ssm2602.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. //
  3. // File: sound/soc/codecs/ssm2602.c
  4. // Author: Cliff Cai <Cliff.Cai@analog.com>
  5. //
  6. // Created: Tue June 06 2008
  7. // Description: Driver for ssm2602 sound chip
  8. //
  9. // Modified:
  10. // Copyright 2008 Analog Devices Inc.
  11. //
  12. // Bugs: Enter bugs at http://blackfin.uclinux.org/
  13. #include <linux/delay.h>
  14. #include <linux/module.h>
  15. #include <linux/regmap.h>
  16. #include <linux/slab.h>
  17. #include <sound/pcm.h>
  18. #include <sound/pcm_params.h>
  19. #include <sound/soc.h>
  20. #include <sound/tlv.h>
  21. #include "ssm2602.h"
  22. /* codec private data */
  23. struct ssm2602_priv {
  24. unsigned int sysclk;
  25. const struct snd_pcm_hw_constraint_list *sysclk_constraints;
  26. struct regmap *regmap;
  27. enum ssm2602_type type;
  28. unsigned int clk_out_pwr;
  29. };
  30. /*
  31. * ssm2602 register cache
  32. * We can't read the ssm2602 register space when we are
  33. * using 2 wire for device control, so we cache them instead.
  34. * There is no point in caching the reset register
  35. */
  36. static const struct reg_default ssm2602_reg[SSM2602_CACHEREGNUM] = {
  37. { .reg = 0x00, .def = 0x0097 },
  38. { .reg = 0x01, .def = 0x0097 },
  39. { .reg = 0x02, .def = 0x0079 },
  40. { .reg = 0x03, .def = 0x0079 },
  41. { .reg = 0x04, .def = 0x000a },
  42. { .reg = 0x05, .def = 0x0008 },
  43. { .reg = 0x06, .def = 0x009f },
  44. { .reg = 0x07, .def = 0x000a },
  45. { .reg = 0x08, .def = 0x0000 },
  46. { .reg = 0x09, .def = 0x0000 }
  47. };
  48. /*Appending several "None"s just for OSS mixer use*/
  49. static const char *ssm2602_input_select[] = {
  50. "Line", "Mic",
  51. };
  52. static const char *ssm2602_deemph[] = {"None", "32Khz", "44.1Khz", "48Khz"};
  53. static const struct soc_enum ssm2602_enum[] = {
  54. SOC_ENUM_SINGLE(SSM2602_APANA, 2, ARRAY_SIZE(ssm2602_input_select),
  55. ssm2602_input_select),
  56. SOC_ENUM_SINGLE(SSM2602_APDIGI, 1, ARRAY_SIZE(ssm2602_deemph),
  57. ssm2602_deemph),
  58. };
  59. static const DECLARE_TLV_DB_RANGE(ssm260x_outmix_tlv,
  60. 0, 47, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
  61. 48, 127, TLV_DB_SCALE_ITEM(-7400, 100, 0)
  62. );
  63. static const DECLARE_TLV_DB_SCALE(ssm260x_inpga_tlv, -3450, 150, 0);
  64. static const DECLARE_TLV_DB_SCALE(ssm260x_sidetone_tlv, -1500, 300, 0);
  65. static const struct snd_kcontrol_new ssm260x_snd_controls[] = {
  66. SOC_DOUBLE_R_TLV("Capture Volume", SSM2602_LINVOL, SSM2602_RINVOL, 0, 45, 0,
  67. ssm260x_inpga_tlv),
  68. SOC_DOUBLE_R("Capture Switch", SSM2602_LINVOL, SSM2602_RINVOL, 7, 1, 1),
  69. SOC_SINGLE("ADC High Pass Filter Switch", SSM2602_APDIGI, 0, 1, 1),
  70. SOC_SINGLE("Store DC Offset Switch", SSM2602_APDIGI, 4, 1, 0),
  71. SOC_ENUM("Playback De-emphasis", ssm2602_enum[1]),
  72. };
  73. static const struct snd_kcontrol_new ssm2602_snd_controls[] = {
  74. SOC_DOUBLE_R_TLV("Master Playback Volume", SSM2602_LOUT1V, SSM2602_ROUT1V,
