dir.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/dir.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <asm/unaligned.h>
  9. #include <linux/fs.h>
  10. #include <linux/f2fs_fs.h>
  11. #include <linux/sched/signal.h>
  12. #include <linux/unicode.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. #include <trace/events/f2fs.h>
  18. #ifdef CONFIG_UNICODE
  19. extern struct kmem_cache *f2fs_cf_name_slab;
  20. #endif
  21. static unsigned long dir_blocks(struct inode *inode)
  22. {
  23. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  24. >> PAGE_SHIFT;
  25. }
  26. static unsigned int dir_buckets(unsigned int level, int dir_level)
  27. {
  28. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  29. return 1 << (level + dir_level);
  30. else
  31. return MAX_DIR_BUCKETS;
  32. }
  33. static unsigned int bucket_blocks(unsigned int level)
  34. {
  35. if (level < MAX_DIR_HASH_DEPTH / 2)
  36. return 2;
  37. else
  38. return 4;
  39. }
  40. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  41. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  42. [F2FS_FT_REG_FILE] = DT_REG,
  43. [F2FS_FT_DIR] = DT_DIR,
  44. [F2FS_FT_CHRDEV] = DT_CHR,
  45. [F2FS_FT_BLKDEV] = DT_BLK,
  46. [F2FS_FT_FIFO] = DT_FIFO,
  47. [F2FS_FT_SOCK] = DT_SOCK,
  48. [F2FS_FT_SYMLINK] = DT_LNK,
  49. };
  50. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  51. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  52. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  53. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  54. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  55. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  56. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  57. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  58. };
  59. static void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  60. {
  61. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  62. }
  63. unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de)
  64. {
  65. if (de->file_type < F2FS_FT_MAX)
  66. return f2fs_filetype_table[de->file_type];
  67. return DT_UNKNOWN;
  68. }
  69. /* If @dir is casefolded, initialize @fname->cf_name from @fname->usr_fname. */
  70. int f2fs_init_casefolded_name(const struct inode *dir,
  71. struct f2fs_filename *fname)
  72. {
  73. #ifdef CONFIG_UNICODE
  74. struct super_block *sb = dir->i_sb;
  75. if (IS_CASEFOLDED(dir)) {
  76. fname->cf_name.name = kmem_cache_alloc(f2fs_cf_name_slab,
  77. GFP_NOFS);
  78. if (!fname->cf_name.name)
  79. return -ENOMEM;
  80. fname->cf_name.len = utf8_casefold(sb->s_encoding,
  81. fname->usr_fname,
  82. fname->cf_name.name,
  83. F2FS_NAME_LEN);
  84. if ((int)fname->cf_name.len <= 0) {
  85. kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
  86. fname->cf_name.name = NULL;
  87. if (sb_has_strict_encoding(sb))
  88. return -EINVAL;
  89. /* fall back to treating name as opaque byte sequence */
  90. }
  91. }
  92. #endif
  93. return 0;
  94. }
  95. static int __f2fs_setup_filename(const struct inode *dir,
  96. const struct fscrypt_name *crypt_name,
  97. struct f2fs_filename *fname)
  98. {
  99. int err;
  100. memset(fname, 0, sizeof(*fname));
  101. fname->usr_fname = crypt_name->usr_fname;
  102. fname->disk_name = crypt_name->disk_name;
  103. #ifdef CONFIG_FS_ENCRYPTION
  104. fname->crypto_buf = crypt_name->crypto_buf;
  105. #endif
  106. if (crypt_name->is_nokey_name) {
  107. /* hash was decoded from the no-key name */
  108. fname->hash = cpu_to_le32(crypt_name->hash);
  109. } else {
  110. err = f2fs_init_casefolded_name(dir, fname);
  111. if (err) {
  112. f2fs_free_filename(fname);
  113. return err;
  114. }
  115. f2fs_hash_filename(dir, fname);
  116. }
  117. return 0;
  118. }
  119. /*
  120. * Prepare to search for @iname in @dir. This is similar to
  121. * fscrypt_setup_filename(), but this also handles computing the casefolded name
  122. * and the f2fs dirhash if needed, then packing all the information about this
  123. * filename up into a 'struct f2fs_filename'.
