qcom-spmi-vadc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/bitops.h>
  6. #include <linux/completion.h>
  7. #include <linux/delay.h>
  8. #include <linux/err.h>
  9. #include <linux/iio/iio.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/kernel.h>
  12. #include <linux/math64.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/regmap.h>
  17. #include <linux/slab.h>
  18. #include <linux/log2.h>
  19. #include <dt-bindings/iio/qcom,spmi-vadc.h>
  20. #include "qcom-vadc-common.h"
  21. /* VADC register and bit definitions */
  22. #define VADC_REVISION2 0x1
  23. #define VADC_REVISION2_SUPPORTED_VADC 1
  24. #define VADC_PERPH_TYPE 0x4
  25. #define VADC_PERPH_TYPE_ADC 8
  26. #define VADC_PERPH_SUBTYPE 0x5
  27. #define VADC_PERPH_SUBTYPE_VADC 1
  28. #define VADC_STATUS1 0x8
  29. #define VADC_STATUS1_OP_MODE 4
  30. #define VADC_STATUS1_REQ_STS BIT(1)
  31. #define VADC_STATUS1_EOC BIT(0)
  32. #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3
  33. #define VADC_MODE_CTL 0x40
  34. #define VADC_OP_MODE_SHIFT 3
  35. #define VADC_OP_MODE_NORMAL 0
  36. #define VADC_AMUX_TRIM_EN BIT(1)
  37. #define VADC_ADC_TRIM_EN BIT(0)
  38. #define VADC_EN_CTL1 0x46
  39. #define VADC_EN_CTL1_SET BIT(7)
  40. #define VADC_ADC_CH_SEL_CTL 0x48
  41. #define VADC_ADC_DIG_PARAM 0x50
  42. #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
  43. #define VADC_HW_SETTLE_DELAY 0x51
  44. #define VADC_CONV_REQ 0x52
  45. #define VADC_CONV_REQ_SET BIT(7)
  46. #define VADC_FAST_AVG_CTL 0x5a
  47. #define VADC_FAST_AVG_EN 0x5b
  48. #define VADC_FAST_AVG_EN_SET BIT(7)
  49. #define VADC_ACCESS 0xd0
  50. #define VADC_ACCESS_DATA 0xa5
  51. #define VADC_PERH_RESET_CTL3 0xda
  52. #define VADC_FOLLOW_WARM_RB BIT(2)
  53. #define VADC_DATA 0x60 /* 16 bits */
  54. #define VADC_CHAN_MIN VADC_USBIN
  55. #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
  56. /**
  57. * struct vadc_channel_prop - VADC channel property.
  58. * @channel: channel number, refer to the channel list.
  59. * @calibration: calibration type.
  60. * @decimation: sampling rate supported for the channel.
  61. * @prescale: channel scaling performed on the input signal.
  62. * @hw_settle_time: the time between AMUX being configured and the
  63. * start of conversion.
  64. * @avg_samples: ability to provide single result from the ADC
  65. * that is an average of multiple measurements.
  66. * @scale_fn_type: Represents the scaling function to convert voltage
  67. * physical units desired by the client for the channel.
  68. */
  69. struct vadc_channel_prop {
  70. unsigned int channel;
  71. enum vadc_calibration calibration;
  72. unsigned int decimation;
  73. unsigned int prescale;
  74. unsigned int hw_settle_time;
  75. unsigned int avg_samples;
  76. enum vadc_scale_fn_type scale_fn_type;
  77. };
  78. /**
  79. * struct vadc_priv - VADC private structure.
  80. * @regmap: pointer to struct regmap.
  81. * @dev: pointer to struct device.
  82. * @base: base address for the ADC peripheral.
  83. * @nchannels: number of VADC channels.
  84. * @chan_props: array of VADC channel properties.
  85. * @iio_chans: array of IIO channels specification.
  86. * @are_ref_measured: are reference points measured.
  87. * @poll_eoc: use polling instead of interrupt.
  88. * @complete: VADC result notification after interrupt is received.
  89. * @graph: store parameters for calibration.
  90. * @lock: ADC lock for access to the peripheral.
