lm8323.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * drivers/i2c/chips/lm8323.c
  4. *
  5. * Copyright (C) 2007-2009 Nokia Corporation
  6. *
  7. * Written by Daniel Stone <daniel.stone@nokia.com>
  8. * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
  9. *
  10. * Updated by Felipe Balbi <felipe.balbi@nokia.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/i2c.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/sched.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/input.h>
  19. #include <linux/leds.h>
  20. #include <linux/platform_data/lm8323.h>
  21. #include <linux/pm.h>
  22. #include <linux/slab.h>
  23. /* Commands to send to the chip. */
  24. #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
  25. #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
  26. #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
  27. #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
  28. #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
  29. #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
  30. #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
  31. #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
  32. #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
  33. #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
  34. #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
  35. #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
  36. #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
  37. #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
  38. #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
  39. #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
  40. #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
  41. #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
  42. #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
  43. #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
  44. #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
  45. #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
  46. /* Interrupt status. */
  47. #define INT_KEYPAD 0x01 /* Key event. */
  48. #define INT_ROTATOR 0x02 /* Rotator event. */
  49. #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
  50. #define INT_NOINIT 0x10 /* Lost configuration. */
  51. #define INT_PWM1 0x20 /* PWM1 stopped. */
  52. #define INT_PWM2 0x40 /* PWM2 stopped. */
  53. #define INT_PWM3 0x80 /* PWM3 stopped. */
  54. /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
  55. #define ERR_BADPAR 0x01 /* Bad parameter. */
  56. #define ERR_CMDUNK 0x02 /* Unknown command. */
  57. #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
  58. #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
  59. /* Configuration keys (CMD_{WRITE,READ}_CFG). */
  60. #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
  61. #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
  62. #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
  63. #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
  64. #define CFG_PSIZE 0x20 /* Package size (must be 0). */
  65. #define CFG_ROTEN 0x40 /* Enable rotator. */
  66. /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
  67. #define CLK_RCPWM_INTERNAL 0x00
  68. #define CLK_RCPWM_EXTERNAL 0x03
  69. #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
  70. #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
  71. /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
  72. #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
  73. #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
  74. #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
  75. #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
  76. /* Key event fifo length */
  77. #define LM8323_FIFO_LEN 15
  78. /* Commands for PWM engine; feed in with PWM_WRITE. */
  79. /* Load ramp counter from duty cycle field (range 0 - 0xff). */
  80. #define PWM_SET(v) (0x4000 | ((v) & 0xff))
  81. /* Go to start of script. */
  82. #define PWM_GOTOSTART 0x0000
  83. /*
  84. * Stop engine (generates interrupt). If reset is 1, clear the program
  85. * counter, else leave it.
  86. */
  87. #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
  88. /*
  89. * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
  90. * Take t clock scales (up to 63) per step, for n steps (up to 126).
  91. * If u is set, ramp up, else ramp down.
  92. */
  93. #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
  94. ((n) & 0x7f) | ((u) ? 0 : 0x80))
  95. /*
  96. * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
  97. * If cnt is zero, execute until PWM_END is encountered.
  98. */
  99. #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
  100. ((pos) & 0x3f))
  101. /*
  102. * Wait for trigger. Argument is a mask of channels, shifted by the channel
  103. * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
  104. * from 1, not 0.
  105. */
  106. #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
  107. /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
  108. #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
  109. struct lm8323_pwm {
  110. int id;
  111. int fade_time;
  112. int brightness;
  113. int desired_brightness;
  114. bool enabled;
  115. bool running;
  116. /* pwm lock */
  117. struct mutex lock;
  118. struct work_struct work;
  119. struct led_classdev cdev;
  120. struct lm8323_chip *chip;
  121. };
  122. struct lm8323_chip {
  123. /* device lock */
  124. struct mutex lock;
  125. struct i2c_client *client;
  126. struct input_dev *idev;
  127. bool kp_enabled;
  128. bool pm_suspend;
  129. unsigned keys_down;
  130. char phys[32];
  131. unsigned short keymap[LM8323_KEYMAP_SIZE];
  132. int size_x;
  133. int size_y;
  134. int debounce_time;
  135. int active_time;
  136. struct lm8323_pwm pwm[LM8323_NUM_PWMS];
  137. };
  138. #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
  139. #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
  140. #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
  141. #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
  142. #define LM8323_MAX_DATA 8
  143. /*
  144. * To write, we just access the chip's address in write mode, and dump the
  145. * command and data out on the bus. The command byte and data are taken as
  146. * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
  147. */
  148. static int lm8323_write(struct lm8323_chip *lm, int len, ...)