  124. */
  125. int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
  126. int lookup, struct f2fs_filename *fname)
  127. {
  128. struct fscrypt_name crypt_name;
  129. int err;
  130. err = fscrypt_setup_filename(dir, iname, lookup, &crypt_name);
  131. if (err)
  132. return err;
  133. return __f2fs_setup_filename(dir, &crypt_name, fname);
  134. }
  135. /*
  136. * Prepare to look up @dentry in @dir. This is similar to
  137. * fscrypt_prepare_lookup(), but this also handles computing the casefolded name
  138. * and the f2fs dirhash if needed, then packing all the information about this
  139. * filename up into a 'struct f2fs_filename'.
  140. */
  141. int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
  142. struct f2fs_filename *fname)
  143. {
  144. struct fscrypt_name crypt_name;
  145. int err;
  146. err = fscrypt_prepare_lookup(dir, dentry, &crypt_name);
  147. if (err)
  148. return err;
  149. return __f2fs_setup_filename(dir, &crypt_name, fname);
  150. }
  151. void f2fs_free_filename(struct f2fs_filename *fname)
  152. {
  153. #ifdef CONFIG_FS_ENCRYPTION
  154. kfree(fname->crypto_buf.name);
  155. fname->crypto_buf.name = NULL;
  156. #endif
  157. #ifdef CONFIG_UNICODE
  158. if (fname->cf_name.name) {
  159. kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
  160. fname->cf_name.name = NULL;
  161. }
  162. #endif
  163. }
  164. static unsigned long dir_block_index(unsigned int level,
  165. int dir_level, unsigned int idx)
  166. {
  167. unsigned long i;
  168. unsigned long bidx = 0;
  169. for (i = 0; i < level; i++)
  170. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  171. bidx += idx * bucket_blocks(level);
  172. return bidx;
  173. }
  174. static struct f2fs_dir_entry *find_in_block(struct inode *dir,
  175. struct page *dentry_page,
  176. const struct f2fs_filename *fname,
  177. int *max_slots)
  178. {
  179. struct f2fs_dentry_block *dentry_blk;
  180. struct f2fs_dentry_ptr d;
  181. dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
  182. make_dentry_ptr_block(dir, &d, dentry_blk);
  183. return f2fs_find_target_dentry(&d, fname, max_slots);
  184. }
  185. #ifdef CONFIG_UNICODE
  186. /*
  187. * Test whether a case-insensitive directory entry matches the filename
  188. * being searched for.
  189. *
  190. * Returns 1 for a match, 0 for no match, and -errno on an error.
  191. */
  192. static int f2fs_match_ci_name(const struct inode *dir, const struct qstr *name,
  193. const u8 *de_name, u32 de_name_len)
  194. {
  195. const struct super_block *sb = dir->i_sb;
  196. const struct unicode_map *um = sb->s_encoding;
  197. struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
  198. struct qstr entry = QSTR_INIT(de_name, de_name_len);
  199. int res;
  200. if (IS_ENCRYPTED(dir)) {
  201. const struct fscrypt_str encrypted_name =
  202. FSTR_INIT((u8 *)de_name, de_name_len);
  203. if (WARN_ON_ONCE(!fscrypt_has_encryption_key(dir)))
  204. return -EINVAL;
  205. decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
  206. if (!decrypted_name.name)
  207. return -ENOMEM;
  208. res = fscrypt_fname_disk_to_usr(dir, 0, 0, &encrypted_name,
  209. &decrypted_name);
  210. if (res < 0)
  211. goto out;
  212. entry.name = decrypted_name.name;
  213. entry.len = decrypted_name.len;
  214. }
  215. res = utf8_strncasecmp_folded(um, name, &entry);
  216. /*
  217. * In strict mode, ignore invalid names. In non-strict mode,
  218. * fall back to treating them as opaque byte sequences.