  75. 0, 127, 0, ssm260x_outmix_tlv),
  76. SOC_DOUBLE_R("Master Playback ZC Switch", SSM2602_LOUT1V, SSM2602_ROUT1V,
  77. 7, 1, 0),
  78. SOC_SINGLE_TLV("Sidetone Playback Volume", SSM2602_APANA, 6, 3, 1,
  79. ssm260x_sidetone_tlv),
  80. SOC_SINGLE("Mic Boost (+20dB)", SSM2602_APANA, 0, 1, 0),
  81. SOC_SINGLE("Mic Boost2 (+20dB)", SSM2602_APANA, 8, 1, 0),
  82. };
  83. /* Output Mixer */
  84. static const struct snd_kcontrol_new ssm260x_output_mixer_controls[] = {
  85. SOC_DAPM_SINGLE("Line Bypass Switch", SSM2602_APANA, 3, 1, 0),
  86. SOC_DAPM_SINGLE("HiFi Playback Switch", SSM2602_APANA, 4, 1, 0),
  87. SOC_DAPM_SINGLE("Mic Sidetone Switch", SSM2602_APANA, 5, 1, 0),
  88. };
  89. static const struct snd_kcontrol_new mic_ctl =
  90. SOC_DAPM_SINGLE("Switch", SSM2602_APANA, 1, 1, 1);
  91. /* Input mux */
  92. static const struct snd_kcontrol_new ssm2602_input_mux_controls =
  93. SOC_DAPM_ENUM("Input Select", ssm2602_enum[0]);
  94. static int ssm2602_mic_switch_event(struct snd_soc_dapm_widget *w,
  95. struct snd_kcontrol *kcontrol, int event)
  96. {
  97. /*
  98. * According to the ssm2603 data sheet (control register sequencing),
  99. * the digital core should be activated only after all necessary bits
  100. * in the power register are enabled, and a delay determined by the
  101. * decoupling capacitor on the VMID pin has passed. If the digital core
  102. * is activated too early, or even before the ADC is powered up, audible
  103. * artifacts appear at the beginning and end of the recorded signal.
  104. *
  105. * In practice, audible artifacts disappear well over 500 ms.
  106. */
  107. msleep(500);
  108. return 0;
  109. }
  110. static const struct snd_soc_dapm_widget ssm260x_dapm_widgets[] = {
  111. SND_SOC_DAPM_DAC("DAC", "HiFi Playback", SSM2602_PWR, 3, 1),
  112. SND_SOC_DAPM_ADC("ADC", "HiFi Capture", SSM2602_PWR, 2, 1),
  113. SND_SOC_DAPM_PGA("Line Input", SSM2602_PWR, 0, 1, NULL, 0),
  114. SND_SOC_DAPM_SUPPLY("Digital Core Power", SSM2602_ACTIVE, 0, 0, NULL, 0),
  115. SND_SOC_DAPM_OUTPUT("LOUT"),
  116. SND_SOC_DAPM_OUTPUT("ROUT"),
  117. SND_SOC_DAPM_INPUT("RLINEIN"),
  118. SND_SOC_DAPM_INPUT("LLINEIN"),
  119. };
  120. static const struct snd_soc_dapm_widget ssm2602_dapm_widgets[] = {
  121. SND_SOC_DAPM_MIXER("Output Mixer", SSM2602_PWR, 4, 1,
  122. ssm260x_output_mixer_controls,
  123. ARRAY_SIZE(ssm260x_output_mixer_controls)),
  124. SND_SOC_DAPM_MUX("Input Mux", SND_SOC_NOPM, 0, 0, &ssm2602_input_mux_controls),
  125. SND_SOC_DAPM_MICBIAS("Mic Bias", SSM2602_PWR, 1, 1),
  126. SND_SOC_DAPM_SWITCH_E("Mic Switch", SSM2602_APANA, 1, 1, &mic_ctl,
  127. ssm2602_mic_switch_event, SND_SOC_DAPM_PRE_PMU),
  128. SND_SOC_DAPM_OUTPUT("LHPOUT"),
  129. SND_SOC_DAPM_OUTPUT("RHPOUT"),
  130. SND_SOC_DAPM_INPUT("MICIN"),
  131. };
  132. static const struct snd_soc_dapm_widget ssm2604_dapm_widgets[] = {
  133. SND_SOC_DAPM_MIXER("Output Mixer", SND_SOC_NOPM, 0, 0,
  134. ssm260x_output_mixer_controls,
  135. ARRAY_SIZE(ssm260x_output_mixer_controls) - 1), /* Last element is the mic */