  91. */
  92. struct vadc_priv {
  93. struct regmap *regmap;
  94. struct device *dev;
  95. u16 base;
  96. unsigned int nchannels;
  97. struct vadc_channel_prop *chan_props;
  98. struct iio_chan_spec *iio_chans;
  99. bool are_ref_measured;
  100. bool poll_eoc;
  101. struct completion complete;
  102. struct vadc_linear_graph graph[2];
  103. struct mutex lock;
  104. };
  105. static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
  106. {.num = 1, .den = 1},
  107. {.num = 1, .den = 3},
  108. {.num = 1, .den = 4},
  109. {.num = 1, .den = 6},
  110. {.num = 1, .den = 20},
  111. {.num = 1, .den = 8},
  112. {.num = 10, .den = 81},
  113. {.num = 1, .den = 10}
  114. };
  115. static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
  116. {
  117. return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
  118. }
  119. static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data)
  120. {
  121. return regmap_write(vadc->regmap, vadc->base + offset, data);
  122. }
  123. static int vadc_reset(struct vadc_priv *vadc)
  124. {
  125. u8 data;
  126. int ret;
  127. ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
  128. if (ret)
  129. return ret;
  130. ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data);
  131. if (ret)
  132. return ret;
  133. ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
  134. if (ret)
  135. return ret;
  136. data |= VADC_FOLLOW_WARM_RB;
  137. return vadc_write(vadc, VADC_PERH_RESET_CTL3, data);
  138. }
  139. static int vadc_set_state(struct vadc_priv *vadc, bool state)
  140. {
  141. return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0);
  142. }
  143. static void vadc_show_status(struct vadc_priv *vadc)
  144. {
  145. u8 mode, sta1, chan, dig, en, req;
  146. int ret;
  147. ret = vadc_read(vadc, VADC_MODE_CTL, &mode);
  148. if (ret)
  149. return;
  150. ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig);
  151. if (ret)
  152. return;
  153. ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan);
  154. if (ret)
  155. return;
  156. ret = vadc_read(vadc, VADC_CONV_REQ, &req);
  157. if (ret)
  158. return;
  159. ret = vadc_read(vadc, VADC_STATUS1, &sta1);
  160. if (ret)
  161. return;
  162. ret = vadc_read(vadc, VADC_EN_CTL1, &en);
  163. if (ret)
  164. return;
  165. dev_err(vadc->dev,
  166. "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
  167. mode, en, chan, dig, req, sta1);
  168. }
  169. static int vadc_configure(struct vadc_priv *vadc,
  170. struct vadc_channel_prop *prop)
  171. {
  172. u8 decimation, mode_ctrl;
  173. int ret;
  174. /* Mode selection */
  175. mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) |
  176. VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN;
  177. ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl);
  178. if (ret)
  179. return ret;
  180. /* Channel selection */
  181. ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel);
  182. if (ret)
  183. return ret;
  184. /* Digital parameter setup */
  185. decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
  186. ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation);
  187. if (ret)
  188. return ret;
  189. /* HW settle time delay */
  190. ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time);
  191. if (ret)
  192. return ret;
  193. ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples);
  194. if (ret)
  195. return ret;
  196. if (prop->avg_samples)
  197. ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET);
  198. else
  199. ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0);
  200. return ret;
  201. }
  202. static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us)
  203. {
  204. unsigned int count, retry;
  205. u8 sta1;
  206. int ret;
  207. retry = interval_us / VADC_CONV_TIME_MIN_US;