  219. */
  220. if (res < 0 && !sb_has_strict_encoding(sb)) {
  221. res = name->len == entry.len &&
  222. memcmp(name->name, entry.name, name->len) == 0;
  223. } else {
  224. /* utf8_strncasecmp_folded returns 0 on match */
  225. res = (res == 0);
  226. }
  227. out:
  228. kfree(decrypted_name.name);
  229. return res;
  230. }
  231. #endif /* CONFIG_UNICODE */
  232. static inline int f2fs_match_name(const struct inode *dir,
  233. const struct f2fs_filename *fname,
  234. const u8 *de_name, u32 de_name_len)
  235. {
  236. struct fscrypt_name f;
  237. #ifdef CONFIG_UNICODE
  238. if (fname->cf_name.name) {
  239. struct qstr cf = FSTR_TO_QSTR(&fname->cf_name);
  240. return f2fs_match_ci_name(dir, &cf, de_name, de_name_len);
  241. }
  242. #endif
  243. f.usr_fname = fname->usr_fname;
  244. f.disk_name = fname->disk_name;
  245. #ifdef CONFIG_FS_ENCRYPTION
  246. f.crypto_buf = fname->crypto_buf;
  247. #endif
  248. return fscrypt_match_name(&f, de_name, de_name_len);
  249. }
  250. struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
  251. const struct f2fs_filename *fname, int *max_slots)
  252. {
  253. struct f2fs_dir_entry *de;
  254. unsigned long bit_pos = 0;
  255. int max_len = 0;
  256. int res = 0;
  257. if (max_slots)
  258. *max_slots = 0;
  259. while (bit_pos < d->max) {
  260. if (!test_bit_le(bit_pos, d->bitmap)) {
  261. bit_pos++;
  262. max_len++;
  263. continue;
  264. }
  265. de = &d->dentry[bit_pos];
  266. if (unlikely(!de->name_len)) {
  267. bit_pos++;
  268. continue;
  269. }
  270. if (de->hash_code == fname->hash) {
  271. res = f2fs_match_name(d->inode, fname,
  272. d->filename[bit_pos],
  273. le16_to_cpu(de->name_len));
  274. if (res < 0)
  275. return ERR_PTR(res);
  276. if (res)
  277. goto found;
  278. }
  279. if (max_slots && max_len > *max_slots)
  280. *max_slots = max_len;
  281. max_len = 0;
  282. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  283. }
  284. de = NULL;
  285. found:
  286. if (max_slots && max_len > *max_slots)
  287. *max_slots = max_len;
  288. return de;
  289. }
  290. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  291. unsigned int level,
  292. const struct f2fs_filename *fname,
  293. struct page **res_page)
  294. {
  295. int s = GET_DENTRY_SLOTS(fname->disk_name.len);
  296. unsigned int nbucket, nblock;
  297. unsigned int bidx, end_block;
  298. struct page *dentry_page;
  299. struct f2fs_dir_entry *de = NULL;
  300. bool room = false;
  301. int max_slots;
  302. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  303. nblock = bucket_blocks(level);
  304. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  305. le32_to_cpu(fname->hash) % nbucket);
  306. end_block = bidx + nblock;
  307. for (; bidx < end_block; bidx++) {
  308. /* no need to allocate new dentry pages to all the indices */
  309. dentry_page = f2fs_find_data_page(dir, bidx);
  310. if (IS_ERR(dentry_page)) {
  311. if (PTR_ERR(dentry_page) == -ENOENT) {
  312. room = true;
  313. continue;
  314. } else {
  315. *res_page = dentry_page;
  316. break;
  317. }
  318. }
  319. de = find_in_block(dir, dentry_page, fname, &max_slots);
  320. if (IS_ERR(de)) {
  321. *res_page = ERR_CAST(de);
  322. de = NULL;
  323. break;
  324. } else if (de) {
  325. *res_page = dentry_page;
  326. break;
  327. }
  328. if (max_slots >= s)
  329. room = true;
  330. f2fs_put_page(dentry_page, 0);
  331. }
  332. if (!de && room && F2FS_I(dir)->chash != fname->hash) {
  333. F2FS_I(dir)->chash = fname->hash;
  334. F2FS_I(dir)->clevel = level;
  335. }
  336. return de;
  337. }
  338. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  339. const struct f2fs_filename *fname,
  340. struct page **res_page)
  341. {
  342. unsigned long npages = dir_blocks(dir);
  343. struct f2fs_dir_entry *de = NULL;
  344. unsigned int max_depth;
  345. unsigned int level;
  346. *res_page = NULL;
  347. if (f2fs_has_inline_dentry(dir)) {
  348. de = f2fs_find_in_inline_dir(dir, fname, res_page);
  349. goto out;
  350. }
  351. if (npages == 0)
  352. goto out;
  353. max_depth = F2FS_I(dir)->i_current_depth;
  354. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  355. f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u",
  356. dir->i_ino, max_depth);
  357. max_depth = MAX_DIR_HASH_DEPTH;
  358. f2fs_i_depth_write(dir, max_depth);
  359. }
  360. for (level = 0; level < max_depth; level++) {
  361. de = find_in_level(dir, level, fname, res_page);
  362. if (de || IS_ERR(*res_page))
  363. break;
  364. }
  365. out:
  366. /* This is to increase the speed of f2fs_create */
  367. if (!de)
  368. F2FS_I(dir)->task = current;
  369. return de;
  370. }
  371. /*
  372. * Find an entry in the specified directory with the wanted name.