  149. {
  150. int ret, i;
  151. va_list ap;
  152. u8 data[LM8323_MAX_DATA];
  153. va_start(ap, len);
  154. if (unlikely(len > LM8323_MAX_DATA)) {
  155. dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
  156. va_end(ap);
  157. return 0;
  158. }
  159. for (i = 0; i < len; i++)
  160. data[i] = va_arg(ap, int);
  161. va_end(ap);
  162. /*
  163. * If the host is asleep while we send the data, we can get a NACK
  164. * back while it wakes up, so try again, once.
  165. */
  166. ret = i2c_master_send(lm->client, data, len);
  167. if (unlikely(ret == -EREMOTEIO))
  168. ret = i2c_master_send(lm->client, data, len);
  169. if (unlikely(ret != len))
  170. dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
  171. len, ret);
  172. return ret;
  173. }
  174. /*
  175. * To read, we first send the command byte to the chip and end the transaction,
  176. * then access the chip in read mode, at which point it will send the data.
  177. */
  178. static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
  179. {
  180. int ret;
  181. /*
  182. * If the host is asleep while we send the byte, we can get a NACK
  183. * back while it wakes up, so try again, once.
  184. */
  185. ret = i2c_master_send(lm->client, &cmd, 1);
  186. if (unlikely(ret == -EREMOTEIO))
  187. ret = i2c_master_send(lm->client, &cmd, 1);
  188. if (unlikely(ret != 1)) {
  189. dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
  190. cmd);
  191. return 0;
  192. }
  193. ret = i2c_master_recv(lm->client, buf, len);
  194. if (unlikely(ret != len))
  195. dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
  196. len, ret);
  197. return ret;
  198. }
  199. /*
  200. * Set the chip active time (idle time before it enters halt).
  201. */
  202. static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
  203. {
  204. lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
  205. }
  206. /*
  207. * The signals are AT-style: the low 7 bits are the keycode, and the top
  208. * bit indicates the state (1 for down, 0 for up).
  209. */
  210. static inline u8 lm8323_whichkey(u8 event)
  211. {
  212. return event & 0x7f;
  213. }
  214. static inline int lm8323_ispress(u8 event)
  215. {
  216. return (event & 0x80) ? 1 : 0;
  217. }
  218. static void process_keys(struct lm8323_chip *lm)
  219. {
  220. u8 event;
  221. u8 key_fifo[LM8323_FIFO_LEN + 1];
  222. int old_keys_down = lm->keys_down;
  223. int ret;
  224. int i = 0;
  225. /*
  226. * Read all key events from the FIFO at once. Next READ_FIFO clears the
  227. * FIFO even if we didn't read all events previously.
  228. */
  229. ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
  230. if (ret < 0) {
  231. dev_err(&lm->client->dev, "Failed reading fifo \n");
  232. return;
  233. }
  234. key_fifo[ret] = 0;
  235. while ((event = key_fifo[i++])) {
  236. u8 key = lm8323_whichkey(event);
  237. int isdown = lm8323_ispress(event);
  238. unsigned short keycode = lm->keymap[key];
  239. dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
  240. key, isdown ? "down" : "up");
  241. if (lm->kp_enabled) {
  242. input_event(lm->idev, EV_MSC, MSC_SCAN, key);
  243. input_report_key(lm->idev, keycode, isdown);
  244. input_sync(lm->idev);
  245. }
  246. if (isdown)
  247. lm->keys_down++;
  248. else
  249. lm->keys_down--;
  250. }
  251. /*
  252. * Errata: We need to ensure that the chip never enters halt mode
  253. * during a keypress, so set active time to 0. When it's released,
  254. * we can enter halt again, so set the active time back to normal.
