lineage-pem.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Driver for Lineage Compact Power Line series of power entry modules.
  4. *
  5. * Copyright (C) 2010, 2011 Ericsson AB.
  6. *
  7. * Documentation:
  8. * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/err.h>
  14. #include <linux/slab.h>
  15. #include <linux/i2c.h>
  16. #include <linux/hwmon.h>
  17. #include <linux/hwmon-sysfs.h>
  18. #include <linux/jiffies.h>
  19. /*
  20. * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
  21. * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
  22. *
  23. * The devices are nominally PMBus compliant. However, most standard PMBus
  24. * commands are not supported. Specifically, all hardware monitoring and
  25. * status reporting commands are non-standard. For this reason, a standard
  26. * PMBus driver can not be used.
  27. *
  28. * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
  29. * To ensure device access, this driver should only be used as client driver
  30. * to the pca9541 I2C master selector driver.
  31. */
  32. /* Command codes */
  33. #define PEM_OPERATION 0x01
  34. #define PEM_CLEAR_INFO_FLAGS 0x03
  35. #define PEM_VOUT_COMMAND 0x21
  36. #define PEM_VOUT_OV_FAULT_LIMIT 0x40
  37. #define PEM_READ_DATA_STRING 0xd0
  38. #define PEM_READ_INPUT_STRING 0xdc
  39. #define PEM_READ_FIRMWARE_REV 0xdd
  40. #define PEM_READ_RUN_TIMER 0xde
  41. #define PEM_FAN_HI_SPEED 0xdf
  42. #define PEM_FAN_NORMAL_SPEED 0xe0
  43. #define PEM_READ_FAN_SPEED 0xe1
  44. /* offsets in data string */
  45. #define PEM_DATA_STATUS_2 0
  46. #define PEM_DATA_STATUS_1 1
  47. #define PEM_DATA_ALARM_2 2
  48. #define PEM_DATA_ALARM_1 3
  49. #define PEM_DATA_VOUT_LSB 4
  50. #define PEM_DATA_VOUT_MSB 5
  51. #define PEM_DATA_CURRENT 6
  52. #define PEM_DATA_TEMP 7
  53. /* Virtual entries, to report constants */
  54. #define PEM_DATA_TEMP_MAX 10
  55. #define PEM_DATA_TEMP_CRIT 11
  56. /* offsets in input string */
  57. #define PEM_INPUT_VOLTAGE 0
  58. #define PEM_INPUT_POWER_LSB 1
  59. #define PEM_INPUT_POWER_MSB 2
  60. /* offsets in fan data */
  61. #define PEM_FAN_ADJUSTMENT 0
  62. #define PEM_FAN_FAN1 1
  63. #define PEM_FAN_FAN2 2
  64. #define PEM_FAN_FAN3 3
  65. /* Status register bits */
  66. #define STS1_OUTPUT_ON (1 << 0)
  67. #define STS1_LEDS_FLASHING (1 << 1)
  68. #define STS1_EXT_FAULT (1 << 2)
  69. #define STS1_SERVICE_LED_ON (1 << 3)
  70. #define STS1_SHUTDOWN_OCCURRED (1 << 4)
  71. #define STS1_INT_FAULT (1 << 5)
  72. #define STS1_ISOLATION_TEST_OK (1 << 6)
  73. #define STS2_ENABLE_PIN_HI (1 << 0)
  74. #define STS2_DATA_OUT_RANGE (1 << 1)
  75. #define STS2_RESTARTED_OK (1 << 1)
  76. #define STS2_ISOLATION_TEST_FAIL (1 << 3)
  77. #define STS2_HIGH_POWER_CAP (1 << 4)
  78. #define STS2_INVALID_INSTR (1 << 5)
  79. #define STS2_WILL_RESTART (1 << 6)
  80. #define STS2_PEC_ERR (1 << 7)
  81. /* Alarm register bits */
  82. #define ALRM1_VIN_OUT_LIMIT (1 << 0)
  83. #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
  84. #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
  85. #define ALRM1_VIN_OVERCURRENT (1 << 3)
  86. #define ALRM1_TEMP_WARNING (1 << 4)
  87. #define ALRM1_TEMP_SHUTDOWN (1 << 5)
  88. #define ALRM1_PRIMARY_FAULT (1 << 6)
  89. #define ALRM1_POWER_LIMIT (1 << 7)
  90. #define ALRM2_5V_OUT_LIMIT (1 << 1)
  91. #define ALRM2_TEMP_FAULT (1 << 2)
  92. #define ALRM2_OV_LOW (1 << 3)
  93. #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
  94. #define ALRM2_PRI_TEMP_HIGH (1 << 5)
  95. #define ALRM2_NO_PRIMARY (1 << 6)
  96. #define ALRM2_FAN_FAULT (1 << 7)
  97. #define FIRMWARE_REV_LEN 4
  98. #define DATA_STRING_LEN 9
  99. #define INPUT_STRING_LEN 5 /* 4 for most devices */
  100. #define FAN_SPEED_LEN 5
  101. struct pem_data {
  102. struct i2c_client *client;
  103. const struct attribute_group *groups[4];
