extent_cache.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * f2fs extent cache support
  4. *
  5. * Copyright (c) 2015 Motorola Mobility
  6. * Copyright (c) 2015 Samsung Electronics
  7. * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
  8. * Chao Yu <chao2.yu@samsung.com>
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. #include <trace/events/f2fs.h>
  15. static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
  16. unsigned int ofs)
  17. {
  18. if (cached_re) {
  19. if (cached_re->ofs <= ofs &&
  20. cached_re->ofs + cached_re->len > ofs) {
  21. return cached_re;
  22. }
  23. }
  24. return NULL;
  25. }
  26. static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
  27. unsigned int ofs)
  28. {
  29. struct rb_node *node = root->rb_root.rb_node;
  30. struct rb_entry *re;
  31. while (node) {
  32. re = rb_entry(node, struct rb_entry, rb_node);
  33. if (ofs < re->ofs)
  34. node = node->rb_left;
  35. else if (ofs >= re->ofs + re->len)
  36. node = node->rb_right;
  37. else
  38. return re;
  39. }
  40. return NULL;
  41. }
  42. struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
  43. struct rb_entry *cached_re, unsigned int ofs)
  44. {
  45. struct rb_entry *re;
  46. re = __lookup_rb_tree_fast(cached_re, ofs);
  47. if (!re)
  48. return __lookup_rb_tree_slow(root, ofs);
  49. return re;
  50. }
  51. struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
  52. struct rb_root_cached *root,
  53. struct rb_node **parent,
  54. unsigned long long key, bool *leftmost)
  55. {
  56. struct rb_node **p = &root->rb_root.rb_node;
  57. struct rb_entry *re;
  58. while (*p) {
  59. *parent = *p;
  60. re = rb_entry(*parent, struct rb_entry, rb_node);
  61. if (key < re->key) {
  62. p = &(*p)->rb_left;
  63. } else {
  64. p = &(*p)->rb_right;
  65. *leftmost = false;
  66. }
  67. }
  68. return p;
  69. }
  70. struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
  71. struct rb_root_cached *root,
  72. struct rb_node **parent,
  73. unsigned int ofs, bool *leftmost)
  74. {
  75. struct rb_node **p = &root->rb_root.rb_node;
  76. struct rb_entry *re;
  77. while (*p) {
  78. *parent = *p;
  79. re = rb_entry(*parent, struct rb_entry, rb_node);
  80. if (ofs < re->ofs) {
  81. p = &(*p)->rb_left;
  82. } else if (ofs >= re->ofs + re->len) {
  83. p = &(*p)->rb_right;
  84. *leftmost = false;
  85. } else {
  86. f2fs_bug_on(sbi, 1);
  87. }
  88. }
  89. return p;
  90. }
  91. /*
  92. * lookup rb entry in position of @ofs in rb-tree,
  93. * if hit, return the entry, otherwise, return NULL
  94. * @prev_ex: extent before ofs
  95. * @next_ex: extent after ofs
  96. * @insert_p: insert point for new extent at ofs
  97. * in order to simpfy the insertion after.
  98. * tree must stay unchanged between lookup and insertion.
