process_32.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/cpu.h>
  11. #include <linux/errno.h>
  12. #include <linux/sched.h>
  13. #include <linux/sched/task.h>
  14. #include <linux/sched/task_stack.h>
  15. #include <linux/fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/elfcore.h>
  19. #include <linux/smp.h>
  20. #include <linux/stddef.h>
  21. #include <linux/slab.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/user.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/mc146818rtc.h>
  28. #include <linux/export.h>
  29. #include <linux/kallsyms.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/personality.h>
  32. #include <linux/percpu.h>
  33. #include <linux/prctl.h>
  34. #include <linux/ftrace.h>
  35. #include <linux/uaccess.h>
  36. #include <linux/io.h>
  37. #include <linux/kdebug.h>
  38. #include <linux/syscalls.h>
  39. #include <asm/ldt.h>
  40. #include <asm/processor.h>
  41. #include <asm/fpu/internal.h>
  42. #include <asm/desc.h>
  43. #include <linux/err.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/cpu.h>
  46. #include <asm/debugreg.h>
  47. #include <asm/switch_to.h>
  48. #include <asm/vm86.h>
  49. #include <asm/resctrl.h>
  50. #include <asm/proto.h>
  51. #include "process.h"
  52. void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
  53. const char *log_lvl)
  54. {
  55. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  56. unsigned long d0, d1, d2, d3, d6, d7;
  57. unsigned short gs;
  58. if (user_mode(regs))
  59. gs = get_user_gs(regs);
  60. else
  61. savesegment(gs, gs);
  62. show_ip(regs, log_lvl);
  63. printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  64. log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
  65. printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  66. log_lvl, regs->si, regs->di, regs->bp, regs->sp);
  67. printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
  68. log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
  69. if (mode != SHOW_REGS_ALL)
  70. return;
  71. cr0 = read_cr0();
  72. cr2 = read_cr2();
  73. cr3 = __read_cr3();
  74. cr4 = __read_cr4();
  75. printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  76. log_lvl, cr0, cr2, cr3, cr4);
  77. get_debugreg(d0, 0);
  78. get_debugreg(d1, 1);
  79. get_debugreg(d2, 2);
  80. get_debugreg(d3, 3);
  81. get_debugreg(d6, 6);
  82. get_debugreg(d7, 7);
  83. /* Only print out debug registers if they are in their non-default state. */
  84. if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
  85. (d6 == DR6_RESERVED) && (d7 == 0x400))
  86. return;
  87. printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  88. log_lvl, d0, d1, d2, d3);
  89. printk("%sDR6: %08lx DR7: %08lx\n",
  90. log_lvl, d6, d7);
  91. }
  92. void release_thread(struct task_struct *dead_task)
  93. {
  94. BUG_ON(dead_task->mm);
  95. release_vm86_irqs(dead_task);
  96. }
  97. void
  98. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  99. {
  100. set_user_gs(regs, 0);
  101. regs->fs = 0;
  102. regs->ds = __USER_DS;
  103. regs->es = __USER_DS;
  104. regs->ss = __USER_DS;
  105. regs->cs = __USER_CS;
  106. regs->ip = new_ip;
  107. regs->sp = new_sp;
  108. regs->flags = X86_EFLAGS_IF;
  109. }
  110. EXPORT_SYMBOL_GPL(start_thread);
  111. /*
  112. * switch_to(x,y) should switch tasks from x to y.
  113. *
  114. * We fsave/fwait so that an exception goes off at the right time
  115. * (as a call from the fsave or fwait in effect) rather than to
  116. * the wrong process. Lazy FP saving no longer makes any sense
  117. * with modern CPU's, and this simplifies a lot of things (SMP
  118. * and UP become the same).
  119. *
  120. * NOTE! We used to use the x86 hardware context switching. The
  121. * reason for not using it any more becomes apparent when you
  122. * try to recover gracefully from saved state that is no longer
  123. * valid (stale segment register values in particular). With the
  124. * hardware task-switch, there is no way to fix up bad state in
  125. * a reasonable manner.
  126. *
  127. * The fact that Intel documents the hardware task-switching to
  128. * be slow is a fairly red herring - this code is not noticeably
  129. * faster. However, there _is_ some room for improvement here,
  130. * so the performance issues may eventually be a valid point.
  131. * More important, however, is the fact that this allows us much
  132. * more flexibility.
  133. *
  134. * The return value (in %ax) will be the "prev" task after
  135. * the task-switch, and shows up in ret_from_fork in entry.S,
  136. * for example.
  137. */
  138. __visible __notrace_funcgraph struct task_struct *
  139. __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  140. {
  141. struct thread_struct *prev = &prev_p->thread,
  142. *next = &next_p->thread;
  143. int cpu = smp_processor_id();
  144. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  145. if (!test_thread_flag(TIF_NEED_FPU_LOAD))
  146. switch_fpu_prepare(prev_p, cpu);
  147. /*
  148. * Save away %gs. No need to save %fs, as it was saved on the
  149. * stack on entry. No need to save %es and %ds, as those are
  150. * always kernel segments while inside the kernel. Doing this
  151. * before setting the new TLS descriptors avoids the situation
  152. * where we temporarily have non-reloadable segments in %fs
  153. * and %gs. This could be an issue if the NMI handler ever
  154. * used %fs or %gs (it does not today), or if the kernel is
  155. * running inside of a hypervisor layer.
  156. */
  157. lazy_save_gs(prev->gs);
  158. /*
  159. * Load the per-thread Thread-Local Storage descriptor.
  160. */
  161. load_TLS(next, cpu);
  162. switch_to_extra(prev_p, next_p);
  163. /*
  164. * Leave lazy mode, flushing any hypercalls made here.
  165. * This must be done before restoring TLS segments so
  166. * the GDT and LDT are properly updated.
  167. */
  168. arch_end_context_switch(next_p);
  169. /*
  170. * Reload esp0 and cpu_current_top_of_stack. This changes
  171. * current_thread_info(). Refresh the SYSENTER configuration in
  172. * case prev or next is vm86.
  173. */
  174. update_task_stack(next_p);
  175. refresh_sysenter_cs(next);
  176. this_cpu_write(cpu_current_top_of_stack,
  177. (unsigned long)task_stack_page(next_p) +
  178. THREAD_SIZE);
  179. /*
  180. * Restore %gs if needed (which is common)
  181. */
  182. if (prev->gs | next->gs)
  183. lazy_load_gs(next->gs);
  184. this_cpu_write(current_task, next_p);
  185. switch_fpu_finish(next_p);
  186. /* Load the Intel cache allocation PQR MSR. */
  187. resctrl_sched_in();
  188. return prev_p;
  189. }
  190. SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
  191. {
  192. return do_arch_prctl_common(current, option, arg2);
  193. }