  136. };
  137. static const struct snd_soc_dapm_route ssm260x_routes[] = {
  138. {"DAC", NULL, "Digital Core Power"},
  139. {"ADC", NULL, "Digital Core Power"},
  140. {"Output Mixer", "Line Bypass Switch", "Line Input"},
  141. {"Output Mixer", "HiFi Playback Switch", "DAC"},
  142. {"ROUT", NULL, "Output Mixer"},
  143. {"LOUT", NULL, "Output Mixer"},
  144. {"Line Input", NULL, "LLINEIN"},
  145. {"Line Input", NULL, "RLINEIN"},
  146. };
  147. static const struct snd_soc_dapm_route ssm2602_routes[] = {
  148. {"Output Mixer", "Mic Sidetone Switch", "Mic Bias"},
  149. {"RHPOUT", NULL, "Output Mixer"},
  150. {"LHPOUT", NULL, "Output Mixer"},
  151. {"Input Mux", "Line", "Line Input"},
  152. {"Input Mux", "Mic", "Mic Switch"},
  153. {"ADC", NULL, "Input Mux"},
  154. {"Mic Switch", NULL, "Mic Bias"},
  155. {"Mic Bias", NULL, "MICIN"},
  156. };
  157. static const struct snd_soc_dapm_route ssm2604_routes[] = {
  158. {"ADC", NULL, "Line Input"},
  159. };
  160. static const unsigned int ssm2602_rates_12288000[] = {
  161. 8000, 16000, 32000, 48000, 96000,
  162. };
  163. static const struct snd_pcm_hw_constraint_list ssm2602_constraints_12288000 = {
  164. .list = ssm2602_rates_12288000,
  165. .count = ARRAY_SIZE(ssm2602_rates_12288000),
  166. };
  167. static const unsigned int ssm2602_rates_11289600[] = {
  168. 8000, 11025, 22050, 44100, 88200,
  169. };
  170. static const struct snd_pcm_hw_constraint_list ssm2602_constraints_11289600 = {
  171. .list = ssm2602_rates_11289600,
  172. .count = ARRAY_SIZE(ssm2602_rates_11289600),
  173. };
  174. struct ssm2602_coeff {
  175. u32 mclk;
  176. u32 rate;
  177. u8 srate;
  178. };
  179. #define SSM2602_COEFF_SRATE(sr, bosr, usb) (((sr) << 2) | ((bosr) << 1) | (usb))
  180. /* codec mclk clock coefficients */
  181. static const struct ssm2602_coeff ssm2602_coeff_table[] = {
  182. /* 48k */
  183. {12288000, 48000, SSM2602_COEFF_SRATE(0x0, 0x0, 0x0)},
  184. {18432000, 48000, SSM2602_COEFF_SRATE(0x0, 0x1, 0x0)},
  185. {12000000, 48000, SSM2602_COEFF_SRATE(0x0, 0x0, 0x1)},
  186. /* 32k */
  187. {12288000, 32000, SSM2602_COEFF_SRATE(0x6, 0x0, 0x0)},
  188. {18432000, 32000, SSM2602_COEFF_SRATE(0x6, 0x1, 0x0)},
  189. {12000000, 32000, SSM2602_COEFF_SRATE(0x6, 0x0, 0x1)},
  190. /* 16k */
  191. {12288000, 16000, SSM2602_COEFF_SRATE(0x5, 0x0, 0x0)},
  192. {18432000, 16000, SSM2602_COEFF_SRATE(0x5, 0x1, 0x0)},
  193. {12000000, 16000, SSM2602_COEFF_SRATE(0xa, 0x0, 0x1)},
  194. /* 8k */
  195. {12288000, 8000, SSM2602_COEFF_SRATE(0x3, 0x0, 0x0)},
  196. {18432000, 8000, SSM2602_COEFF_SRATE(0x3, 0x1, 0x0)},
  197. {11289600, 8000, SSM2602_COEFF_SRATE(0xb, 0x0, 0x0)},
  198. {16934400, 8000, SSM2602_COEFF_SRATE(0xb, 0x1, 0x0)},
  199. {12000000, 8000, SSM2602_COEFF_SRATE(0x3, 0x0, 0x1)},
  200. /* 96k */
  201. {12288000, 96000, SSM2602_COEFF_SRATE(0x7, 0x0, 0x0)},
  202. {18432000, 96000, SSM2602_COEFF_SRATE(0x7, 0x1, 0x0)},
  203. {12000000, 96000, SSM2602_COEFF_SRATE(0x7, 0x0, 0x1)},
  204. /* 11.025k */