  99. */
  100. struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
  101. struct rb_entry *cached_re,
  102. unsigned int ofs,
  103. struct rb_entry **prev_entry,
  104. struct rb_entry **next_entry,
  105. struct rb_node ***insert_p,
  106. struct rb_node **insert_parent,
  107. bool force, bool *leftmost)
  108. {
  109. struct rb_node **pnode = &root->rb_root.rb_node;
  110. struct rb_node *parent = NULL, *tmp_node;
  111. struct rb_entry *re = cached_re;
  112. *insert_p = NULL;
  113. *insert_parent = NULL;
  114. *prev_entry = NULL;
  115. *next_entry = NULL;
  116. if (RB_EMPTY_ROOT(&root->rb_root))
  117. return NULL;
  118. if (re) {
  119. if (re->ofs <= ofs && re->ofs + re->len > ofs)
  120. goto lookup_neighbors;
  121. }
  122. if (leftmost)
  123. *leftmost = true;
  124. while (*pnode) {
  125. parent = *pnode;
  126. re = rb_entry(*pnode, struct rb_entry, rb_node);
  127. if (ofs < re->ofs) {
  128. pnode = &(*pnode)->rb_left;
  129. } else if (ofs >= re->ofs + re->len) {
  130. pnode = &(*pnode)->rb_right;
  131. if (leftmost)
  132. *leftmost = false;
  133. } else {
  134. goto lookup_neighbors;
  135. }
  136. }
  137. *insert_p = pnode;
  138. *insert_parent = parent;
  139. re = rb_entry(parent, struct rb_entry, rb_node);
  140. tmp_node = parent;
  141. if (parent && ofs > re->ofs)
  142. tmp_node = rb_next(parent);
  143. *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
  144. tmp_node = parent;
  145. if (parent && ofs < re->ofs)
  146. tmp_node = rb_prev(parent);
  147. *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
  148. return NULL;
  149. lookup_neighbors:
  150. if (ofs == re->ofs || force) {
  151. /* lookup prev node for merging backward later */
  152. tmp_node = rb_prev(&re->rb_node);
  153. *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
  154. }
  155. if (ofs == re->ofs + re->len - 1 || force) {
  156. /* lookup next node for merging frontward later */
  157. tmp_node = rb_next(&re->rb_node);
  158. *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
  159. }
  160. return re;
  161. }
  162. bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
  163. struct rb_root_cached *root, bool check_key)
  164. {
  165. #ifdef CONFIG_F2FS_CHECK_FS
  166. struct rb_node *cur = rb_first_cached(root), *next;
  167. struct rb_entry *cur_re, *next_re;
  168. if (!cur)
  169. return true;
  170. while (cur) {
  171. next = rb_next(cur);
  172. if (!next)
  173. return true;
  174. cur_re = rb_entry(cur, struct rb_entry, rb_node);
  175. next_re = rb_entry(next, struct rb_entry, rb_node);
  176. if (check_key) {
  177. if (cur_re->key > next_re->key) {
  178. f2fs_info(sbi, "inconsistent rbtree, "
  179. "cur(%llu) next(%llu)",
  180. cur_re->key, next_re->key);
  181. return false;
  182. }
  183. goto next;
  184. }
  185. if (cur_re->ofs + cur_re->len > next_re->ofs) {
  186. f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
  187. cur_re->ofs, cur_re->len,
  188. next_re->ofs, next_re->len);
  189. return false;
  190. }
  191. next:
  192. cur = next;
  193. }
  194. #endif
  195. return true;
  196. }
  197. static struct kmem_cache *extent_tree_slab;
  198. static struct kmem_cache *extent_node_slab;
  199. static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
  200. struct extent_tree *et, struct extent_info *ei,
  201. struct rb_node *parent, struct rb_node **p,
  202. bool leftmost)
  203. {
  204. struct extent_node *en;
  205. en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
  206. if (!en)
  207. return NULL;
  208. en->ei = *ei;
  209. INIT_LIST_HEAD(&en->list);
  210. en->et = et;
  211. rb_link_node(&en->rb_node, parent, p);
  212. rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
  213. atomic_inc(&et->node_cnt);
  214. atomic_inc(&sbi->total_ext_node);
  215. return en;
  216. }
  217. static void __detach_extent_node(struct f2fs_sb_info *sbi,
  218. struct extent_tree *et, struct extent_node *en)
  219. {
  220. rb_erase_cached(&en->rb_node, &et->root);
  221. atomic_dec(&et->node_cnt);
  222. atomic_dec(&sbi->total_ext_node);
  223. if (et->cached_en == en)
  224. et->cached_en = NULL;
  225. kmem_cache_free(extent_node_slab, en);
  226. }
  227. /*
  228. * Flow to release an extent_node:
  229. * 1. list_del_init
  230. * 2. __detach_extent_node
  231. * 3. kmem_cache_free.