  208. for (count = 0; count < retry; count++) {
  209. ret = vadc_read(vadc, VADC_STATUS1, &sta1);
  210. if (ret)
  211. return ret;
  212. sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK;
  213. if (sta1 == VADC_STATUS1_EOC)
  214. return 0;
  215. usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US);
  216. }
  217. vadc_show_status(vadc);
  218. return -ETIMEDOUT;
  219. }
  220. static int vadc_read_result(struct vadc_priv *vadc, u16 *data)
  221. {
  222. int ret;
  223. ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2);
  224. if (ret)
  225. return ret;
  226. *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE);
  227. return 0;
  228. }
  229. static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc,
  230. unsigned int num)
  231. {
  232. unsigned int i;
  233. for (i = 0; i < vadc->nchannels; i++)
  234. if (vadc->chan_props[i].channel == num)
  235. return &vadc->chan_props[i];
  236. dev_dbg(vadc->dev, "no such channel %02x\n", num);
  237. return NULL;
  238. }
  239. static int vadc_do_conversion(struct vadc_priv *vadc,
  240. struct vadc_channel_prop *prop, u16 *data)
  241. {
  242. unsigned int timeout;
  243. int ret;
  244. mutex_lock(&vadc->lock);
  245. ret = vadc_configure(vadc, prop);
  246. if (ret)
  247. goto unlock;
  248. if (!vadc->poll_eoc)
  249. reinit_completion(&vadc->complete);
  250. ret = vadc_set_state(vadc, true);
  251. if (ret)
  252. goto unlock;
  253. ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET);
  254. if (ret)
  255. goto err_disable;
  256. timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2;
  257. if (vadc->poll_eoc) {
  258. ret = vadc_poll_wait_eoc(vadc, timeout);
  259. } else {
  260. ret = wait_for_completion_timeout(&vadc->complete, timeout);
  261. if (!ret) {
  262. ret = -ETIMEDOUT;
  263. goto err_disable;
  264. }
  265. /* Double check conversion status */
  266. ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US);
  267. if (ret)
  268. goto err_disable;
  269. }
  270. ret = vadc_read_result(vadc, data);
  271. err_disable:
  272. vadc_set_state(vadc, false);
  273. if (ret)
  274. dev_err(vadc->dev, "conversion failed\n");
  275. unlock:
  276. mutex_unlock(&vadc->lock);
  277. return ret;
  278. }
  279. static int vadc_measure_ref_points(struct vadc_priv *vadc)
  280. {
  281. struct vadc_channel_prop *prop;
  282. u16 read_1, read_2;
  283. int ret;
  284. vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE;
  285. vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;
  286. prop = vadc_get_channel(vadc, VADC_REF_1250MV);
  287. ret = vadc_do_conversion(vadc, prop, &read_1);
  288. if (ret)
  289. goto err;
  290. /* Try with buffered 625mV channel first */
  291. prop = vadc_get_channel(vadc, VADC_SPARE1);
  292. if (!prop)
  293. prop = vadc_get_channel(vadc, VADC_REF_625MV);
  294. ret = vadc_do_conversion(vadc, prop, &read_2);
  295. if (ret)
  296. goto err;
  297. if (read_1 == read_2) {
  298. ret = -EINVAL;
  299. goto err;
  300. }
  301. vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2;
  302. vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2;
  303. /* Ratiometric calibration */
  304. prop = vadc_get_channel(vadc, VADC_VDD_VADC);
  305. ret = vadc_do_conversion(vadc, prop, &read_1);
  306. if (ret)
  307. goto err;
  308. prop = vadc_get_channel(vadc, VADC_GND_REF);
  309. ret = vadc_do_conversion(vadc, prop, &read_2);
  310. if (ret)
  311. goto err;
  312. if (read_1 == read_2) {
  313. ret = -EINVAL;
  314. goto err;
  315. }
  316. vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2;
  317. vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2;
  318. err:
  319. if (ret)
  320. dev_err(vadc->dev, "measure reference points failed\n");
  321. return ret;
  322. }