  205. {11289600, 11025, SSM2602_COEFF_SRATE(0xc, 0x0, 0x0)},
  206. {16934400, 11025, SSM2602_COEFF_SRATE(0xc, 0x1, 0x0)},
  207. {12000000, 11025, SSM2602_COEFF_SRATE(0xc, 0x1, 0x1)},
  208. /* 22.05k */
  209. {11289600, 22050, SSM2602_COEFF_SRATE(0xd, 0x0, 0x0)},
  210. {16934400, 22050, SSM2602_COEFF_SRATE(0xd, 0x1, 0x0)},
  211. {12000000, 22050, SSM2602_COEFF_SRATE(0xd, 0x1, 0x1)},
  212. /* 44.1k */
  213. {11289600, 44100, SSM2602_COEFF_SRATE(0x8, 0x0, 0x0)},
  214. {16934400, 44100, SSM2602_COEFF_SRATE(0x8, 0x1, 0x0)},
  215. {12000000, 44100, SSM2602_COEFF_SRATE(0x8, 0x1, 0x1)},
  216. /* 88.2k */
  217. {11289600, 88200, SSM2602_COEFF_SRATE(0xf, 0x0, 0x0)},
  218. {16934400, 88200, SSM2602_COEFF_SRATE(0xf, 0x1, 0x0)},
  219. {12000000, 88200, SSM2602_COEFF_SRATE(0xf, 0x1, 0x1)},
  220. };
  221. static inline int ssm2602_get_coeff(int mclk, int rate)
  222. {
  223. int i;
  224. for (i = 0; i < ARRAY_SIZE(ssm2602_coeff_table); i++) {
  225. if (ssm2602_coeff_table[i].rate == rate &&
  226. ssm2602_coeff_table[i].mclk == mclk)
  227. return ssm2602_coeff_table[i].srate;
  228. }
  229. return -EINVAL;
  230. }
  231. static int ssm2602_hw_params(struct snd_pcm_substream *substream,
  232. struct snd_pcm_hw_params *params,
  233. struct snd_soc_dai *dai)
  234. {
  235. struct snd_soc_component *component = dai->component;
  236. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  237. int srate = ssm2602_get_coeff(ssm2602->sysclk, params_rate(params));
  238. unsigned int iface;
  239. if (srate < 0)
  240. return srate;
  241. regmap_write(ssm2602->regmap, SSM2602_SRATE, srate);
  242. /* bit size */
  243. switch (params_width(params)) {
  244. case 16:
  245. iface = 0x0;
  246. break;
  247. case 20:
  248. iface = 0x4;
  249. break;
  250. case 24:
  251. iface = 0x8;
  252. break;
  253. case 32:
  254. iface = 0xc;
  255. break;
  256. default:
  257. return -EINVAL;
  258. }
  259. regmap_update_bits(ssm2602->regmap, SSM2602_IFACE,
  260. IFACE_AUDIO_DATA_LEN, iface);
  261. return 0;
  262. }
  263. static int ssm2602_startup(struct snd_pcm_substream *substream,
  264. struct snd_soc_dai *dai)
  265. {
  266. struct snd_soc_component *component = dai->component;
  267. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  268. if (ssm2602->sysclk_constraints) {
  269. snd_pcm_hw_constraint_list(substream->runtime, 0,
  270. SNDRV_PCM_HW_PARAM_RATE,
  271. ssm2602->sysclk_constraints);
  272. }
  273. return 0;
  274. }
  275. static int ssm2602_mute(struct snd_soc_dai *dai, int mute, int direction)
  276. {
  277. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(dai->component);
  278. if (mute)
  279. regmap_update_bits(ssm2602->regmap, SSM2602_APDIGI,
  280. APDIGI_ENABLE_DAC_MUTE,
  281. APDIGI_ENABLE_DAC_MUTE);
  282. else
  283. regmap_update_bits(ssm2602->regmap, SSM2602_APDIGI,
  284. APDIGI_ENABLE_DAC_MUTE, 0);
  285. return 0;
  286. }
  287. static int ssm2602_set_dai_sysclk(struct snd_soc_dai *codec_dai,
  288. int clk_id, unsigned int freq, int dir)
  289. {