  373. * It returns the page where the entry was found (as a parameter - res_page),
  374. * and the entry itself. Page is returned mapped and unlocked.
  375. * Entry is guaranteed to be valid.
  376. */
  377. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  378. const struct qstr *child, struct page **res_page)
  379. {
  380. struct f2fs_dir_entry *de = NULL;
  381. struct f2fs_filename fname;
  382. int err;
  383. err = f2fs_setup_filename(dir, child, 1, &fname);
  384. if (err) {
  385. if (err == -ENOENT)
  386. *res_page = NULL;
  387. else
  388. *res_page = ERR_PTR(err);
  389. return NULL;
  390. }
  391. de = __f2fs_find_entry(dir, &fname, res_page);
  392. f2fs_free_filename(&fname);
  393. return de;
  394. }
  395. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  396. {
  397. struct qstr dotdot = QSTR_INIT("..", 2);
  398. return f2fs_find_entry(dir, &dotdot, p);
  399. }
  400. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  401. struct page **page)
  402. {
  403. ino_t res = 0;
  404. struct f2fs_dir_entry *de;
  405. de = f2fs_find_entry(dir, qstr, page);
  406. if (de) {
  407. res = le32_to_cpu(de->ino);
  408. f2fs_put_page(*page, 0);
  409. }
  410. return res;
  411. }
  412. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  413. struct page *page, struct inode *inode)
  414. {
  415. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  416. lock_page(page);
  417. f2fs_wait_on_page_writeback(page, type, true, true);
  418. de->ino = cpu_to_le32(inode->i_ino);
  419. set_de_type(de, inode->i_mode);
  420. set_page_dirty(page);
  421. dir->i_mtime = dir->i_ctime = current_time(dir);
  422. f2fs_mark_inode_dirty_sync(dir, false);
  423. f2fs_put_page(page, 1);
  424. }
  425. static void init_dent_inode(struct inode *dir, struct inode *inode,
  426. const struct f2fs_filename *fname,
  427. struct page *ipage)
  428. {
  429. struct f2fs_inode *ri;
  430. if (!fname) /* tmpfile case? */
  431. return;
  432. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  433. /* copy name info. to this inode page */
  434. ri = F2FS_INODE(ipage);
  435. ri->i_namelen = cpu_to_le32(fname->disk_name.len);
  436. memcpy(ri->i_name, fname->disk_name.name, fname->disk_name.len);
  437. if (IS_ENCRYPTED(dir)) {
  438. file_set_enc_name(inode);
  439. /*
  440. * Roll-forward recovery doesn't have encryption keys available,
  441. * so it can't compute the dirhash for encrypted+casefolded
  442. * filenames. Append it to i_name if possible. Else, disable
  443. * roll-forward recovery of the dentry (i.e., make fsync'ing the
  444. * file force a checkpoint) by setting LOST_PINO.
  445. */
  446. if (IS_CASEFOLDED(dir)) {
  447. if (fname->disk_name.len + sizeof(f2fs_hash_t) <=
  448. F2FS_NAME_LEN)
  449. put_unaligned(fname->hash, (f2fs_hash_t *)
  450. &ri->i_name[fname->disk_name.len]);
  451. else
  452. file_lost_pino(inode);
  453. }
  454. }
  455. set_page_dirty(ipage);
  456. }
  457. void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
  458. struct f2fs_dentry_ptr *d)
  459. {
  460. struct fscrypt_str dot = FSTR_INIT(".", 1);
  461. struct fscrypt_str dotdot = FSTR_INIT("..", 2);
  462. /* update dirent of "." */
  463. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  464. /* update dirent of ".." */
  465. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  466. }
  467. static int make_empty_dir(struct inode *inode,
  468. struct inode *parent, struct page *page)
  469. {
  470. struct page *dentry_page;
  471. struct f2fs_dentry_block *dentry_blk;
  472. struct f2fs_dentry_ptr d;
  473. if (f2fs_has_inline_dentry(inode))
  474. return f2fs_make_empty_inline_dir(inode, parent, page);
  475. dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
  476. if (IS_ERR(dentry_page))
  477. return PTR_ERR(dentry_page);
  478. dentry_blk = page_address(dentry_page);
  479. make_dentry_ptr_block(NULL, &d, dentry_blk);
  480. f2fs_do_make_empty_dir(inode, parent, &d);
  481. set_page_dirty(dentry_page);
  482. f2fs_put_page(dentry_page, 1);
  483. return 0;
  484. }
  485. struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
  486. const struct f2fs_filename *fname, struct page *dpage)
  487. {
  488. struct page *page;
  489. int err;
  490. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  491. page = f2fs_new_inode_page(inode);
  492. if (IS_ERR(page))
  493. return page;
  494. if (S_ISDIR(inode->i_mode)) {
  495. /* in order to handle error case */
  496. get_page(page);
  497. err = make_empty_dir(inode, dir, page);
  498. if (err) {
  499. lock_page(page);
  500. goto put_error;
  501. }
  502. put_page(page);
  503. }
  504. err = f2fs_init_acl(inode, dir, page, dpage);
  505. if (err)
  506. goto put_error;
  507. err = f2fs_init_security(inode, dir,
  508. fname ? fname->usr_fname : NULL, page);
  509. if (err)
  510. goto put_error;
  511. if (IS_ENCRYPTED(inode)) {
  512. err = fscrypt_set_context(inode, page);
  513. if (err)
  514. goto put_error;
  515. }
  516. } else {
  517. page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
  518. if (IS_ERR(page))
  519. return page;
  520. }
  521. init_dent_inode(dir, inode, fname, page);
  522. /*
  523. * This file should be checkpointed during fsync.