  323. static int vadc_prescaling_from_dt(u32 num, u32 den)
  324. {
  325. unsigned int pre;
  326. for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++)
  327. if (vadc_prescale_ratios[pre].num == num &&
  328. vadc_prescale_ratios[pre].den == den)
  329. break;
  330. if (pre == ARRAY_SIZE(vadc_prescale_ratios))
  331. return -EINVAL;
  332. return pre;
  333. }
  334. static int vadc_hw_settle_time_from_dt(u32 value)
  335. {
  336. if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000))
  337. return -EINVAL;
  338. if (value <= 1000)
  339. value /= 100;
  340. else
  341. value = value / 2000 + 10;
  342. return value;
  343. }
  344. static int vadc_avg_samples_from_dt(u32 value)
  345. {
  346. if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX)
  347. return -EINVAL;
  348. return __ffs64(value);
  349. }
  350. static int vadc_read_raw(struct iio_dev *indio_dev,
  351. struct iio_chan_spec const *chan, int *val, int *val2,
  352. long mask)
  353. {
  354. struct vadc_priv *vadc = iio_priv(indio_dev);
  355. struct vadc_channel_prop *prop;
  356. u16 adc_code;
  357. int ret;
  358. switch (mask) {
  359. case IIO_CHAN_INFO_PROCESSED:
  360. prop = &vadc->chan_props[chan->address];
  361. ret = vadc_do_conversion(vadc, prop, &adc_code);
  362. if (ret)
  363. break;
  364. ret = qcom_vadc_scale(prop->scale_fn_type,
  365. &vadc->graph[prop->calibration],
  366. &vadc_prescale_ratios[prop->prescale],
  367. (prop->calibration == VADC_CALIB_ABSOLUTE),
  368. adc_code, val);
  369. if (ret)
  370. break;
  371. return IIO_VAL_INT;
  372. case IIO_CHAN_INFO_RAW:
  373. prop = &vadc->chan_props[chan->address];
  374. ret = vadc_do_conversion(vadc, prop, &adc_code);
  375. if (ret)
  376. break;
  377. *val = (int)adc_code;
  378. return IIO_VAL_INT;
  379. default:
  380. ret = -EINVAL;
  381. break;
  382. }
  383. return ret;
  384. }
  385. static int vadc_of_xlate(struct iio_dev *indio_dev,
  386. const struct of_phandle_args *iiospec)
  387. {
  388. struct vadc_priv *vadc = iio_priv(indio_dev);
  389. unsigned int i;
  390. for (i = 0; i < vadc->nchannels; i++)
  391. if (vadc->iio_chans[i].channel == iiospec->args[0])
  392. return i;
  393. return -EINVAL;
  394. }
  395. static const struct iio_info vadc_info = {
  396. .read_raw = vadc_read_raw,
  397. .of_xlate = vadc_of_xlate,
  398. };
  399. struct vadc_channels {
  400. const char *datasheet_name;
  401. unsigned int prescale_index;
  402. enum iio_chan_type type;
  403. long info_mask;
  404. enum vadc_scale_fn_type scale_fn_type;
  405. };
  406. #define VADC_CHAN(_dname, _type, _mask, _pre, _scale) \
  407. [VADC_##_dname] = { \
  408. .datasheet_name = __stringify(_dname), \
  409. .prescale_index = _pre, \
  410. .type = _type, \
  411. .info_mask = _mask, \
  412. .scale_fn_type = _scale \
  413. }, \
  414. #define VADC_NO_CHAN(_dname, _type, _mask, _pre) \
  415. [VADC_##_dname] = { \
  416. .datasheet_name = __stringify(_dname), \
  417. .prescale_index = _pre, \
  418. .type = _type, \
  419. .info_mask = _mask \
  420. },
  421. #define VADC_CHAN_TEMP(_dname, _pre, _scale) \
  422. VADC_CHAN(_dname, IIO_TEMP, \
  423. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), \
  424. _pre, _scale) \
  425. #define VADC_CHAN_VOLT(_dname, _pre, _scale) \
  426. VADC_CHAN(_dname, IIO_VOLTAGE, \
  427. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
  428. _pre, _scale) \
  429. #define VADC_CHAN_NO_SCALE(_dname, _pre) \
  430. VADC_NO_CHAN(_dname, IIO_VOLTAGE, \
  431. BIT(IIO_CHAN_INFO_RAW), \
  432. _pre) \
  433. /*
  434. * The array represents all possible ADC channels found in the supported PMICs.
  435. * Every index in the array is equal to the channel number per datasheet. The
  436. * gaps in the array should be treated as reserved channels.