  255. */
  256. if (!old_keys_down && lm->keys_down)
  257. lm8323_set_active_time(lm, 0);
  258. if (old_keys_down && !lm->keys_down)
  259. lm8323_set_active_time(lm, lm->active_time);
  260. }
  261. static void lm8323_process_error(struct lm8323_chip *lm)
  262. {
  263. u8 error;
  264. if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
  265. if (error & ERR_FIFOOVER)
  266. dev_vdbg(&lm->client->dev, "fifo overflow!\n");
  267. if (error & ERR_KEYOVR)
  268. dev_vdbg(&lm->client->dev,
  269. "more than two keys pressed\n");
  270. if (error & ERR_CMDUNK)
  271. dev_vdbg(&lm->client->dev,
  272. "unknown command submitted\n");
  273. if (error & ERR_BADPAR)
  274. dev_vdbg(&lm->client->dev, "bad command parameter\n");
  275. }
  276. }
  277. static void lm8323_reset(struct lm8323_chip *lm)
  278. {
  279. /* The docs say we must pass 0xAA as the data byte. */
  280. lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
  281. }
  282. static int lm8323_configure(struct lm8323_chip *lm)
  283. {
  284. int keysize = (lm->size_x << 4) | lm->size_y;
  285. int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
  286. int debounce = lm->debounce_time >> 2;
  287. int active = lm->active_time >> 2;
  288. /*
  289. * Active time must be greater than the debounce time: if it's
  290. * a close-run thing, give ourselves a 12ms buffer.
  291. */
  292. if (debounce >= active)
  293. active = debounce + 3;
  294. lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
  295. lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
  296. lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
  297. lm8323_set_active_time(lm, lm->active_time);
  298. lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
  299. lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
  300. lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
  301. /*
  302. * Not much we can do about errors at this point, so just hope
  303. * for the best.
  304. */
  305. return 0;
  306. }
  307. static void pwm_done(struct lm8323_pwm *pwm)
  308. {
  309. mutex_lock(&pwm->lock);
  310. pwm->running = false;
  311. if (pwm->desired_brightness != pwm->brightness)
  312. schedule_work(&pwm->work);
  313. mutex_unlock(&pwm->lock);
  314. }
  315. /*
  316. * Bottom half: handle the interrupt by posting key events, or dealing with
  317. * errors appropriately.
  318. */
  319. static irqreturn_t lm8323_irq(int irq, void *_lm)
  320. {
  321. struct lm8323_chip *lm = _lm;
  322. u8 ints;
  323. int i;
  324. mutex_lock(&lm->lock);
  325. while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
  326. if (likely(ints & INT_KEYPAD))
  327. process_keys(lm);
  328. if (ints & INT_ROTATOR) {
  329. /* We don't currently support the rotator. */
  330. dev_vdbg(&lm->client->dev, "rotator fired\n");
  331. }
  332. if (ints & INT_ERROR) {
  333. dev_vdbg(&lm->client->dev, "error!\n");
  334. lm8323_process_error(lm);
  335. }
  336. if (ints & INT_NOINIT) {
  337. dev_err(&lm->client->dev, "chip lost config; "
  338. "reinitialising\n");
  339. lm8323_configure(lm);
  340. }
  341. for (i = 0; i < LM8323_NUM_PWMS; i++) {
  342. if (ints & (INT_PWM1 << i)) {
  343. dev_vdbg(&lm->client->dev,
  344. "pwm%d engine completed\n", i);
  345. pwm_done(&lm->pwm[i]);
  346. }
  347. }
  348. }
  349. mutex_unlock(&lm->lock);
  350. return IRQ_HANDLED;
  351. }
  352. /*
  353. * Read the chip ID.
  354. */
  355. static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
  356. {
  357. int bytes;
  358. bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
  359. if (unlikely(bytes != 2))
  360. return -EIO;
  361. return 0;
  362. }
  363. static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
  364. {
  365. lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
  366. (cmd & 0xff00) >> 8, cmd & 0x00ff);
  367. }
  368. /*
  369. * Write a script into a given PWM engine, concluding with PWM_END.
  370. * If 'kill' is nonzero, the engine will be shut down at the end
  371. * of the script, producing a zero output. Otherwise the engine
  372. * will be kept running at the final PWM level indefinitely.