  290. struct snd_soc_component *component = codec_dai->component;
  291. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  292. if (dir == SND_SOC_CLOCK_IN) {
  293. if (clk_id != SSM2602_SYSCLK)
  294. return -EINVAL;
  295. switch (freq) {
  296. case 12288000:
  297. case 18432000:
  298. ssm2602->sysclk_constraints = &ssm2602_constraints_12288000;
  299. break;
  300. case 11289600:
  301. case 16934400:
  302. ssm2602->sysclk_constraints = &ssm2602_constraints_11289600;
  303. break;
  304. case 12000000:
  305. ssm2602->sysclk_constraints = NULL;
  306. break;
  307. default:
  308. return -EINVAL;
  309. }
  310. ssm2602->sysclk = freq;
  311. } else {
  312. unsigned int mask;
  313. switch (clk_id) {
  314. case SSM2602_CLK_CLKOUT:
  315. mask = PWR_CLK_OUT_PDN;
  316. break;
  317. case SSM2602_CLK_XTO:
  318. mask = PWR_OSC_PDN;
  319. break;
  320. default:
  321. return -EINVAL;
  322. }
  323. if (freq == 0)
  324. ssm2602->clk_out_pwr |= mask;
  325. else
  326. ssm2602->clk_out_pwr &= ~mask;
  327. regmap_update_bits(ssm2602->regmap, SSM2602_PWR,
  328. PWR_CLK_OUT_PDN | PWR_OSC_PDN, ssm2602->clk_out_pwr);
  329. }
  330. return 0;
  331. }
  332. static int ssm2602_set_dai_fmt(struct snd_soc_dai *codec_dai,
  333. unsigned int fmt)
  334. {
  335. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(codec_dai->component);
  336. unsigned int iface = 0;
  337. /* set master/slave audio interface */
  338. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  339. case SND_SOC_DAIFMT_CBM_CFM:
  340. iface |= 0x0040;
  341. break;
  342. case SND_SOC_DAIFMT_CBS_CFS:
  343. break;
  344. default:
  345. return -EINVAL;
  346. }
  347. /* interface format */
  348. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  349. case SND_SOC_DAIFMT_I2S:
  350. iface |= 0x0002;
  351. break;
  352. case SND_SOC_DAIFMT_RIGHT_J:
  353. break;
  354. case SND_SOC_DAIFMT_LEFT_J:
  355. iface |= 0x0001;
  356. break;
  357. case SND_SOC_DAIFMT_DSP_A:
  358. iface |= 0x0013;
  359. break;
  360. case SND_SOC_DAIFMT_DSP_B:
  361. iface |= 0x0003;
  362. break;
  363. default:
  364. return -EINVAL;
  365. }
  366. /* clock inversion */
  367. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  368. case SND_SOC_DAIFMT_NB_NF:
  369. break;
  370. case SND_SOC_DAIFMT_IB_IF:
  371. iface |= 0x0090;
  372. break;
  373. case SND_SOC_DAIFMT_IB_NF:
  374. iface |= 0x0080;
  375. break;
  376. case SND_SOC_DAIFMT_NB_IF:
  377. iface |= 0x0010;
  378. break;
  379. default:
  380. return -EINVAL;
  381. }
  382. /* set iface */
  383. regmap_write(ssm2602->regmap, SSM2602_IFACE, iface);
  384. return 0;
  385. }
  386. static int ssm2602_set_bias_level(struct snd_soc_component *component,
  387. enum snd_soc_bias_level level)
  388. {
  389. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  390. switch (level) {
  391. case SND_SOC_BIAS_ON:
  392. /* vref/mid on, osc and clkout on if enabled */
  393. regmap_update_bits(ssm2602->regmap, SSM2602_PWR,
  394. PWR_POWER_OFF | PWR_CLK_OUT_PDN | PWR_OSC_PDN,