  437. */
  438. static const struct vadc_channels vadc_chans[] = {
  439. VADC_CHAN_VOLT(USBIN, 4, SCALE_DEFAULT)
  440. VADC_CHAN_VOLT(DCIN, 4, SCALE_DEFAULT)
  441. VADC_CHAN_NO_SCALE(VCHG_SNS, 3)
  442. VADC_CHAN_NO_SCALE(SPARE1_03, 1)
  443. VADC_CHAN_NO_SCALE(USB_ID_MV, 1)
  444. VADC_CHAN_VOLT(VCOIN, 1, SCALE_DEFAULT)
  445. VADC_CHAN_NO_SCALE(VBAT_SNS, 1)
  446. VADC_CHAN_VOLT(VSYS, 1, SCALE_DEFAULT)
  447. VADC_CHAN_TEMP(DIE_TEMP, 0, SCALE_PMIC_THERM)
  448. VADC_CHAN_VOLT(REF_625MV, 0, SCALE_DEFAULT)
  449. VADC_CHAN_VOLT(REF_1250MV, 0, SCALE_DEFAULT)
  450. VADC_CHAN_NO_SCALE(CHG_TEMP, 0)
  451. VADC_CHAN_NO_SCALE(SPARE1, 0)
  452. VADC_CHAN_TEMP(SPARE2, 0, SCALE_PMI_CHG_TEMP)
  453. VADC_CHAN_VOLT(GND_REF, 0, SCALE_DEFAULT)
  454. VADC_CHAN_VOLT(VDD_VADC, 0, SCALE_DEFAULT)
  455. VADC_CHAN_NO_SCALE(P_MUX1_1_1, 0)
  456. VADC_CHAN_NO_SCALE(P_MUX2_1_1, 0)
  457. VADC_CHAN_NO_SCALE(P_MUX3_1_1, 0)
  458. VADC_CHAN_NO_SCALE(P_MUX4_1_1, 0)
  459. VADC_CHAN_NO_SCALE(P_MUX5_1_1, 0)
  460. VADC_CHAN_NO_SCALE(P_MUX6_1_1, 0)
  461. VADC_CHAN_NO_SCALE(P_MUX7_1_1, 0)
  462. VADC_CHAN_NO_SCALE(P_MUX8_1_1, 0)
  463. VADC_CHAN_NO_SCALE(P_MUX9_1_1, 0)
  464. VADC_CHAN_NO_SCALE(P_MUX10_1_1, 0)
  465. VADC_CHAN_NO_SCALE(P_MUX11_1_1, 0)
  466. VADC_CHAN_NO_SCALE(P_MUX12_1_1, 0)
  467. VADC_CHAN_NO_SCALE(P_MUX13_1_1, 0)
  468. VADC_CHAN_NO_SCALE(P_MUX14_1_1, 0)
  469. VADC_CHAN_NO_SCALE(P_MUX15_1_1, 0)
  470. VADC_CHAN_NO_SCALE(P_MUX16_1_1, 0)
  471. VADC_CHAN_NO_SCALE(P_MUX1_1_3, 1)
  472. VADC_CHAN_NO_SCALE(P_MUX2_1_3, 1)
  473. VADC_CHAN_NO_SCALE(P_MUX3_1_3, 1)
  474. VADC_CHAN_NO_SCALE(P_MUX4_1_3, 1)
  475. VADC_CHAN_NO_SCALE(P_MUX5_1_3, 1)
  476. VADC_CHAN_NO_SCALE(P_MUX6_1_3, 1)
  477. VADC_CHAN_NO_SCALE(P_MUX7_1_3, 1)
  478. VADC_CHAN_NO_SCALE(P_MUX8_1_3, 1)
  479. VADC_CHAN_NO_SCALE(P_MUX9_1_3, 1)
  480. VADC_CHAN_NO_SCALE(P_MUX10_1_3, 1)
  481. VADC_CHAN_NO_SCALE(P_MUX11_1_3, 1)
  482. VADC_CHAN_NO_SCALE(P_MUX12_1_3, 1)
  483. VADC_CHAN_NO_SCALE(P_MUX13_1_3, 1)
  484. VADC_CHAN_NO_SCALE(P_MUX14_1_3, 1)
  485. VADC_CHAN_NO_SCALE(P_MUX15_1_3, 1)
  486. VADC_CHAN_NO_SCALE(P_MUX16_1_3, 1)
  487. VADC_CHAN_NO_SCALE(LR_MUX1_BAT_THERM, 0)