  373. */
  374. static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
  375. int len, const u16 *cmds)
  376. {
  377. int i;
  378. for (i = 0; i < len; i++)
  379. lm8323_write_pwm_one(pwm, i, cmds[i]);
  380. lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
  381. lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
  382. pwm->running = true;
  383. }
  384. static void lm8323_pwm_work(struct work_struct *work)
  385. {
  386. struct lm8323_pwm *pwm = work_to_pwm(work);
  387. int div512, perstep, steps, hz, up, kill;
  388. u16 pwm_cmds[3];
  389. int num_cmds = 0;
  390. mutex_lock(&pwm->lock);
  391. /*
  392. * Do nothing if we're already at the requested level,
  393. * or previous setting is not yet complete. In the latter
  394. * case we will be called again when the previous PWM script
  395. * finishes.
  396. */
  397. if (pwm->running || pwm->desired_brightness == pwm->brightness)
  398. goto out;
  399. kill = (pwm->desired_brightness == 0);
  400. up = (pwm->desired_brightness > pwm->brightness);
  401. steps = abs(pwm->desired_brightness - pwm->brightness);
  402. /*
  403. * Convert time (in ms) into a divisor (512 or 16 on a refclk of
  404. * 32768Hz), and number of ticks per step.
  405. */
  406. if ((pwm->fade_time / steps) > (32768 / 512)) {
  407. div512 = 1;
  408. hz = 32768 / 512;
  409. } else {
  410. div512 = 0;
  411. hz = 32768 / 16;
  412. }
  413. perstep = (hz * pwm->fade_time) / (steps * 1000);
  414. if (perstep == 0)
  415. perstep = 1;
  416. else if (perstep > 63)
  417. perstep = 63;
  418. while (steps) {
  419. int s;
  420. s = min(126, steps);
  421. pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
  422. steps -= s;
  423. }
  424. lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
  425. pwm->brightness = pwm->desired_brightness;
  426. out:
  427. mutex_unlock(&pwm->lock);
  428. }
  429. static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
  430. enum led_brightness brightness)
  431. {
  432. struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
  433. struct lm8323_chip *lm = pwm->chip;
  434. mutex_lock(&pwm->lock);
  435. pwm->desired_brightness = brightness;
  436. mutex_unlock(&pwm->lock);
  437. if (in_interrupt()) {
  438. schedule_work(&pwm->work);
  439. } else {
  440. /*
  441. * Schedule PWM work as usual unless we are going into suspend
  442. */
  443. mutex_lock(&lm->lock);
  444. if (likely(!lm->pm_suspend))
  445. schedule_work(&pwm->work);
  446. else
  447. lm8323_pwm_work(&pwm->work);
  448. mutex_unlock(&lm->lock);
  449. }
  450. }
  451. static ssize_t lm8323_pwm_show_time(struct device *dev,
  452. struct device_attribute *attr, char *buf)
  453. {
  454. struct led_classdev *led_cdev = dev_get_drvdata(dev);
  455. struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
  456. return sprintf(buf, "%d\n", pwm->fade_time);
  457. }
  458. static ssize_t lm8323_pwm_store_time(struct device *dev,
  459. struct device_attribute *attr, const char *buf, size_t len)
  460. {
  461. struct led_classdev *led_cdev = dev_get_drvdata(dev);
  462. struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
  463. int ret, time;
  464. ret = kstrtoint(buf, 10, &time);
  465. /* Numbers only, please. */
  466. if (ret)
  467. return ret;
  468. pwm->fade_time = time;
  469. return strlen(buf);
  470. }
  471. static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
  472. static struct attribute *lm8323_pwm_attrs[] = {
  473. &dev_attr_time.attr,
  474. NULL
  475. };
  476. ATTRIBUTE_GROUPS(lm8323_pwm);
  477. static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
  478. const char *name)
  479. {
  480. struct lm8323_pwm *pwm;
  481. BUG_ON(id > 3);
  482. pwm = &lm->pwm[id - 1];
