ptp_sysfs.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PTP 1588 clock support - sysfs interface.
  4. *
  5. * Copyright (C) 2010 OMICRON electronics GmbH
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/slab.h>
  9. #include "ptp_private.h"
  10. static ssize_t clock_name_show(struct device *dev,
  11. struct device_attribute *attr, char *page)
  12. {
  13. struct ptp_clock *ptp = dev_get_drvdata(dev);
  14. return sysfs_emit(page, "%s\n", ptp->info->name);
  15. }
  16. static DEVICE_ATTR_RO(clock_name);
  17. #define PTP_SHOW_INT(name, var) \
  18. static ssize_t var##_show(struct device *dev, \
  19. struct device_attribute *attr, char *page) \
  20. { \
  21. struct ptp_clock *ptp = dev_get_drvdata(dev); \
  22. return snprintf(page, PAGE_SIZE-1, "%d\n", ptp->info->var); \
  23. } \
  24. static DEVICE_ATTR(name, 0444, var##_show, NULL);
  25. PTP_SHOW_INT(max_adjustment, max_adj);
  26. PTP_SHOW_INT(n_alarms, n_alarm);
  27. PTP_SHOW_INT(n_external_timestamps, n_ext_ts);
  28. PTP_SHOW_INT(n_periodic_outputs, n_per_out);
  29. PTP_SHOW_INT(n_programmable_pins, n_pins);
  30. PTP_SHOW_INT(pps_available, pps);
  31. static ssize_t extts_enable_store(struct device *dev,
  32. struct device_attribute *attr,
  33. const char *buf, size_t count)
  34. {
  35. struct ptp_clock *ptp = dev_get_drvdata(dev);
  36. struct ptp_clock_info *ops = ptp->info;
  37. struct ptp_clock_request req = { .type = PTP_CLK_REQ_EXTTS };
  38. int cnt, enable;
  39. int err = -EINVAL;
  40. cnt = sscanf(buf, "%u %d", &req.extts.index, &enable);
  41. if (cnt != 2)
  42. goto out;
  43. if (req.extts.index >= ops->n_ext_ts)
  44. goto out;
  45. err = ops->enable(ops, &req, enable ? 1 : 0);
  46. if (err)
  47. goto out;
  48. return count;
  49. out:
  50. return err;
  51. }
  52. static DEVICE_ATTR(extts_enable, 0220, NULL, extts_enable_store);
  53. static ssize_t extts_fifo_show(struct device *dev,
  54. struct device_attribute *attr, char *page)
  55. {
  56. struct ptp_clock *ptp = dev_get_drvdata(dev);
  57. struct timestamp_event_queue *queue = &ptp->tsevq;
  58. struct ptp_extts_event event;
  59. unsigned long flags;
  60. size_t qcnt;
  61. int cnt = 0;
  62. memset(&event, 0, sizeof(event));
  63. if (mutex_lock_interruptible(&ptp->tsevq_mux))
  64. return -ERESTARTSYS;
  65. spin_lock_irqsave(&queue->lock, flags);
  66. qcnt = queue_cnt(queue);
  67. if (qcnt) {
  68. event = queue->buf[queue->head];
  69. queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
  70. }
  71. spin_unlock_irqrestore(&queue->lock, flags);
  72. if (!qcnt)
  73. goto out;
  74. cnt = snprintf(page, PAGE_SIZE, "%u %lld %u\n",
  75. event.index, event.t.sec, event.t.nsec);
  76. out:
  77. mutex_unlock(&ptp->tsevq_mux);
  78. return cnt;
  79. }
  80. static DEVICE_ATTR(fifo, 0444, extts_fifo_show, NULL);
  81. static ssize_t period_store(struct device *dev,
  82. struct device_attribute *attr,
  83. const char *buf, size_t count)
  84. {
  85. struct ptp_clock *ptp = dev_get_drvdata(dev);
  86. struct ptp_clock_info *ops = ptp->info;
  87. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PEROUT };
  88. int cnt, enable, err = -EINVAL;
  89. cnt = sscanf(buf, "%u %lld %u %lld %u", &req.perout.index,
  90. &req.perout.start.sec, &req.perout.start.nsec,
  91. &req.perout.period.sec, &req.perout.period.nsec);
  92. if (cnt != 5)
  93. goto out;
  94. if (req.perout.index >= ops->n_per_out)
  95. goto out;
  96. enable = req.perout.period.sec || req.perout.period.nsec;
  97. err = ops->enable(ops, &req, enable);
  98. if (err)
  99. goto out;
  100. return count;
  101. out:
  102. return err;
  103. }
  104. static DEVICE_ATTR(period, 0220, NULL, period_store);
  105. static ssize_t pps_enable_store(struct device *dev,
  106. struct device_attribute *attr,
  107. const char *buf, size_t count)
  108. {
  109. struct ptp_clock *ptp = dev_get_drvdata(dev);
  110. struct ptp_clock_info *ops = ptp->info;
  111. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PPS };
  112. int cnt, enable;
  113. int err = -EINVAL;
  114. if (!capable(CAP_SYS_TIME))
  115. return -EPERM;
  116. cnt = sscanf(buf, "%d", &enable);
  117. if (cnt != 1)
  118. goto out;
  119. err = ops->enable(ops, &req, enable ? 1 : 0);
  120. if (err)
