range.len;
  3135. } else {
  3136. end_addr = range.len == (u64)-1 ?
  3137. sbi->sb->s_maxbytes : inode->i_size;
  3138. to_end = true;
  3139. }
  3140. if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
  3141. (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
  3142. ret = -EINVAL;
  3143. goto err;
  3144. }
  3145. index = F2FS_BYTES_TO_BLK(range.start);
  3146. pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
  3147. ret = f2fs_convert_inline_inode(inode);
  3148. if (ret)
  3149. goto err;
  3150. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3151. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  3152. ret = filemap_write_and_wait_range(mapping, range.start,
  3153. to_end ? LLONG_MAX : end_addr - 1);
  3154. if (ret)
  3155. goto out;
  3156. truncate_inode_pages_range(mapping, range.start,
  3157. to_end ? -1 : end_addr - 1);
  3158. while (index < pg_end) {
  3159. struct dnode_of_data dn;
  3160. pgoff_t end_offset, count;
  3161. int i;
  3162. set_new_dnode(&dn, inode, NULL, NULL, 0);
  3163. ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
  3164. if (ret) {
  3165. if (ret == -ENOENT) {
  3166. index = f2fs_get_next_page_offset(&dn, index);
  3167. continue;
  3168. }
  3169. goto out;
  3170. }
  3171. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  3172. count = min(end_offset - dn.ofs_in_node, pg_end - index);
  3173. for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
  3174. struct block_device *cur_bdev;
  3175. block_t blkaddr = f2fs_data_blkaddr(&dn);
  3176. if (!__is_valid_data_blkaddr(blkaddr))
  3177. continue;
  3178. if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
  3179. DATA_GENERIC_ENHANCE)) {
  3180. ret = -EFSCORRUPTED;
  3181. f2fs_put_dnode(&dn);
  3182. goto out;
  3183. }
  3184. cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
  3185. if (f2fs_is_multi_device(sbi)) {
  3186. int di = f2fs_target_device_index(sbi, blkaddr);
  3187. blkaddr -= FDEV(di).start_blk;
  3188. }
  3189. if (len) {
  3190. if (prev_bdev == cur_bdev &&
  3191. index == prev_index + len &&
  3192. blkaddr == prev_block + len) {
  3193. len++;
  3194. } else {
  3195. ret = f2fs_secure_erase(prev_bdev,
  3196. inode, prev_index, prev_block,
  3197. len, range.flags);
  3198. if (ret) {
  3199. f2fs_put_dnode(&dn);
  3200. goto out;
  3201. }
  3202. len = 0;
  3203. }
  3204. }
  3205. if (!len) {
  3206. prev_bdev = cur_bdev;
  3207. prev_index = index;
  3208. prev_block = blkaddr;
  3209. len = 1;
  3210. }
  3211. }
  3212. f2fs_put_dnode(&dn);
  3213. if (fatal_signal_pending(current)) {
  3214. ret = -EINTR;
  3215. goto out;
  3216. }
  3217. cond_resched();
  3218. }
  3219. if (len)
  3220. ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
  3221. prev_block, len, range.flags);
  3222. out:
  3223. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  3224. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3225. err:
  3226. inode_unlock(inode);
  3227. file_end_write(filp);
  3228. return ret;
  3229. }
  3230. static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
  3231. {
  3232. struct inode *inode = file_inode(filp);
  3233. struct f2fs_comp_option option;
  3234. if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
  3235. return -EOPNOTSUPP;
  3236. inode_lock_shared(inode);
  3237. if (!f2fs_compressed_file(inode)) {
  3238. inode_unlock_shared(inode);
  3239. return -ENODATA;
  3240. }
  3241. option.algorithm = F2FS_I(inode)->i_compress_algorithm;
  3242. option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
  3243. inode_unlock_shared(inode);
  3244. if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
  3245. sizeof(option)))
  3246. return -EFAULT;
  3247. return 0;
  3248. }
  3249. static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