  395. ssm2602->clk_out_pwr);
  396. break;
  397. case SND_SOC_BIAS_PREPARE:
  398. break;
  399. case SND_SOC_BIAS_STANDBY:
  400. /* everything off except vref/vmid, */
  401. regmap_update_bits(ssm2602->regmap, SSM2602_PWR,
  402. PWR_POWER_OFF | PWR_CLK_OUT_PDN | PWR_OSC_PDN,
  403. PWR_CLK_OUT_PDN | PWR_OSC_PDN);
  404. break;
  405. case SND_SOC_BIAS_OFF:
  406. /* everything off */
  407. regmap_update_bits(ssm2602->regmap, SSM2602_PWR,
  408. PWR_POWER_OFF, PWR_POWER_OFF);
  409. break;
  410. }
  411. return 0;
  412. }
  413. #define SSM2602_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
  414. SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 |\
  415. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |\
  416. SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |\
  417. SNDRV_PCM_RATE_96000)
  418. #define SSM2602_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
  419. SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  420. static const struct snd_soc_dai_ops ssm2602_dai_ops = {
  421. .startup = ssm2602_startup,
  422. .hw_params = ssm2602_hw_params,
  423. .mute_stream = ssm2602_mute,
  424. .set_sysclk = ssm2602_set_dai_sysclk,
  425. .set_fmt = ssm2602_set_dai_fmt,
  426. .no_capture_mute = 1,
  427. };
  428. static struct snd_soc_dai_driver ssm2602_dai = {
  429. .name = "ssm2602-hifi",
  430. .playback = {
  431. .stream_name = "Playback",
  432. .channels_min = 2,
  433. .channels_max = 2,
  434. .rates = SSM2602_RATES,
  435. .formats = SSM2602_FORMATS,},
  436. .capture = {
  437. .stream_name = "Capture",
  438. .channels_min = 2,
  439. .channels_max = 2,
  440. .rates = SSM2602_RATES,
  441. .formats = SSM2602_FORMATS,},
  442. .ops = &ssm2602_dai_ops,
  443. .symmetric_rates = 1,
  444. .symmetric_samplebits = 1,
  445. };
  446. static int ssm2602_resume(struct snd_soc_component *component)
  447. {
  448. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  449. regcache_sync(ssm2602->regmap);
  450. return 0;
  451. }
  452. static int ssm2602_component_probe(struct snd_soc_component *component)
  453. {
  454. struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
  455. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  456. int ret;
  457. regmap_update_bits(ssm2602->regmap, SSM2602_LOUT1V,
  458. LOUT1V_LRHP_BOTH, LOUT1V_LRHP_BOTH);
  459. regmap_update_bits(ssm2602->regmap, SSM2602_ROUT1V,
  460. ROUT1V_RLHP_BOTH, ROUT1V_RLHP_BOTH);
  461. ret = snd_soc_add_component_controls(component, ssm2602_snd_controls,
  462. ARRAY_SIZE(ssm2602_snd_controls));
  463. if (ret)
  464. return ret;
  465. ret = snd_soc_dapm_new_controls(dapm, ssm2602_dapm_widgets,
  466. ARRAY_SIZE(ssm2602_dapm_widgets));
  467. if (ret)
  468. return ret;
  469. return snd_soc_dapm_add_routes(dapm, ssm2602_routes,
  470. ARRAY_SIZE(ssm2602_routes));
  471. }
  472. static int ssm2604_component_probe(struct snd_soc_component *component)
  473. {
  474. struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
  475. int ret;
  476. ret = snd_soc_dapm_new_controls(dapm, ssm2604_dapm_widgets,