  483. pwm->id = id;
  484. pwm->fade_time = 0;
  485. pwm->brightness = 0;
  486. pwm->desired_brightness = 0;
  487. pwm->running = false;
  488. pwm->enabled = false;
  489. INIT_WORK(&pwm->work, lm8323_pwm_work);
  490. mutex_init(&pwm->lock);
  491. pwm->chip = lm;
  492. if (name) {
  493. pwm->cdev.name = name;
  494. pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
  495. pwm->cdev.groups = lm8323_pwm_groups;
  496. if (led_classdev_register(dev, &pwm->cdev) < 0) {
  497. dev_err(dev, "couldn't register PWM %d\n", id);
  498. return -1;
  499. }
  500. pwm->enabled = true;
  501. }
  502. return 0;
  503. }
  504. static struct i2c_driver lm8323_i2c_driver;
  505. static ssize_t lm8323_show_disable(struct device *dev,
  506. struct device_attribute *attr, char *buf)
  507. {
  508. struct lm8323_chip *lm = dev_get_drvdata(dev);
  509. return sprintf(buf, "%u\n", !lm->kp_enabled);
  510. }
  511. static ssize_t lm8323_set_disable(struct device *dev,
  512. struct device_attribute *attr,
  513. const char *buf, size_t count)
  514. {
  515. struct lm8323_chip *lm = dev_get_drvdata(dev);
  516. int ret;
  517. unsigned int i;
  518. ret = kstrtouint(buf, 10, &i);
  519. if (ret)
  520. return ret;
  521. mutex_lock(&lm->lock);
  522. lm->kp_enabled = !i;
  523. mutex_unlock(&lm->lock);
  524. return count;
  525. }
  526. static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
  527. static int lm8323_probe(struct i2c_client *client,
  528. const struct i2c_device_id *id)
  529. {
  530. struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
  531. struct input_dev *idev;
  532. struct lm8323_chip *lm;
  533. int pwm;
  534. int i, err;
  535. unsigned long tmo;
  536. u8 data[2];
  537. if (!pdata || !pdata->size_x || !pdata->size_y) {
  538. dev_err(&client->dev, "missing platform_data\n");
  539. return -EINVAL;
  540. }
  541. if (pdata->size_x > 8) {
  542. dev_err(&client->dev, "invalid x size %d specified\n",
  543. pdata->size_x);
  544. return -EINVAL;
  545. }
  546. if (pdata->size_y > 12) {
  547. dev_err(&client->dev, "invalid y size %d specified\n",
  548. pdata->size_y);
  549. return -EINVAL;
  550. }
  551. lm = kzalloc(sizeof *lm, GFP_KERNEL);
  552. idev = input_allocate_device();
  553. if (!lm || !idev) {
  554. err = -ENOMEM;
  555. goto fail1;
  556. }
  557. lm->client = client;
  558. lm->idev = idev;
  559. mutex_init(&lm->lock);
  560. lm->size_x = pdata->size_x;
  561. lm->size_y = pdata->size_y;
  562. dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
  563. lm->size_x, lm->size_y);
  564. lm->debounce_time = pdata->debounce_time;
  565. lm->active_time = pdata->active_time;
  566. lm8323_reset(lm);
  567. /* Nothing's set up to service the IRQ yet, so just spin for max.
  568. * 100ms until we can configure. */
  569. tmo = jiffies + msecs_to_jiffies(100);
  570. while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
  571. if (data[0] & INT_NOINIT)
  572. break;
  573. if (time_after(jiffies, tmo)) {
  574. dev_err(&client->dev,
  575. "timeout waiting for initialisation\n");
  576. break;
  577. }
  578. msleep(1);
  579. }
  580. lm8323_configure(lm);
  581. /* If a true probe check the device */
  582. if (lm8323_read_id(lm, data) != 0) {
  583. dev_err(&client->dev, "device not found\n");
  584. err = -ENODEV;
  585. goto fail1;
  586. }
  587. for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
  588. err = init_pwm(lm, pwm + 1, &client->dev,
  589. pdata->pwm_names[pwm]);
  590. if (err < 0)
  591. goto fail2;
  592. }
  593. lm->kp_enabled = true;
  594. err = device_create_file(&client->dev, &dev_attr_disable_kp);
  595. if (err < 0)
  596. goto fail2;
  597. idev->name = pdata->name ? : "LM8323 keypad";