  3250. {
  3251. struct inode *inode = file_inode(filp);
  3252. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  3253. struct f2fs_comp_option option;
  3254. int ret = 0;
  3255. if (!f2fs_sb_has_compression(sbi))
  3256. return -EOPNOTSUPP;
  3257. if (!(filp->f_mode & FMODE_WRITE))
  3258. return -EBADF;
  3259. if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
  3260. sizeof(option)))
  3261. return -EFAULT;
  3262. if (!f2fs_compressed_file(inode) ||
  3263. option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
  3264. option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
  3265. option.algorithm >= COMPRESS_MAX)
  3266. return -EINVAL;
  3267. file_start_write(filp);
  3268. inode_lock(inode);
  3269. if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
  3270. ret = -EBUSY;
  3271. goto out;
  3272. }
  3273. if (inode->i_size != 0) {
  3274. ret = -EFBIG;
  3275. goto out;
  3276. }
  3277. F2FS_I(inode)->i_compress_algorithm = option.algorithm;
  3278. F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
  3279. F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
  3280. f2fs_mark_inode_dirty_sync(inode, true);
  3281. if (!f2fs_is_compress_backend_ready(inode))
  3282. f2fs_warn(sbi, "compression algorithm is successfully set, "
  3283. "but current kernel doesn't support this algorithm.");
  3284. out:
  3285. inode_unlock(inode);
  3286. file_end_write(filp);
  3287. return ret;
  3288. }
  3289. static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
  3290. {
  3291. DEFINE_READAHEAD(ractl, NULL, inode->i_mapping, page_idx);
  3292. struct address_space *mapping = inode->i_mapping;
  3293. struct page *page;
  3294. pgoff_t redirty_idx = page_idx;
  3295. int i, page_len = 0, ret = 0;
  3296. page_cache_ra_unbounded(&ractl, len, 0);
  3297. for (i = 0; i < len; i++, page_idx++) {
  3298. page = read_cache_page(mapping, page_idx, NULL, NULL);
  3299. if (IS_ERR(page)) {
  3300. ret = PTR_ERR(page);
  3301. break;
  3302. }
  3303. page_len++;
  3304. }
  3305. for (i = 0; i < page_len; i++, redirty_idx++) {
  3306. page = find_lock_page(mapping, redirty_idx);
  3307. if (!page) {
  3308. ret = -ENOMEM;
  3309. break;
  3310. }
  3311. set_page_dirty(page);
  3312. f2fs_put_page(page, 1);
  3313. f2fs_put_page(page, 0);
  3314. }
  3315. return ret;
  3316. }
  3317. static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
  3318. {
  3319. struct inode *inode = file_inode(filp);
  3320. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  3321. struct f2fs_inode_info *fi = F2FS_I(inode);
  3322. pgoff_t page_idx = 0, last_idx;
  3323. unsigned int blk_per_seg = sbi->blocks_per_seg;
  3324. int cluster_size = F2FS_I(inode)->i_cluster_size;
  3325. int count, ret;
  3326. if (!f2fs_sb_has_compression(sbi) ||
  3327. F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
  3328. return -EOPNOTSUPP;
  3329. if (!(filp->f_mode & FMODE_WRITE))
  3330. return -EBADF;
  3331. if (!f2fs_compressed_file(inode))
  3332. return -EINVAL;
  3333. f2fs_balance_fs(F2FS_I_SB(inode), true);
  3334. file_start_write(filp);
  3335. inode_lock(inode);
  3336. if (!f2fs_is_compress_backend_ready(inode)) {
  3337. ret = -EOPNOTSUPP;
  3338. goto out;
  3339. }
  3340. if (f2fs_is_mmap_file(inode)) {
  3341. ret = -EBUSY;
  3342. goto out;
  3343. }
  3344. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  3345. if (ret)
  3346. goto out;
  3347. if (!atomic_read(&fi->i_compr_blocks))
  3348. goto out;
  3349. last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  3350. count = last_idx - page_idx;
  3351. while (count) {
  3352. int len = min(cluster_size, count);
  3353. ret = redirty_blocks(inode, page_idx, len);
  3354. if (ret < 0)
  3355. break;
  3356. if (get_dirty_pages(inode) >= blk_per_seg)