  524. * We lost i_pino from now on.
  525. */
  526. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  527. if (!S_ISDIR(inode->i_mode))
  528. file_lost_pino(inode);
  529. /*
  530. * If link the tmpfile to alias through linkat path,
  531. * we should remove this inode from orphan list.
  532. */
  533. if (inode->i_nlink == 0)
  534. f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  535. f2fs_i_links_write(inode, true);
  536. }
  537. return page;
  538. put_error:
  539. clear_nlink(inode);
  540. f2fs_update_inode(inode, page);
  541. f2fs_put_page(page, 1);
  542. return ERR_PTR(err);
  543. }
  544. void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
  545. unsigned int current_depth)
  546. {
  547. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  548. if (S_ISDIR(inode->i_mode))
  549. f2fs_i_links_write(dir, true);
  550. clear_inode_flag(inode, FI_NEW_INODE);
  551. }
  552. dir->i_mtime = dir->i_ctime = current_time(dir);
  553. f2fs_mark_inode_dirty_sync(dir, false);
  554. if (F2FS_I(dir)->i_current_depth != current_depth)
  555. f2fs_i_depth_write(dir, current_depth);
  556. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  557. clear_inode_flag(inode, FI_INC_LINK);
  558. }
  559. int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
  560. {
  561. int bit_start = 0;
  562. int zero_start, zero_end;
  563. next:
  564. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  565. if (zero_start >= max_slots)
  566. return max_slots;
  567. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  568. if (zero_end - zero_start >= slots)
  569. return zero_start;
  570. bit_start = zero_end + 1;
  571. if (zero_end + 1 >= max_slots)
  572. return max_slots;
  573. goto next;
  574. }
  575. bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
  576. const struct f2fs_filename *fname)
  577. {
  578. struct f2fs_dentry_ptr d;
  579. unsigned int bit_pos;
  580. int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
  581. make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage));
  582. bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
  583. return bit_pos < d.max;
  584. }
  585. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  586. const struct fscrypt_str *name, f2fs_hash_t name_hash,
  587. unsigned int bit_pos)
  588. {
  589. struct f2fs_dir_entry *de;
  590. int slots = GET_DENTRY_SLOTS(name->len);
  591. int i;
  592. de = &d->dentry[bit_pos];
  593. de->hash_code = name_hash;
  594. de->name_len = cpu_to_le16(name->len);
  595. memcpy(d->filename[bit_pos], name->name, name->len);
  596. de->ino = cpu_to_le32(ino);
  597. set_de_type(de, mode);
  598. for (i = 0; i < slots; i++) {
  599. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  600. /* avoid wrong garbage data for readdir */
  601. if (i)
  602. (de + i)->name_len = 0;
  603. }
  604. }
  605. int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
  606. struct inode *inode, nid_t ino, umode_t mode)
  607. {
  608. unsigned int bit_pos;
  609. unsigned int level;
  610. unsigned int current_depth;
  611. unsigned long bidx, block;
  612. unsigned int nbucket, nblock;
  613. struct page *dentry_page = NULL;
  614. struct f2fs_dentry_block *dentry_blk = NULL;
  615. struct f2fs_dentry_ptr d;
  616. struct page *page = NULL;
  617. int slots, err = 0;
  618. level = 0;
  619. slots = GET_DENTRY_SLOTS(fname->disk_name.len);