  477. ARRAY_SIZE(ssm2604_dapm_widgets));
  478. if (ret)
  479. return ret;
  480. return snd_soc_dapm_add_routes(dapm, ssm2604_routes,
  481. ARRAY_SIZE(ssm2604_routes));
  482. }
  483. static int ssm260x_component_probe(struct snd_soc_component *component)
  484. {
  485. struct ssm2602_priv *ssm2602 = snd_soc_component_get_drvdata(component);
  486. int ret;
  487. ret = regmap_write(ssm2602->regmap, SSM2602_RESET, 0);
  488. if (ret < 0) {
  489. dev_err(component->dev, "Failed to issue reset: %d\n", ret);
  490. return ret;
  491. }
  492. /* set the update bits */
  493. regmap_update_bits(ssm2602->regmap, SSM2602_LINVOL,
  494. LINVOL_LRIN_BOTH, LINVOL_LRIN_BOTH);
  495. regmap_update_bits(ssm2602->regmap, SSM2602_RINVOL,
  496. RINVOL_RLIN_BOTH, RINVOL_RLIN_BOTH);
  497. /*select Line in as default input*/
  498. regmap_write(ssm2602->regmap, SSM2602_APANA, APANA_SELECT_DAC |
  499. APANA_ENABLE_MIC_BOOST);
  500. switch (ssm2602->type) {
  501. case SSM2602:
  502. ret = ssm2602_component_probe(component);
  503. break;
  504. case SSM2604:
  505. ret = ssm2604_component_probe(component);
  506. break;
  507. }
  508. return ret;
  509. }
  510. static const struct snd_soc_component_driver soc_component_dev_ssm2602 = {
  511. .probe = ssm260x_component_probe,
  512. .resume = ssm2602_resume,
  513. .set_bias_level = ssm2602_set_bias_level,
  514. .controls = ssm260x_snd_controls,
  515. .num_controls = ARRAY_SIZE(ssm260x_snd_controls),
  516. .dapm_widgets = ssm260x_dapm_widgets,
  517. .num_dapm_widgets = ARRAY_SIZE(ssm260x_dapm_widgets),
  518. .dapm_routes = ssm260x_routes,
  519. .num_dapm_routes = ARRAY_SIZE(ssm260x_routes),
  520. .suspend_bias_off = 1,
  521. .idle_bias_on = 1,
  522. .use_pmdown_time = 1,
  523. .endianness = 1,
  524. .non_legacy_dai_naming = 1,
  525. };
  526. static bool ssm2602_register_volatile(struct device *dev, unsigned int reg)
  527. {
  528. return reg == SSM2602_RESET;
  529. }
  530. const struct regmap_config ssm2602_regmap_config = {
  531. .val_bits = 9,
  532. .reg_bits = 7,
  533. .max_register = SSM2602_RESET,
  534. .volatile_reg = ssm2602_register_volatile,
  535. .cache_type = REGCACHE_RBTREE,
  536. .reg_defaults = ssm2602_reg,
  537. .num_reg_defaults = ARRAY_SIZE(ssm2602_reg),
  538. };
  539. EXPORT_SYMBOL_GPL(ssm2602_regmap_config);
  540. int ssm2602_probe(struct device *dev, enum ssm2602_type type,
  541. struct regmap *regmap)
  542. {
  543. struct ssm2602_priv *ssm2602;
  544. if (IS_ERR(regmap))
  545. return PTR_ERR(regmap);
  546. ssm2602 = devm_kzalloc(dev, sizeof(*ssm2602), GFP_KERNEL);
  547. if (ssm2602 == NULL)
  548. return -ENOMEM;
  549. dev_set_drvdata(dev, ssm2602);
  550. ssm2602->type = type;
  551. ssm2602->regmap = regmap;
  552. return devm_snd_soc_register_component(dev, &soc_component_dev_ssm2602,
  553. &ssm2602_dai, 1);
  554. }
  555. EXPORT_SYMBOL_GPL(ssm2602_probe);
  556. MODULE_DESCRIPTION("ASoC SSM2602/SSM2603/SSM2604 driver");
  557. MODULE_AUTHOR("Cliff Cai");
  558. MODULE_LICENSE("GPL");