  232. */
  233. static void __release_extent_node(struct f2fs_sb_info *sbi,
  234. struct extent_tree *et, struct extent_node *en)
  235. {
  236. spin_lock(&sbi->extent_lock);
  237. f2fs_bug_on(sbi, list_empty(&en->list));
  238. list_del_init(&en->list);
  239. spin_unlock(&sbi->extent_lock);
  240. __detach_extent_node(sbi, et, en);
  241. }
  242. static struct extent_tree *__grab_extent_tree(struct inode *inode)
  243. {
  244. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  245. struct extent_tree *et;
  246. nid_t ino = inode->i_ino;
  247. mutex_lock(&sbi->extent_tree_lock);
  248. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  249. if (!et) {
  250. et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
  251. f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
  252. memset(et, 0, sizeof(struct extent_tree));
  253. et->ino = ino;
  254. et->root = RB_ROOT_CACHED;
  255. et->cached_en = NULL;
  256. rwlock_init(&et->lock);
  257. INIT_LIST_HEAD(&et->list);
  258. atomic_set(&et->node_cnt, 0);
  259. atomic_inc(&sbi->total_ext_tree);
  260. } else {
  261. atomic_dec(&sbi->total_zombie_tree);
  262. list_del_init(&et->list);
  263. }
  264. mutex_unlock(&sbi->extent_tree_lock);
  265. /* never died until evict_inode */
  266. F2FS_I(inode)->extent_tree = et;
  267. return et;
  268. }
  269. static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
  270. struct extent_tree *et, struct extent_info *ei)
  271. {
  272. struct rb_node **p = &et->root.rb_root.rb_node;
  273. struct extent_node *en;
  274. en = __attach_extent_node(sbi, et, ei, NULL, p, true);
  275. if (!en)
  276. return NULL;
  277. et->largest = en->ei;
  278. et->cached_en = en;
  279. return en;
  280. }
  281. static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
  282. struct extent_tree *et)
  283. {
  284. struct rb_node *node, *next;
  285. struct extent_node *en;
  286. unsigned int count = atomic_read(&et->node_cnt);
  287. node = rb_first_cached(&et->root);
  288. while (node) {
  289. next = rb_next(node);
  290. en = rb_entry(node, struct extent_node, rb_node);
  291. __release_extent_node(sbi, et, en);
  292. node = next;
  293. }
  294. return count - atomic_read(&et->node_cnt);
  295. }
  296. static void __drop_largest_extent(struct extent_tree *et,
  297. pgoff_t fofs, unsigned int len)
  298. {
  299. if (fofs < et->largest.fofs + et->largest.len &&
  300. fofs + len > et->largest.fofs) {
  301. et->largest.len = 0;
  302. et->largest_updated = true;
  303. }
  304. }
  305. /* return true, if inode page is changed */
  306. static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
  307. {
  308. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  309. struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL;
  310. struct extent_tree *et;
  311. struct extent_node *en;
  312. struct extent_info ei;
  313. if (!f2fs_may_extent_tree(inode)) {
  314. /* drop largest extent */
  315. if (i_ext && i_ext->len) {
  316. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  317. i_ext->len = 0;
  318. set_page_dirty(ipage);
  319. return;
  320. }
  321. return;
  322. }
  323. et = __grab_extent_tree(inode);
  324. if (!i_ext || !i_ext->len)
  325. return;
  326. get_extent_info(&ei, i_ext);
  327. write_lock(&et->lock);
  328. if (atomic_read(&et->node_cnt))
  329. goto out;
  330. en = __init_extent_tree(sbi, et, &ei);
  331. if (en) {
  332. spin_lock(&sbi->extent_lock);
  333. list_add_tail(&en->list, &sbi->extent_list);
  334. spin_unlock(&sbi->extent_lock);
  335. }
  336. out:
  337. write_unlock(&et->lock);
  338. }
  339. void f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
  340. {
  341. __f2fs_init_extent_tree(inode, ipage);
  342. if (!F2FS_I(inode)->extent_tree)
  343. set_inode_flag(inode, FI_NO_EXTENT);
  344. }
  345. static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
  346. struct extent_info *ei)
  347. {
  348. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  349. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  350. struct extent_node *en;
  351. bool ret = false;
  352. f2fs_bug_on(sbi, !et);
  353. trace_f2fs_lookup_extent_tree_start(inode, pgofs);
  354. read_lock(&et->lock);
  355. if (et->largest.fofs <= pgofs &&
  356. et->largest.fofs + et->largest.len > pgofs) {
  357. *ei = et->largest;
  358. ret = true;
  359. stat_inc_largest_node_hit(sbi);
  360. goto out;
  361. }
  362. en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
  363. (struct rb_entry *)et->cached_en, pgofs);
  364. if (!en)
  365. goto out;
  366. if (en == et->cached_en)
  367. stat_inc_cached_node_hit(sbi);
  368. else
  369. stat_inc_rbtree_node_hit(sbi);
  370. *ei = en->ei;
  371. spin_lock(&sbi->extent_lock);
  372. if (!list_empty(&en->list)) {
  373. list_move_tail(&en->list, &sbi->extent_list);
  374. et->cached_en = en;
  375. }
  376. spin_unlock(&sbi->extent_lock);