  104. struct mutex update_lock;
  105. bool valid;
  106. bool fans_supported;
  107. int input_length;
  108. unsigned long last_updated; /* in jiffies */
  109. u8 firmware_rev[FIRMWARE_REV_LEN];
  110. u8 data_string[DATA_STRING_LEN];
  111. u8 input_string[INPUT_STRING_LEN];
  112. u8 fan_speed[FAN_SPEED_LEN];
  113. };
  114. static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
  115. int data_len)
  116. {
  117. u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
  118. int result;
  119. result = i2c_smbus_read_block_data(client, command, block_buffer);
  120. if (unlikely(result < 0))
  121. goto abort;
  122. if (unlikely(result == 0xff || result != data_len)) {
  123. result = -EIO;
  124. goto abort;
  125. }
  126. memcpy(data, block_buffer, data_len);
  127. result = 0;
  128. abort:
  129. return result;
  130. }
  131. static struct pem_data *pem_update_device(struct device *dev)
  132. {
  133. struct pem_data *data = dev_get_drvdata(dev);
  134. struct i2c_client *client = data->client;
  135. struct pem_data *ret = data;
  136. mutex_lock(&data->update_lock);
  137. if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
  138. int result;
  139. /* Read data string */
  140. result = pem_read_block(client, PEM_READ_DATA_STRING,
  141. data->data_string,
  142. sizeof(data->data_string));
  143. if (unlikely(result < 0)) {
  144. ret = ERR_PTR(result);
  145. goto abort;
  146. }
  147. /* Read input string */
  148. if (data->input_length) {
  149. result = pem_read_block(client, PEM_READ_INPUT_STRING,
  150. data->input_string,
  151. data->input_length);
  152. if (unlikely(result < 0)) {
  153. ret = ERR_PTR(result);
  154. goto abort;
  155. }
  156. }
  157. /* Read fan speeds */
  158. if (data->fans_supported) {
  159. result = pem_read_block(client, PEM_READ_FAN_SPEED,
  160. data->fan_speed,
  161. sizeof(data->fan_speed));
  162. if (unlikely(result < 0)) {
  163. ret = ERR_PTR(result);
  164. goto abort;
  165. }
  166. }
  167. i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  168. data->last_updated = jiffies;
  169. data->valid = 1;
  170. }
  171. abort:
  172. mutex_unlock(&data->update_lock);
  173. return ret;
  174. }
  175. static long pem_get_data(u8 *data, int len, int index)
  176. {
  177. long val;
  178. switch (index) {
  179. case PEM_DATA_VOUT_LSB:
  180. val = (data[index] + (data[index+1] << 8)) * 5 / 2;
  181. break;
  182. case PEM_DATA_CURRENT:
  183. val = data[index] * 200;
  184. break;
  185. case PEM_DATA_TEMP:
  186. val = data[index] * 1000;
  187. break;
  188. case PEM_DATA_TEMP_MAX:
  189. val = 97 * 1000; /* 97 degrees C per datasheet */
  190. break;
  191. case PEM_DATA_TEMP_CRIT:
  192. val = 107 * 1000; /* 107 degrees C per datasheet */
  193. break;
  194. default:
  195. WARN_ON_ONCE(1);
  196. val = 0;
  197. }
  198. return val;
  199. }
  200. static long pem_get_input(u8 *data, int len, int index)
  201. {
  202. long val;
  203. switch (index) {
  204. case PEM_INPUT_VOLTAGE:
  205. if (len == INPUT_STRING_LEN)
  206. val = (data[index] + (data[index+1] << 8) - 75) * 1000;
  207. else
  208. val = (data[index] - 75) * 1000;
  209. break;
  210. case PEM_INPUT_POWER_LSB:
  211. if (len == INPUT_STRING_LEN)
  212. index++;
  213. val = (data[index] + (data[index+1] << 8)) * 1000000L;
  214. break;
  215. default:
  216. WARN_ON_ONCE(1);
  217. val = 0;
  218. }
  219. return val;
  220. }
  221. static long pem_get_fan(u8 *data, int len, int index)
  222. {
  223. long val;
  224. switch (index) {
  225. case PEM_FAN_FAN1:
  226. case PEM_FAN_FAN2:
  227. case PEM_FAN_FAN3:
  228. val = data[index] * 100;
  229. break;
  230. default:
  231. WARN_ON_ONCE(1);
  232. val = 0;
  233. }
  234. return val;
  235. }
  236. /*
  237. * Show boolean, either a fault or an alarm.