  620. current_depth = F2FS_I(dir)->i_current_depth;
  621. if (F2FS_I(dir)->chash == fname->hash) {
  622. level = F2FS_I(dir)->clevel;
  623. F2FS_I(dir)->chash = 0;
  624. }
  625. start:
  626. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
  627. f2fs_show_injection_info(F2FS_I_SB(dir), FAULT_DIR_DEPTH);
  628. return -ENOSPC;
  629. }
  630. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  631. return -ENOSPC;
  632. /* Increase the depth, if required */
  633. if (level == current_depth)
  634. ++current_depth;
  635. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  636. nblock = bucket_blocks(level);
  637. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  638. (le32_to_cpu(fname->hash) % nbucket));
  639. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  640. dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
  641. if (IS_ERR(dentry_page))
  642. return PTR_ERR(dentry_page);
  643. dentry_blk = page_address(dentry_page);
  644. bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
  645. slots, NR_DENTRY_IN_BLOCK);
  646. if (bit_pos < NR_DENTRY_IN_BLOCK)
  647. goto add_dentry;
  648. f2fs_put_page(dentry_page, 1);
  649. }
  650. /* Move to next level to find the empty slot for new dentry */
  651. ++level;
  652. goto start;
  653. add_dentry:
  654. f2fs_wait_on_page_writeback(dentry_page, DATA, true, true);
  655. if (inode) {
  656. f2fs_down_write(&F2FS_I(inode)->i_sem);
  657. page = f2fs_init_inode_metadata(inode, dir, fname, NULL);
  658. if (IS_ERR(page)) {
  659. err = PTR_ERR(page);
  660. goto fail;
  661. }
  662. }
  663. make_dentry_ptr_block(NULL, &d, dentry_blk);
  664. f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
  665. bit_pos);
  666. set_page_dirty(dentry_page);
  667. if (inode) {
  668. f2fs_i_pino_write(inode, dir->i_ino);
  669. /* synchronize inode page's data from inode cache */
  670. if (is_inode_flag_set(inode, FI_NEW_INODE))
  671. f2fs_update_inode(inode, page);
  672. f2fs_put_page(page, 1);
  673. }
  674. f2fs_update_parent_metadata(dir, inode, current_depth);
  675. fail:
  676. if (inode)
  677. f2fs_up_write(&F2FS_I(inode)->i_sem);
  678. f2fs_put_page(dentry_page, 1);
  679. return err;
  680. }
  681. int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
  682. struct inode *inode, nid_t ino, umode_t mode)
  683. {
  684. int err = -EAGAIN;
  685. if (f2fs_has_inline_dentry(dir))
  686. err = f2fs_add_inline_entry(dir, fname, inode, ino, mode);
  687. if (err == -EAGAIN)
  688. err = f2fs_add_regular_entry(dir, fname, inode, ino, mode);
  689. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  690. return err;
  691. }
  692. /*
  693. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  694. * f2fs_unlock_op().
  695. */
  696. int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
  697. struct inode *inode, nid_t ino, umode_t mode)
  698. {
  699. struct f2fs_filename fname;
  700. struct page *page = NULL;
  701. struct f2fs_dir_entry *de = NULL;
  702. int err;
  703. err = f2fs_setup_filename(dir, name, 0, &fname);
  704. if (err)
  705. return err;
  706. /*
  707. * An immature stackable filesystem shows a race condition between lookup
  708. * and create. If we have same task when doing lookup and create, it's
  709. * definitely fine as expected by VFS normally. Otherwise, let's just
  710. * verify on-disk dentry one more time, which guarantees filesystem
  711. * consistency more.