  377. ret = true;
  378. out:
  379. stat_inc_total_hit(sbi);
  380. read_unlock(&et->lock);
  381. trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
  382. return ret;
  383. }
  384. static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
  385. struct extent_tree *et, struct extent_info *ei,
  386. struct extent_node *prev_ex,
  387. struct extent_node *next_ex)
  388. {
  389. struct extent_node *en = NULL;
  390. if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
  391. prev_ex->ei.len += ei->len;
  392. ei = &prev_ex->ei;
  393. en = prev_ex;
  394. }
  395. if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
  396. next_ex->ei.fofs = ei->fofs;
  397. next_ex->ei.blk = ei->blk;
  398. next_ex->ei.len += ei->len;
  399. if (en)
  400. __release_extent_node(sbi, et, prev_ex);
  401. en = next_ex;
  402. }
  403. if (!en)
  404. return NULL;
  405. __try_update_largest_extent(et, en);
  406. spin_lock(&sbi->extent_lock);
  407. if (!list_empty(&en->list)) {
  408. list_move_tail(&en->list, &sbi->extent_list);
  409. et->cached_en = en;
  410. }
  411. spin_unlock(&sbi->extent_lock);
  412. return en;
  413. }
  414. static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
  415. struct extent_tree *et, struct extent_info *ei,
  416. struct rb_node **insert_p,
  417. struct rb_node *insert_parent,
  418. bool leftmost)
  419. {
  420. struct rb_node **p;
  421. struct rb_node *parent = NULL;
  422. struct extent_node *en = NULL;
  423. if (insert_p && insert_parent) {
  424. parent = insert_parent;
  425. p = insert_p;
  426. goto do_insert;
  427. }
  428. leftmost = true;
  429. p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
  430. ei->fofs, &leftmost);
  431. do_insert:
  432. en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
  433. if (!en)
  434. return NULL;
  435. __try_update_largest_extent(et, en);
  436. /* update in global extent list */
  437. spin_lock(&sbi->extent_lock);
  438. list_add_tail(&en->list, &sbi->extent_list);
  439. et->cached_en = en;
  440. spin_unlock(&sbi->extent_lock);
  441. return en;
  442. }
  443. static void f2fs_update_extent_tree_range(struct inode *inode,
  444. pgoff_t fofs, block_t blkaddr, unsigned int len)
  445. {
  446. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  447. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  448. struct extent_node *en = NULL, *en1 = NULL;
  449. struct extent_node *prev_en = NULL, *next_en = NULL;
  450. struct extent_info ei, dei, prev;
  451. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  452. unsigned int end = fofs + len;
  453. unsigned int pos = (unsigned int)fofs;
  454. bool updated = false;
  455. bool leftmost = false;
  456. if (!et)
  457. return;
  458. trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
  459. write_lock(&et->lock);
  460. if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
  461. write_unlock(&et->lock);
  462. return;
  463. }
  464. prev = et->largest;
  465. dei.len = 0;
  466. /*
  467. * drop largest extent before lookup, in case it's already
  468. * been shrunk from extent tree
  469. */
  470. __drop_largest_extent(et, fofs, len);
  471. /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
  472. en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
  473. (struct rb_entry *)et->cached_en, fofs,
  474. (struct rb_entry **)&prev_en,
  475. (struct rb_entry **)&next_en,
  476. &insert_p, &insert_parent, false,
  477. &leftmost);
  478. if (!en)
  479. en = next_en;
  480. /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
  481. while (en && en->ei.fofs < end) {
  482. unsigned int org_end;
  483. int parts = 0; /* # of parts current extent split into */
  484. next_en = en1 = NULL;
  485. dei = en->ei;
  486. org_end = dei.fofs + dei.len;
  487. f2fs_bug_on(sbi, pos >= org_end);
  488. if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
  489. en->ei.len = pos - en->ei.fofs;
  490. prev_en = en;
  491. parts = 1;
  492. }
  493. if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
  494. if (parts) {
  495. set_extent_info(&ei, end,
  496. end - dei.fofs + dei.blk,
  497. org_end - end);
  498. en1 = __insert_extent_tree(sbi, et, &ei,
  499. NULL, NULL, true);
  500. next_en = en1;
  501. } else {
  502. en->ei.fofs = end;
  503. en->ei.blk += end - dei.fofs;
  504. en->ei.len -= end - dei.fofs;
  505. next_en = en;
  506. }
  507. parts++;
  508. }
  509. if (!next_en) {
  510. struct rb_node *node = rb_next(&en->rb_node);
  511. next_en = rb_entry_safe(node, struct extent_node,
  512. rb_node);
  513. }
  514. if (parts)
  515. __try_update_largest_extent(et, en);
  516. else
  517. __release_extent_node(sbi, et, en);
  518. /*
  519. * if original extent is split into zero or two parts, extent
  520. * tree has been altered by deletion or insertion, therefore
  521. * invalidate pointers regard to tree.