  3357. filemap_fdatawrite(inode->i_mapping);
  3358. count -= len;
  3359. page_idx += len;
  3360. }
  3361. if (!ret)
  3362. ret = filemap_write_and_wait_range(inode->i_mapping, 0,
  3363. LLONG_MAX);
  3364. if (ret)
  3365. f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
  3366. __func__, ret);
  3367. out:
  3368. inode_unlock(inode);
  3369. file_end_write(filp);
  3370. return ret;
  3371. }
  3372. static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
  3373. {
  3374. struct inode *inode = file_inode(filp);
  3375. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  3376. pgoff_t page_idx = 0, last_idx;
  3377. unsigned int blk_per_seg = sbi->blocks_per_seg;
  3378. int cluster_size = F2FS_I(inode)->i_cluster_size;
  3379. int count, ret;
  3380. if (!f2fs_sb_has_compression(sbi) ||
  3381. F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
  3382. return -EOPNOTSUPP;
  3383. if (!(filp->f_mode & FMODE_WRITE))
  3384. return -EBADF;
  3385. if (!f2fs_compressed_file(inode))
  3386. return -EINVAL;
  3387. f2fs_balance_fs(F2FS_I_SB(inode), true);
  3388. file_start_write(filp);
  3389. inode_lock(inode);
  3390. if (!f2fs_is_compress_backend_ready(inode)) {
  3391. ret = -EOPNOTSUPP;
  3392. goto out;
  3393. }
  3394. if (f2fs_is_mmap_file(inode)) {
  3395. ret = -EBUSY;
  3396. goto out;
  3397. }
  3398. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  3399. if (ret)
  3400. goto out;
  3401. set_inode_flag(inode, FI_ENABLE_COMPRESS);
  3402. last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
  3403. count = last_idx - page_idx;
  3404. while (count) {
  3405. int len = min(cluster_size, count);
  3406. ret = redirty_blocks(inode, page_idx, len);
  3407. if (ret < 0)
  3408. break;
  3409. if (get_dirty_pages(inode) >= blk_per_seg)
  3410. filemap_fdatawrite(inode->i_mapping);
  3411. count -= len;
  3412. page_idx += len;
  3413. }
  3414. if (!ret)
  3415. ret = filemap_write_and_wait_range(inode->i_mapping, 0,
  3416. LLONG_MAX);
  3417. clear_inode_flag(inode, FI_ENABLE_COMPRESS);
  3418. if (ret)
  3419. f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
  3420. __func__, ret);
  3421. out:
  3422. inode_unlock(inode);
  3423. file_end_write(filp);
  3424. return ret;
  3425. }
  3426. static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  3427. {
  3428. switch (cmd) {
  3429. case FS_IOC_GETFLAGS:
  3430. return f2fs_ioc_getflags(filp, arg);
  3431. case FS_IOC_SETFLAGS:
  3432. return f2fs_ioc_setflags(filp, arg);
  3433. case FS_IOC_GETVERSION:
  3434. return f2fs_ioc_getversion(filp, arg);
  3435. case F2FS_IOC_START_ATOMIC_WRITE:
  3436. return f2fs_ioc_start_atomic_write(filp);
  3437. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  3438. return f2fs_ioc_commit_atomic_write(filp);
  3439. case F2FS_IOC_START_VOLATILE_WRITE:
  3440. return f2fs_ioc_start_volatile_write(filp);
  3441. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  3442. return f2fs_ioc_release_volatile_write(filp);
  3443. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  3444. return f2fs_ioc_abort_volatile_write(filp);
  3445. case F2FS_IOC_SHUTDOWN:
  3446. return f2fs_ioc_shutdown(filp, arg);
  3447. case FITRIM:
  3448. return f2fs_ioc_fitrim(filp, arg);
  3449. case FS_IOC_SET_ENCRYPTION_POLICY:
  3450. return f2fs_ioc_set_encryption_policy(filp, arg);
  3451. case FS_IOC_GET_ENCRYPTION_POLICY:
  3452. return f2fs_ioc_get_encryption_policy(filp, arg);
  3453. case FS_IOC_GET_ENCRYPTION_PWSALT:
  3454. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  3455. case FS_IOC_GET_ENCRYPTION_POLICY_EX:
  3456. return f2fs_ioc_get_encryption_policy_ex(filp, arg);
  3457. case FS_IOC_ADD_ENCRYPTION_KEY:
  3458. return f2fs_ioc_add_encryption_key(filp, arg);
  3459. case FS_IOC_REMOVE_ENCRYPTION_KEY:
  3460. return f2fs_ioc_remove_encryption_key(filp, arg);
  3461. case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
  3462. return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
  3463. case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
  3464. return f2fs_ioc_get_encryption_key_status(filp, arg);
  3465. case FS_IOC_GET_ENCRYPTION_NONCE:
  3466. return f2fs_ioc_get_encryption_nonce(filp, arg);
  3467. case F2FS_IOC_GARBAGE_COLLECT:
  3468. return f2fs_ioc_gc(filp, arg);
  3469. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  3470. return f2fs_ioc_gc_range(filp, arg);
  3471. case F2FS_IOC_WRITE_CHECKPOINT:
  3472. return f2fs_ioc_write_checkpoint(filp, arg);
  3473. case F2FS_IOC_DEFRAGMENT:
  3474. return f2fs_ioc_defragment(filp, arg);
  3475. case F2FS_IOC_MOVE_RANGE:
  3476. return f2fs_ioc_move_range(filp, arg);
  3477. case F2FS_IOC_FLUSH_DEVICE:
  3478. return f2fs_ioc_flush_device(filp, arg);
  3479. case F2FS_IOC_GET_FEATURES:
  3480. return f2fs_ioc_get_features(filp, arg);
  3481. case FS_IOC_FSGETXATTR:
  3482. return f2fs_ioc_fsgetxattr(filp, arg);
  3483. case FS_IOC_FSSETXATTR:
  3484. return f2fs_ioc_fssetxattr(filp, arg);
  3485. case F2FS_IOC_GET_PIN_FILE:
  3486. return f2fs_ioc_get_pin_file(filp, arg);
  3487. case F2FS_IOC_SET_PIN_FILE:
  3488. return f2fs_ioc_set_pin_file(filp, arg);
  3489. case F2FS_IOC_PRECACHE_EXTENTS:
  3490. return f2fs_ioc_precache_extents(filp, arg);
  3491. case F2FS_IOC_RESIZE_FS:
  3492. return f2fs_ioc_resize_fs(filp, arg);
  3493. case FS_IOC_ENABLE_VERITY:
  3494. return f2fs_ioc_enable_verity(filp, arg);
  3495. case FS_IOC_MEASURE_VERITY:
  3496. return f2fs_ioc_measure_verity(filp, arg);
  3497. case FS_IOC_READ_VERITY_METADATA:
  3498. return f2fs_ioc_read_verity_metadata(filp, arg);
  3499. case FS_IOC_GETFSLABEL:
  3500. return f2fs_ioc_getfslabel(filp, arg);
  3501. case FS_IOC_SETFSLABEL:
  3502. return f2fs_ioc_setfslabel(filp, arg);
  3503. case F2FS_IOC_GET_COMPRESS_BLOCKS:
  3504. return f2fs_get_compress_blocks(filp, arg);
  3505. case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
  3506. return f2fs_release_compress_blocks(filp, arg);
  3507. case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
  3508. return f2fs_reserve_compress_blocks(filp, arg);
  3509. case F2FS_IOC_SEC_TRIM_FILE:
  3510. return f2fs_sec_trim_file(filp, arg);
  3511. case F2FS_IOC_GET_COMPRESS_OPTION:
  3512. return f2fs_ioc_get_compress_option(filp, arg);
  3513. case F2FS_IOC_SET_COMPRESS_OPTION:
  3514. return f2fs_ioc_set_compress_option(filp, arg);
  3515. case F2FS_IOC_DECOMPRESS_FILE:
  3516. return f2fs_ioc_decompress_file(filp, arg);
  3517. case F2FS_IOC_COMPRESS_FILE:
  3518. return f2fs_ioc_compress_file(filp, arg);
  3519. default:
  3520. return -ENOTTY;
  3521. }
  3522. }
  3523. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  3524. {
  3525. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  3526. return -EIO;
  3527. if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
  3528. return -ENOSPC;
  3529. return __f2fs_ioctl(filp, cmd, arg);
  3530. }
  3531. static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
  3532. {
  3533. struct file *file = iocb->ki_filp;
  3534. struct inode *inode = file_inode(file);
  3535. int ret;
  3536. if (!f2fs_is_compress_backend_ready(inode))
  3537. return -EOPNOTSUPP;
  3538. ret = generic_file_read_iter(iocb, iter);
  3539. if (ret > 0)
  3540. f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
  3541. return ret;
  3542. }
  3543. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  3544. {
  3545. struct file *file = iocb->ki_filp;
  3546. struct inode *inode = file_inode(file);
  3547. ssize_t ret;
  3548. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
  3549. ret = -EIO;
  3550. goto out;
  3551. }