  712. */
  713. if (current != F2FS_I(dir)->task) {
  714. de = __f2fs_find_entry(dir, &fname, &page);
  715. F2FS_I(dir)->task = NULL;
  716. }
  717. if (de) {
  718. f2fs_put_page(page, 0);
  719. err = -EEXIST;
  720. } else if (IS_ERR(page)) {
  721. err = PTR_ERR(page);
  722. } else {
  723. err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
  724. }
  725. f2fs_free_filename(&fname);
  726. return err;
  727. }
  728. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  729. {
  730. struct page *page;
  731. int err = 0;
  732. f2fs_down_write(&F2FS_I(inode)->i_sem);
  733. page = f2fs_init_inode_metadata(inode, dir, NULL, NULL);
  734. if (IS_ERR(page)) {
  735. err = PTR_ERR(page);
  736. goto fail;
  737. }
  738. f2fs_put_page(page, 1);
  739. clear_inode_flag(inode, FI_NEW_INODE);
  740. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  741. fail:
  742. f2fs_up_write(&F2FS_I(inode)->i_sem);
  743. return err;
  744. }
  745. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  746. {
  747. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  748. f2fs_down_write(&F2FS_I(inode)->i_sem);
  749. if (S_ISDIR(inode->i_mode))
  750. f2fs_i_links_write(dir, false);
  751. inode->i_ctime = current_time(inode);
  752. f2fs_i_links_write(inode, false);
  753. if (S_ISDIR(inode->i_mode)) {
  754. f2fs_i_links_write(inode, false);
  755. f2fs_i_size_write(inode, 0);
  756. }
  757. f2fs_up_write(&F2FS_I(inode)->i_sem);
  758. if (inode->i_nlink == 0)
  759. f2fs_add_orphan_inode(inode);
  760. else
  761. f2fs_release_orphan_inode(sbi);
  762. }
  763. /*
  764. * It only removes the dentry from the dentry page, corresponding name
  765. * entry in name page does not need to be touched during deletion.
  766. */
  767. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  768. struct inode *dir, struct inode *inode)
  769. {
  770. struct f2fs_dentry_block *dentry_blk;
  771. unsigned int bit_pos;
  772. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  773. int i;
  774. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  775. if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
  776. f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
  777. if (f2fs_has_inline_dentry(dir))
  778. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  779. lock_page(page);
  780. f2fs_wait_on_page_writeback(page, DATA, true, true);
  781. dentry_blk = page_address(page);
  782. bit_pos = dentry - dentry_blk->dentry;
  783. for (i = 0; i < slots; i++)
  784. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  785. /* Let's check and deallocate this dentry page */
  786. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  787. NR_DENTRY_IN_BLOCK,
  788. 0);
  789. set_page_dirty(page);
  790. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  791. !f2fs_truncate_hole(dir, page->index, page->index + 1)) {
  792. f2fs_clear_page_cache_dirty_tag(page);
  793. clear_page_dirty_for_io(page);
  794. ClearPageUptodate(page);
  795. clear_page_private_gcing(page);
  796. inode_dec_dirty_pages(dir);
  797. f2fs_remove_dirty_inode(dir);
  798. detach_page_private(page);
  799. set_page_private(page, 0);
  800. }
  801. f2fs_put_page(page, 1);
  802. dir->i_ctime = dir->i_mtime = current_time(dir);
  803. f2fs_mark_inode_dirty_sync(dir, false);
  804. if (inode)
  805. f2fs_drop_nlink(dir, inode);
  806. }
  807. bool f2fs_empty_dir(struct inode *dir)
  808. {
  809. unsigned long bidx;
  810. struct page *dentry_page;
  811. unsigned int bit_pos;
  812. struct f2fs_dentry_block *dentry_blk;
  813. unsigned long nblock = dir_blocks(dir);
  814. if (f2fs_has_inline_dentry(dir))
  815. return f2fs_empty_inline_dir(dir);
  816. for (bidx = 0; bidx < nblock; bidx++) {
  817. dentry_page = f2fs_get_lock_data_page(dir, bidx, false);
  818. if (IS_ERR(dentry_page)) {
  819. if (PTR_ERR(dentry_page) == -ENOENT)
  820. continue;
  821. else
  822. return false;
  823. }
  824. dentry_blk = page_address(dentry_page);
  825. if (bidx == 0)
  826. bit_pos = 2;
  827. else
  828. bit_pos = 0;
  829. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  830. NR_DENTRY_IN_BLOCK,
  831. bit_pos);
  832. f2fs_put_page(dentry_page, 1);
  833. if (bit_pos < NR_DENTRY_IN_BLOCK)
  834. return false;
  835. }
  836. return true;
  837. }
  838. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  839. unsigned int start_pos, struct fscrypt_str *fstr)
  840. {
  841. unsigned char d_type = DT_UNKNOWN;
  842. unsigned int bit_pos;
  843. struct f2fs_dir_entry *de = NULL;