  238. * .nr points to the register, .index is the bit mask to check
  239. */
  240. static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da,
  241. char *buf)
  242. {
  243. struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
  244. struct pem_data *data = pem_update_device(dev);
  245. u8 status;
  246. if (IS_ERR(data))
  247. return PTR_ERR(data);
  248. status = data->data_string[attr->nr] & attr->index;
  249. return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
  250. }
  251. static ssize_t pem_data_show(struct device *dev, struct device_attribute *da,
  252. char *buf)
  253. {
  254. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  255. struct pem_data *data = pem_update_device(dev);
  256. long value;
  257. if (IS_ERR(data))
  258. return PTR_ERR(data);
  259. value = pem_get_data(data->data_string, sizeof(data->data_string),
  260. attr->index);
  261. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  262. }
  263. static ssize_t pem_input_show(struct device *dev, struct device_attribute *da,
  264. char *buf)
  265. {
  266. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  267. struct pem_data *data = pem_update_device(dev);
  268. long value;
  269. if (IS_ERR(data))
  270. return PTR_ERR(data);
  271. value = pem_get_input(data->input_string, sizeof(data->input_string),
  272. attr->index);
  273. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  274. }
  275. static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da,
  276. char *buf)
  277. {
  278. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  279. struct pem_data *data = pem_update_device(dev);
  280. long value;
  281. if (IS_ERR(data))
  282. return PTR_ERR(data);
  283. value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
  284. attr->index);
  285. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  286. }
  287. /* Voltages */
  288. static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB);
  289. static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1,
  290. ALRM1_VOUT_OUT_LIMIT);
  291. static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
  292. ALRM1_OV_VOLT_SHUTDOWN);
  293. static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE);
  294. static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1,
  295. ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
  296. /* Currents */
  297. static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT);
  298. static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1,
  299. ALRM1_VIN_OVERCURRENT);
  300. /* Power */
  301. static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB);
  302. static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1,
  303. ALRM1_POWER_LIMIT);
  304. /* Fans */
  305. static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1);
  306. static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2);
  307. static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3);
  308. static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2,
  309. ALRM2_FAN_FAULT);
  310. /* Temperatures */
  311. static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP);
  312. static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX);
  313. static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT);
  314. static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1,
  315. ALRM1_TEMP_WARNING);
  316. static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
  317. ALRM1_TEMP_SHUTDOWN);
  318. static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2,
  319. ALRM2_TEMP_FAULT);
  320. static struct attribute *pem_attributes[] = {
  321. &sensor_dev_attr_in1_input.dev_attr.attr,
  322. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  323. &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
  324. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  325. &sensor_dev_attr_curr1_alarm.dev_attr.attr,
  326. &sensor_dev_attr_power1_alarm.dev_attr.attr,
  327. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  328. &sensor_dev_attr_temp1_input.dev_attr.attr,
  329. &sensor_dev_attr_temp1_max.dev_attr.attr,