  3552. if (!f2fs_is_compress_backend_ready(inode)) {
  3553. ret = -EOPNOTSUPP;
  3554. goto out;
  3555. }
  3556. if (iocb->ki_flags & IOCB_NOWAIT) {
  3557. if (!inode_trylock(inode)) {
  3558. ret = -EAGAIN;
  3559. goto out;
  3560. }
  3561. } else {
  3562. inode_lock(inode);
  3563. }
  3564. if (unlikely(IS_IMMUTABLE(inode))) {
  3565. ret = -EPERM;
  3566. goto unlock;
  3567. }
  3568. if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
  3569. ret = -EPERM;
  3570. goto unlock;
  3571. }
  3572. ret = generic_write_checks(iocb, from);
  3573. if (ret > 0) {
  3574. bool preallocated = false;
  3575. size_t target_size = 0;
  3576. int err;
  3577. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  3578. set_inode_flag(inode, FI_NO_PREALLOC);
  3579. if ((iocb->ki_flags & IOCB_NOWAIT)) {
  3580. if (!f2fs_overwrite_io(inode, iocb->ki_pos,
  3581. iov_iter_count(from)) ||
  3582. f2fs_has_inline_data(inode) ||
  3583. f2fs_force_buffered_io(inode, iocb, from)) {
  3584. clear_inode_flag(inode, FI_NO_PREALLOC);
  3585. inode_unlock(inode);
  3586. ret = -EAGAIN;
  3587. goto out;
  3588. }
  3589. goto write;
  3590. }
  3591. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  3592. goto write;
  3593. if (iocb->ki_flags & IOCB_DIRECT) {
  3594. /*
  3595. * Convert inline data for Direct I/O before entering
  3596. * f2fs_direct_IO().
  3597. */
  3598. err = f2fs_convert_inline_inode(inode);
  3599. if (err)
  3600. goto out_err;
  3601. /*
  3602. * If force_buffere_io() is true, we have to allocate
  3603. * blocks all the time, since f2fs_direct_IO will fall
  3604. * back to buffered IO.
  3605. */
  3606. if (!f2fs_force_buffered_io(inode, iocb, from) &&
  3607. allow_outplace_dio(inode, iocb, from))
  3608. goto write;
  3609. }
  3610. preallocated = true;
  3611. target_size = iocb->ki_pos + iov_iter_count(from);
  3612. err = f2fs_preallocate_blocks(iocb, from);
  3613. if (err) {
  3614. out_err:
  3615. clear_inode_flag(inode, FI_NO_PREALLOC);
  3616. inode_unlock(inode);
  3617. ret = err;
  3618. goto out;
  3619. }
  3620. write:
  3621. ret = __generic_file_write_iter(iocb, from);
  3622. clear_inode_flag(inode, FI_NO_PREALLOC);
  3623. /* if we couldn't write data, we should deallocate blocks. */
  3624. if (preallocated && i_size_read(inode) < target_size) {
  3625. f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3626. f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
  3627. f2fs_truncate(inode);
  3628. f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
  3629. f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  3630. }
  3631. if (ret > 0)
  3632. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  3633. }
  3634. unlock:
  3635. inode_unlock(inode);
  3636. out:
  3637. trace_f2fs_file_write_iter(inode, iocb->ki_pos,
  3638. iov_iter_count(from), ret);
  3639. if (ret > 0)
  3640. ret = generic_write_sync(iocb, ret);
  3641. return ret;
  3642. }
  3643. #ifdef CONFIG_COMPAT
  3644. struct compat_f2fs_gc_range {
  3645. u32 sync;
  3646. compat_u64 start;
  3647. compat_u64 len;
  3648. };
  3649. #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
  3650. struct compat_f2fs_gc_range)
  3651. static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
  3652. {
  3653. struct compat_f2fs_gc_range __user *urange;
  3654. struct f2fs_gc_range range;
  3655. int err;
  3656. urange = compat_ptr(arg);
  3657. err = get_user(range.sync, &urange->sync);
  3658. err |= get_user(range.start, &urange->start);
  3659. err |= get_user(range.len, &urange->len);
  3660. if (err)
  3661. return -EFAULT;
  3662. return __f2fs_ioc_gc_range(file, &range);
  3663. }
  3664. struct compat_f2fs_move_range {
  3665. u32 dst_fd;
  3666. compat_u64 pos_in;
  3667. compat_u64 pos_out;
  3668. compat_u64 len;
  3669. };