  522. */
  523. if (parts != 1) {
  524. insert_p = NULL;
  525. insert_parent = NULL;
  526. }
  527. en = next_en;
  528. }
  529. /* 3. update extent in extent cache */
  530. if (blkaddr) {
  531. set_extent_info(&ei, fofs, blkaddr, len);
  532. if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
  533. __insert_extent_tree(sbi, et, &ei,
  534. insert_p, insert_parent, leftmost);
  535. /* give up extent_cache, if split and small updates happen */
  536. if (dei.len >= 1 &&
  537. prev.len < F2FS_MIN_EXTENT_LEN &&
  538. et->largest.len < F2FS_MIN_EXTENT_LEN) {
  539. et->largest.len = 0;
  540. et->largest_updated = true;
  541. set_inode_flag(inode, FI_NO_EXTENT);
  542. }
  543. }
  544. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  545. __free_extent_tree(sbi, et);
  546. if (et->largest_updated) {
  547. et->largest_updated = false;
  548. updated = true;
  549. }
  550. write_unlock(&et->lock);
  551. if (updated)
  552. f2fs_mark_inode_dirty_sync(inode, true);
  553. }
  554. unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
  555. {
  556. struct extent_tree *et, *next;
  557. struct extent_node *en;
  558. unsigned int node_cnt = 0, tree_cnt = 0;
  559. int remained;
  560. if (!test_opt(sbi, EXTENT_CACHE))
  561. return 0;
  562. if (!atomic_read(&sbi->total_zombie_tree))
  563. goto free_node;
  564. if (!mutex_trylock(&sbi->extent_tree_lock))
  565. goto out;
  566. /* 1. remove unreferenced extent tree */
  567. list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
  568. if (atomic_read(&et->node_cnt)) {
  569. write_lock(&et->lock);
  570. node_cnt += __free_extent_tree(sbi, et);
  571. write_unlock(&et->lock);
  572. }
  573. f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
  574. list_del_init(&et->list);
  575. radix_tree_delete(&sbi->extent_tree_root, et->ino);
  576. kmem_cache_free(extent_tree_slab, et);
  577. atomic_dec(&sbi->total_ext_tree);
  578. atomic_dec(&sbi->total_zombie_tree);
  579. tree_cnt++;
  580. if (node_cnt + tree_cnt >= nr_shrink)
  581. goto unlock_out;
  582. cond_resched();
  583. }
  584. mutex_unlock(&sbi->extent_tree_lock);
  585. free_node:
  586. /* 2. remove LRU extent entries */
  587. if (!mutex_trylock(&sbi->extent_tree_lock))
  588. goto out;
  589. remained = nr_shrink - (node_cnt + tree_cnt);
  590. spin_lock(&sbi->extent_lock);
  591. for (; remained > 0; remained--) {
  592. if (list_empty(&sbi->extent_list))
  593. break;
  594. en = list_first_entry(&sbi->extent_list,
  595. struct extent_node, list);
  596. et = en->et;
  597. if (!write_trylock(&et->lock)) {
  598. /* refresh this extent node's position in extent list */
  599. list_move_tail(&en->list, &sbi->extent_list);
  600. continue;
  601. }
  602. list_del_init(&en->list);
  603. spin_unlock(&sbi->extent_lock);
  604. __detach_extent_node(sbi, et, en);
  605. write_unlock(&et->lock);
  606. node_cnt++;
  607. spin_lock(&sbi->extent_lock);
  608. }
  609. spin_unlock(&sbi->extent_lock);
  610. unlock_out:
  611. mutex_unlock(&sbi->extent_tree_lock);
  612. out:
  613. trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
  614. return node_cnt + tree_cnt;
  615. }
  616. unsigned int f2fs_destroy_extent_node(struct inode *inode)
  617. {
  618. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  619. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  620. unsigned int node_cnt = 0;
  621. if (!et || !atomic_read(&et->node_cnt))
  622. return 0;
  623. write_lock(&et->lock);
  624. node_cnt = __free_extent_tree(sbi, et);
  625. write_unlock(&et->lock);
  626. return node_cnt;
  627. }
  628. void f2fs_drop_extent_tree(struct inode *inode)