  844. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  845. struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
  846. struct blk_plug plug;
  847. bool readdir_ra = sbi->readdir_ra == 1;
  848. bool found_valid_dirent = false;
  849. int err = 0;
  850. bit_pos = ((unsigned long)ctx->pos % d->max);
  851. if (readdir_ra)
  852. blk_start_plug(&plug);
  853. while (bit_pos < d->max) {
  854. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  855. if (bit_pos >= d->max)
  856. break;
  857. de = &d->dentry[bit_pos];
  858. if (de->name_len == 0) {
  859. if (found_valid_dirent || !bit_pos) {
  860. printk_ratelimited(
  861. "%sF2FS-fs (%s): invalid namelen(0), ino:%u, run fsck to fix.",
  862. KERN_WARNING, sbi->sb->s_id,
  863. le32_to_cpu(de->ino));
  864. set_sbi_flag(sbi, SBI_NEED_FSCK);
  865. }
  866. bit_pos++;
  867. ctx->pos = start_pos + bit_pos;
  868. continue;
  869. }
  870. d_type = f2fs_get_de_type(de);
  871. de_name.name = d->filename[bit_pos];
  872. de_name.len = le16_to_cpu(de->name_len);
  873. /* check memory boundary before moving forward */
  874. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  875. if (unlikely(bit_pos > d->max ||
  876. le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
  877. f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.",
  878. __func__, le16_to_cpu(de->name_len));
  879. set_sbi_flag(sbi, SBI_NEED_FSCK);
  880. err = -EFSCORRUPTED;
  881. goto out;
  882. }
  883. if (IS_ENCRYPTED(d->inode)) {
  884. int save_len = fstr->len;
  885. err = fscrypt_fname_disk_to_usr(d->inode,
  886. (u32)le32_to_cpu(de->hash_code),
  887. 0, &de_name, fstr);
  888. if (err)
  889. goto out;
  890. de_name = *fstr;
  891. fstr->len = save_len;
  892. }
  893. if (!dir_emit(ctx, de_name.name, de_name.len,
  894. le32_to_cpu(de->ino), d_type)) {
  895. err = 1;
  896. goto out;
  897. }
  898. if (readdir_ra)
  899. f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
  900. ctx->pos = start_pos + bit_pos;
  901. found_valid_dirent = true;
  902. }
  903. out:
  904. if (readdir_ra)
  905. blk_finish_plug(&plug);
  906. return err;
  907. }
  908. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  909. {
  910. struct inode *inode = file_inode(file);
  911. unsigned long npages = dir_blocks(inode);
  912. struct f2fs_dentry_block *dentry_blk = NULL;
  913. struct page *dentry_page = NULL;
  914. struct file_ra_state *ra = &file->f_ra;
  915. loff_t start_pos = ctx->pos;
  916. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  917. struct f2fs_dentry_ptr d;
  918. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  919. int err = 0;
  920. if (IS_ENCRYPTED(inode)) {
  921. err = fscrypt_prepare_readdir(inode);
  922. if (err)
  923. goto out;
  924. err = fscrypt_fname_alloc_buffer(F2FS_NAME_LEN, &fstr);
  925. if (err < 0)
  926. goto out;
  927. }
  928. if (f2fs_has_inline_dentry(inode)) {
  929. err = f2fs_read_inline_dir(file, ctx, &fstr);
  930. goto out_free;
  931. }
  932. for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
  933. /* allow readdir() to be interrupted */
  934. if (fatal_signal_pending(current)) {
  935. err = -ERESTARTSYS;
  936. goto out_free;
  937. }
  938. cond_resched();
  939. /* readahead for multi pages of dir */
  940. if (npages - n > 1 && !ra_has_index(ra, n))
  941. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  942. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  943. dentry_page = f2fs_find_data_page(inode, n);
  944. if (IS_ERR(dentry_page)) {
  945. err = PTR_ERR(dentry_page);
  946. if (err == -ENOENT) {
  947. err = 0;
  948. continue;
  949. } else {
  950. goto out_free;
  951. }
  952. }
  953. dentry_blk = page_address(dentry_page);
  954. make_dentry_ptr_block(inode, &d, dentry_blk);
  955. err = f2fs_fill_dentries(ctx, &d,
  956. n * NR_DENTRY_IN_BLOCK, &fstr);
  957. if (err) {
  958. f2fs_put_page(dentry_page, 0);
  959. break;
  960. }
  961. f2fs_put_page(dentry_page, 0);
  962. }
  963. out_free:
  964. fscrypt_fname_free_buffer(&fstr);
  965. out:
  966. trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
  967. return err < 0 ? err : 0;
  968. }
  969. const struct file_operations f2fs_dir_operations = {
  970. .llseek = generic_file_llseek,
  971. .read = generic_read_dir,
  972. .iterate_shared = f2fs_readdir,
  973. .fsync = f2fs_sync_file,
  974. .unlocked_ioctl = f2fs_ioctl,
  975. #ifdef CONFIG_COMPAT
  976. .compat_ioctl = f2fs_compat_ioctl,
  977. #endif
  978. };