  598. snprintf(lm->phys, sizeof(lm->phys),
  599. "%s/input-kp", dev_name(&client->dev));
  600. idev->phys = lm->phys;
  601. idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
  602. __set_bit(MSC_SCAN, idev->mscbit);
  603. for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
  604. __set_bit(pdata->keymap[i], idev->keybit);
  605. lm->keymap[i] = pdata->keymap[i];
  606. }
  607. __clear_bit(KEY_RESERVED, idev->keybit);
  608. if (pdata->repeat)
  609. __set_bit(EV_REP, idev->evbit);
  610. err = input_register_device(idev);
  611. if (err) {
  612. dev_dbg(&client->dev, "error registering input device\n");
  613. goto fail3;
  614. }
  615. err = request_threaded_irq(client->irq, NULL, lm8323_irq,
  616. IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
  617. if (err) {
  618. dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
  619. goto fail4;
  620. }
  621. i2c_set_clientdata(client, lm);
  622. device_init_wakeup(&client->dev, 1);
  623. enable_irq_wake(client->irq);
  624. return 0;
  625. fail4:
  626. input_unregister_device(idev);
  627. idev = NULL;
  628. fail3:
  629. device_remove_file(&client->dev, &dev_attr_disable_kp);
  630. fail2:
  631. while (--pwm >= 0)
  632. if (lm->pwm[pwm].enabled)
  633. led_classdev_unregister(&lm->pwm[pwm].cdev);
  634. fail1:
  635. input_free_device(idev);
  636. kfree(lm);
  637. return err;
  638. }
  639. static int lm8323_remove(struct i2c_client *client)
  640. {
  641. struct lm8323_chip *lm = i2c_get_clientdata(client);
  642. int i;
  643. disable_irq_wake(client->irq);
  644. free_irq(client->irq, lm);
  645. input_unregister_device(lm->idev);
  646. device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
  647. for (i = 0; i < 3; i++)
  648. if (lm->pwm[i].enabled)
  649. led_classdev_unregister(&lm->pwm[i].cdev);
  650. kfree(lm);
  651. return 0;
  652. }
  653. #ifdef CONFIG_PM_SLEEP
  654. /*
  655. * We don't need to explicitly suspend the chip, as it already switches off
  656. * when there's no activity.
  657. */
  658. static int lm8323_suspend(struct device *dev)
  659. {
  660. struct i2c_client *client = to_i2c_client(dev);
  661. struct lm8323_chip *lm = i2c_get_clientdata(client);
  662. int i;
  663. irq_set_irq_wake(client->irq, 0);
  664. disable_irq(client->irq);
  665. mutex_lock(&lm->lock);
  666. lm->pm_suspend = true;
  667. mutex_unlock(&lm->lock);
  668. for (i = 0; i < 3; i++)
  669. if (lm->pwm[i].enabled)
  670. led_classdev_suspend(&lm->pwm[i].cdev);
  671. return 0;
  672. }
  673. static int lm8323_resume(struct device *dev)
  674. {
  675. struct i2c_client *client = to_i2c_client(dev);
  676. struct lm8323_chip *lm = i2c_get_clientdata(client);
  677. int i;
  678. mutex_lock(&lm->lock);
  679. lm->pm_suspend = false;
  680. mutex_unlock(&lm->lock);
  681. for (i = 0; i < 3; i++)
  682. if (lm->pwm[i].enabled)
  683. led_classdev_resume(&lm->pwm[i].cdev);
  684. enable_irq(client->irq);
  685. irq_set_irq_wake(client->irq, 1);
  686. return 0;
  687. }
  688. #endif
  689. static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
  690. static const struct i2c_device_id lm8323_id[] = {
  691. { "lm8323", 0 },
  692. { }
  693. };
  694. static struct i2c_driver lm8323_i2c_driver = {
  695. .driver = {
  696. .name = "lm8323",
  697. .pm = &lm8323_pm_ops,
  698. },
  699. .probe = lm8323_probe,
  700. .remove = lm8323_remove,
  701. .id_table = lm8323_id,
  702. };
  703. MODULE_DEVICE_TABLE(i2c, lm8323_id);
  704. module_i2c_driver(lm8323_i2c_driver);
  705. MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
  706. MODULE_AUTHOR("Daniel Stone");
  707. MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
  708. MODULE_DESCRIPTION("LM8323 keypad driver");
  709. MODULE_LICENSE("GPL");