  629. {
  630. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  631. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  632. bool updated = false;
  633. if (!f2fs_may_extent_tree(inode))
  634. return;
  635. set_inode_flag(inode, FI_NO_EXTENT);
  636. write_lock(&et->lock);
  637. __free_extent_tree(sbi, et);
  638. if (et->largest.len) {
  639. et->largest.len = 0;
  640. updated = true;
  641. }
  642. write_unlock(&et->lock);
  643. if (updated)
  644. f2fs_mark_inode_dirty_sync(inode, true);
  645. }
  646. void f2fs_destroy_extent_tree(struct inode *inode)
  647. {
  648. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  649. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  650. unsigned int node_cnt = 0;
  651. if (!et)
  652. return;
  653. if (inode->i_nlink && !is_bad_inode(inode) &&
  654. atomic_read(&et->node_cnt)) {
  655. mutex_lock(&sbi->extent_tree_lock);
  656. list_add_tail(&et->list, &sbi->zombie_list);
  657. atomic_inc(&sbi->total_zombie_tree);
  658. mutex_unlock(&sbi->extent_tree_lock);
  659. return;
  660. }
  661. /* free all extent info belong to this extent tree */
  662. node_cnt = f2fs_destroy_extent_node(inode);
  663. /* delete extent tree entry in radix tree */
  664. mutex_lock(&sbi->extent_tree_lock);
  665. f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
  666. radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
  667. kmem_cache_free(extent_tree_slab, et);
  668. atomic_dec(&sbi->total_ext_tree);
  669. mutex_unlock(&sbi->extent_tree_lock);
  670. F2FS_I(inode)->extent_tree = NULL;
  671. trace_f2fs_destroy_extent_tree(inode, node_cnt);
  672. }
  673. bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
  674. struct extent_info *ei)
  675. {
  676. if (!f2fs_may_extent_tree(inode))
  677. return false;
  678. return f2fs_lookup_extent_tree(inode, pgofs, ei);
  679. }
  680. void f2fs_update_extent_cache(struct dnode_of_data *dn)
  681. {
  682. pgoff_t fofs;
  683. block_t blkaddr;
  684. if (!f2fs_may_extent_tree(dn->inode))
  685. return;
  686. if (dn->data_blkaddr == NEW_ADDR)
  687. blkaddr = NULL_ADDR;
  688. else
  689. blkaddr = dn->data_blkaddr;
  690. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  691. dn->ofs_in_node;
  692. f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
  693. }
  694. void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
  695. pgoff_t fofs, block_t blkaddr, unsigned int len)
  696. {
  697. if (!f2fs_may_extent_tree(dn->inode))
  698. return;
  699. f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
  700. }
  701. void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
  702. {
  703. INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
  704. mutex_init(&sbi->extent_tree_lock);
  705. INIT_LIST_HEAD(&sbi->extent_list);
  706. spin_lock_init(&sbi->extent_lock);
  707. atomic_set(&sbi->total_ext_tree, 0);
  708. INIT_LIST_HEAD(&sbi->zombie_list);
  709. atomic_set(&sbi->total_zombie_tree, 0);
  710. atomic_set(&sbi->total_ext_node, 0);
  711. }
  712. int __init f2fs_create_extent_cache(void)
  713. {
  714. extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
  715. sizeof(struct extent_tree));
  716. if (!extent_tree_slab)
  717. return -ENOMEM;
  718. extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
  719. sizeof(struct extent_node));
  720. if (!extent_node_slab) {
  721. kmem_cache_destroy(extent_tree_slab);
  722. return -ENOMEM;
  723. }
  724. return 0;
  725. }
  726. void f2fs_destroy_extent_cache(void)
  727. {
  728. kmem_cache_destroy(extent_node_slab);
  729. kmem_cache_destroy(extent_tree_slab);
  730. }