  121. goto out;
  122. return count;
  123. out:
  124. return err;
  125. }
  126. static DEVICE_ATTR(pps_enable, 0220, NULL, pps_enable_store);
  127. static struct attribute *ptp_attrs[] = {
  128. &dev_attr_clock_name.attr,
  129. &dev_attr_max_adjustment.attr,
  130. &dev_attr_n_alarms.attr,
  131. &dev_attr_n_external_timestamps.attr,
  132. &dev_attr_n_periodic_outputs.attr,
  133. &dev_attr_n_programmable_pins.attr,
  134. &dev_attr_pps_available.attr,
  135. &dev_attr_extts_enable.attr,
  136. &dev_attr_fifo.attr,
  137. &dev_attr_period.attr,
  138. &dev_attr_pps_enable.attr,
  139. NULL
  140. };
  141. static umode_t ptp_is_attribute_visible(struct kobject *kobj,
  142. struct attribute *attr, int n)
  143. {
  144. struct device *dev = kobj_to_dev(kobj);
  145. struct ptp_clock *ptp = dev_get_drvdata(dev);
  146. struct ptp_clock_info *info = ptp->info;
  147. umode_t mode = attr->mode;
  148. if (attr == &dev_attr_extts_enable.attr ||
  149. attr == &dev_attr_fifo.attr) {
  150. if (!info->n_ext_ts)
  151. mode = 0;
  152. } else if (attr == &dev_attr_period.attr) {
  153. if (!info->n_per_out)
  154. mode = 0;
  155. } else if (attr == &dev_attr_pps_enable.attr) {
  156. if (!info->pps)
  157. mode = 0;
  158. }
  159. return mode;
  160. }
  161. static const struct attribute_group ptp_group = {
  162. .is_visible = ptp_is_attribute_visible,
  163. .attrs = ptp_attrs,
  164. };
  165. const struct attribute_group *ptp_groups[] = {
  166. &ptp_group,
  167. NULL
  168. };
  169. static int ptp_pin_name2index(struct ptp_clock *ptp, const char *name)
  170. {
  171. int i;
  172. for (i = 0; i < ptp->info->n_pins; i++) {
  173. if (!strcmp(ptp->info->pin_config[i].name, name))
  174. return i;
  175. }
  176. return -1;
  177. }
  178. static ssize_t ptp_pin_show(struct device *dev, struct device_attribute *attr,
  179. char *page)
  180. {
  181. struct ptp_clock *ptp = dev_get_drvdata(dev);
  182. unsigned int func, chan;
  183. int index;
  184. index = ptp_pin_name2index(ptp, attr->attr.name);
  185. if (index < 0)
  186. return -EINVAL;
  187. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  188. return -ERESTARTSYS;
  189. func = ptp->info->pin_config[index].func;
  190. chan = ptp->info->pin_config[index].chan;
  191. mutex_unlock(&ptp->pincfg_mux);
  192. return sysfs_emit(page, "%u %u\n", func, chan);
  193. }
  194. static ssize_t ptp_pin_store(struct device *dev, struct device_attribute *attr,
  195. const char *buf, size_t count)
  196. {
  197. struct ptp_clock *ptp = dev_get_drvdata(dev);
  198. unsigned int func, chan;
  199. int cnt, err, index;
  200. cnt = sscanf(buf, "%u %u", &func, &chan);
  201. if (cnt != 2)
  202. return -EINVAL;
  203. index = ptp_pin_name2index(ptp, attr->attr.name);
  204. if (index < 0)
  205. return -EINVAL;
  206. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  207. return -ERESTARTSYS;
  208. err = ptp_set_pinfunc(ptp, index, func, chan);
  209. mutex_unlock(&ptp->pincfg_mux);
  210. if (err)
  211. return err;
  212. return count;
  213. }
  214. int ptp_populate_pin_groups(struct ptp_clock *ptp)
  215. {
  216. struct ptp_clock_info *info = ptp->info;
  217. int err = -ENOMEM, i, n_pins = info->n_pins;
  218. if (!n_pins)
  219. return 0;
  220. ptp->pin_dev_attr = kcalloc(n_pins, sizeof(*ptp->pin_dev_attr),
  221. GFP_KERNEL);
  222. if (!ptp->pin_dev_attr)
  223. goto no_dev_attr;
  224. ptp->pin_attr = kcalloc(1 + n_pins, sizeof(*ptp->pin_attr), GFP_KERNEL);
  225. if (!ptp->pin_attr)
  226. goto no_pin_attr;
  227. for (i = 0; i < n_pins; i++) {
  228. struct device_attribute *da = &ptp->pin_dev_attr[i];
  229. sysfs_attr_init(&da->attr);
  230. da->attr.name = info->pin_config[i].name;
  231. da->attr.mode = 0644;
  232. da->show = ptp_pin_show;
  233. da->store = ptp_pin_store;
  234. ptp->pin_attr[i] = &da->attr;
  235. }
  236. ptp->pin_attr_group.name = "pins";
  237. ptp->pin_attr_group.attrs = ptp->pin_attr;
  238. ptp->pin_attr_groups[0] = &ptp->pin_attr_group;
  239. return 0;
  240. no_pin_attr:
  241. kfree(ptp->pin_dev_attr);
  242. no_dev_attr:
  243. return err;
  244. }
  245. void ptp_cleanup_pin_groups(struct ptp_clock *ptp)
  246. {
  247. kfree(ptp->pin_attr);
  248. kfree(ptp->pin_dev_attr);
  249. }