  330. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  331. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  332. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  333. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  334. NULL,
  335. };
  336. static const struct attribute_group pem_group = {
  337. .attrs = pem_attributes,
  338. };
  339. static struct attribute *pem_input_attributes[] = {
  340. &sensor_dev_attr_in2_input.dev_attr.attr,
  341. &sensor_dev_attr_curr1_input.dev_attr.attr,
  342. &sensor_dev_attr_power1_input.dev_attr.attr,
  343. NULL
  344. };
  345. static const struct attribute_group pem_input_group = {
  346. .attrs = pem_input_attributes,
  347. };
  348. static struct attribute *pem_fan_attributes[] = {
  349. &sensor_dev_attr_fan1_input.dev_attr.attr,
  350. &sensor_dev_attr_fan2_input.dev_attr.attr,
  351. &sensor_dev_attr_fan3_input.dev_attr.attr,
  352. NULL
  353. };
  354. static const struct attribute_group pem_fan_group = {
  355. .attrs = pem_fan_attributes,
  356. };
  357. static int pem_probe(struct i2c_client *client)
  358. {
  359. struct i2c_adapter *adapter = client->adapter;
  360. struct device *dev = &client->dev;
  361. struct device *hwmon_dev;
  362. struct pem_data *data;
  363. int ret, idx = 0;
  364. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
  365. | I2C_FUNC_SMBUS_WRITE_BYTE))
  366. return -ENODEV;
  367. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  368. if (!data)
  369. return -ENOMEM;
  370. data->client = client;
  371. mutex_init(&data->update_lock);
  372. /*
  373. * We use the next two commands to determine if the device is really
  374. * there.
  375. */
  376. ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
  377. data->firmware_rev, sizeof(data->firmware_rev));
  378. if (ret < 0)
  379. return ret;
  380. ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  381. if (ret < 0)
  382. return ret;
  383. dev_info(dev, "Firmware revision %d.%d.%d\n",
  384. data->firmware_rev[0], data->firmware_rev[1],
  385. data->firmware_rev[2]);
  386. /* sysfs hooks */
  387. data->groups[idx++] = &pem_group;
  388. /*
  389. * Check if input readings are supported.
  390. * This is the case if we can read input data,
  391. * and if the returned data is not all zeros.
  392. * Note that input alarms are always supported.
  393. */
  394. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  395. data->input_string,
  396. sizeof(data->input_string) - 1);
  397. if (!ret && (data->input_string[0] || data->input_string[1] ||
  398. data->input_string[2]))
  399. data->input_length = sizeof(data->input_string) - 1;
  400. else if (ret < 0) {
  401. /* Input string is one byte longer for some devices */
  402. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  403. data->input_string,
  404. sizeof(data->input_string));
  405. if (!ret && (data->input_string[0] || data->input_string[1] ||
  406. data->input_string[2] || data->input_string[3]))
  407. data->input_length = sizeof(data->input_string);
  408. }
  409. if (data->input_length)
  410. data->groups[idx++] = &pem_input_group;
  411. /*
  412. * Check if fan speed readings are supported.
  413. * This is the case if we can read fan speed data,
  414. * and if the returned data is not all zeros.
  415. * Note that the fan alarm is always supported.
  416. */
  417. ret = pem_read_block(client, PEM_READ_FAN_SPEED,
  418. data->fan_speed,
  419. sizeof(data->fan_speed));
  420. if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
  421. data->fan_speed[2] || data->fan_speed[3])) {
  422. data->fans_supported = true;
  423. data->groups[idx++] = &pem_fan_group;
  424. }
  425. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  426. data, data->groups);
  427. return PTR_ERR_OR_ZERO(hwmon_dev);
  428. }
  429. static const struct i2c_device_id pem_id[] = {
  430. {"lineage_pem", 0},
  431. {}
  432. };
  433. MODULE_DEVICE_TABLE(i2c, pem_id);
  434. static struct i2c_driver pem_driver = {
  435. .driver = {
  436. .name = "lineage_pem",
  437. },
  438. .probe_new = pem_probe,
  439. .id_table = pem_id,
  440. };
  441. module_i2c_driver(pem_driver);
  442. MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
  443. MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
  444. MODULE_LICENSE("GPL");