  3670. #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
  3671. struct compat_f2fs_move_range)
  3672. static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
  3673. {
  3674. struct compat_f2fs_move_range __user *urange;
  3675. struct f2fs_move_range range;
  3676. int err;
  3677. urange = compat_ptr(arg);
  3678. err = get_user(range.dst_fd, &urange->dst_fd);
  3679. err |= get_user(range.pos_in, &urange->pos_in);
  3680. err |= get_user(range.pos_out, &urange->pos_out);
  3681. err |= get_user(range.len, &urange->len);
  3682. if (err)
  3683. return -EFAULT;
  3684. return __f2fs_ioc_move_range(file, &range);
  3685. }
  3686. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  3687. {
  3688. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  3689. return -EIO;
  3690. if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
  3691. return -ENOSPC;
  3692. switch (cmd) {
  3693. case FS_IOC32_GETFLAGS:
  3694. cmd = FS_IOC_GETFLAGS;
  3695. break;
  3696. case FS_IOC32_SETFLAGS:
  3697. cmd = FS_IOC_SETFLAGS;
  3698. break;
  3699. case FS_IOC32_GETVERSION:
  3700. cmd = FS_IOC_GETVERSION;
  3701. break;
  3702. case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
  3703. return f2fs_compat_ioc_gc_range(file, arg);
  3704. case F2FS_IOC32_MOVE_RANGE:
  3705. return f2fs_compat_ioc_move_range(file, arg);
  3706. case F2FS_IOC_START_ATOMIC_WRITE:
  3707. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  3708. case F2FS_IOC_START_VOLATILE_WRITE:
  3709. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  3710. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  3711. case F2FS_IOC_SHUTDOWN:
  3712. case FITRIM:
  3713. case FS_IOC_SET_ENCRYPTION_POLICY:
  3714. case FS_IOC_GET_ENCRYPTION_PWSALT:
  3715. case FS_IOC_GET_ENCRYPTION_POLICY:
  3716. case FS_IOC_GET_ENCRYPTION_POLICY_EX:
  3717. case FS_IOC_ADD_ENCRYPTION_KEY:
  3718. case FS_IOC_REMOVE_ENCRYPTION_KEY:
  3719. case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
  3720. case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
  3721. case FS_IOC_GET_ENCRYPTION_NONCE:
  3722. case F2FS_IOC_GARBAGE_COLLECT:
  3723. case F2FS_IOC_WRITE_CHECKPOINT:
  3724. case F2FS_IOC_DEFRAGMENT:
  3725. case F2FS_IOC_FLUSH_DEVICE:
  3726. case F2FS_IOC_GET_FEATURES:
  3727. case FS_IOC_FSGETXATTR:
  3728. case FS_IOC_FSSETXATTR:
  3729. case F2FS_IOC_GET_PIN_FILE:
  3730. case F2FS_IOC_SET_PIN_FILE:
  3731. case F2FS_IOC_PRECACHE_EXTENTS:
  3732. case F2FS_IOC_RESIZE_FS:
  3733. case FS_IOC_ENABLE_VERITY:
  3734. case FS_IOC_MEASURE_VERITY:
  3735. case FS_IOC_READ_VERITY_METADATA:
  3736. case FS_IOC_GETFSLABEL:
  3737. case FS_IOC_SETFSLABEL:
  3738. case F2FS_IOC_GET_COMPRESS_BLOCKS:
  3739. case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
  3740. case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
  3741. case F2FS_IOC_SEC_TRIM_FILE:
  3742. case F2FS_IOC_GET_COMPRESS_OPTION:
  3743. case F2FS_IOC_SET_COMPRESS_OPTION:
  3744. case F2FS_IOC_DECOMPRESS_FILE:
  3745. case F2FS_IOC_COMPRESS_FILE:
  3746. break;
  3747. default:
  3748. return -ENOIOCTLCMD;
  3749. }
  3750. return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  3751. }
  3752. #endif
  3753. const struct file_operations f2fs_file_operations = {
  3754. .llseek = f2fs_llseek,
  3755. .read_iter = f2fs_file_read_iter,
  3756. .write_iter = f2fs_file_write_iter,
  3757. .open = f2fs_file_open,
  3758. .release = f2fs_release_file,
  3759. .mmap = f2fs_file_mmap,
  3760. .flush = f2fs_file_flush,
  3761. .fsync = f2fs_sync_file,
  3762. .fallocate = f2fs_fallocate,
  3763. .unlocked_ioctl = f2fs_ioctl,
  3764. #ifdef CONFIG_COMPAT
  3765. .compat_ioctl = f2fs_compat_ioctl,
  3766. #endif
  3767. .splice_read = generic_file_splice_read,
  3768. .splice_write = iter_file_splice_write,
  3769. };