  488. VADC_CHAN_VOLT(LR_MUX2_BAT_ID, 0, SCALE_DEFAULT)
  489. VADC_CHAN_NO_SCALE(LR_MUX3_XO_THERM, 0)
  490. VADC_CHAN_NO_SCALE(LR_MUX4_AMUX_THM1, 0)
  491. VADC_CHAN_NO_SCALE(LR_MUX5_AMUX_THM2, 0)
  492. VADC_CHAN_NO_SCALE(LR_MUX6_AMUX_THM3, 0)
  493. VADC_CHAN_NO_SCALE(LR_MUX7_HW_ID, 0)
  494. VADC_CHAN_NO_SCALE(LR_MUX8_AMUX_THM4, 0)
  495. VADC_CHAN_NO_SCALE(LR_MUX9_AMUX_THM5, 0)
  496. VADC_CHAN_NO_SCALE(LR_MUX10_USB_ID, 0)
  497. VADC_CHAN_NO_SCALE(AMUX_PU1, 0)
  498. VADC_CHAN_NO_SCALE(AMUX_PU2, 0)
  499. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_XO_THERM, 0)
  500. VADC_CHAN_NO_SCALE(LR_MUX1_PU1_BAT_THERM, 0)
  501. VADC_CHAN_NO_SCALE(LR_MUX2_PU1_BAT_ID, 0)
  502. VADC_CHAN_NO_SCALE(LR_MUX3_PU1_XO_THERM, 0)
  503. VADC_CHAN_TEMP(LR_MUX4_PU1_AMUX_THM1, 0, SCALE_THERM_100K_PULLUP)
  504. VADC_CHAN_TEMP(LR_MUX5_PU1_AMUX_THM2, 0, SCALE_THERM_100K_PULLUP)
  505. VADC_CHAN_TEMP(LR_MUX6_PU1_AMUX_THM3, 0, SCALE_THERM_100K_PULLUP)
  506. VADC_CHAN_NO_SCALE(LR_MUX7_PU1_AMUX_HW_ID, 0)
  507. VADC_CHAN_TEMP(LR_MUX8_PU1_AMUX_THM4, 0, SCALE_THERM_100K_PULLUP)
  508. VADC_CHAN_TEMP(LR_MUX9_PU1_AMUX_THM5, 0, SCALE_THERM_100K_PULLUP)
  509. VADC_CHAN_NO_SCALE(LR_MUX10_PU1_AMUX_USB_ID, 0)
  510. VADC_CHAN_TEMP(LR_MUX3_BUF_PU1_XO_THERM, 0, SCALE_XOTHERM)
  511. VADC_CHAN_NO_SCALE(LR_MUX1_PU2_BAT_THERM, 0)
  512. VADC_CHAN_NO_SCALE(LR_MUX2_PU2_BAT_ID, 0)
  513. VADC_CHAN_NO_SCALE(LR_MUX3_PU2_XO_THERM, 0)
  514. VADC_CHAN_NO_SCALE(LR_MUX4_PU2_AMUX_THM1, 0)
  515. VADC_CHAN_NO_SCALE(LR_MUX5_PU2_AMUX_THM2, 0)
  516. VADC_CHAN_NO_SCALE(LR_MUX6_PU2_AMUX_THM3, 0)
  517. VADC_CHAN_NO_SCALE(LR_MUX7_PU2_AMUX_HW_ID, 0)
  518. VADC_CHAN_NO_SCALE(LR_MUX8_PU2_AMUX_THM4, 0)
  519. VADC_CHAN_NO_SCALE(LR_MUX9_PU2_AMUX_THM5, 0)
  520. VADC_CHAN_NO_SCALE(LR_MUX10_PU2_AMUX_USB_ID, 0)
  521. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU2_XO_THERM, 0)
  522. VADC_CHAN_NO_SCALE(LR_MUX1_PU1_PU2_BAT_THERM, 0)
  523. VADC_CHAN_NO_SCALE(LR_MUX2_PU1_PU2_BAT_ID, 0)
  524. VADC_CHAN_NO_SCALE(LR_MUX3_PU1_PU2_XO_THERM, 0)
  525. VADC_CHAN_NO_SCALE(LR_MUX4_PU1_PU2_AMUX_THM1, 0)
  526. VADC_CHAN_NO_SCALE(LR_MUX5_PU1_PU2_AMUX_THM2, 0)
  527. VADC_CHAN_NO_SCALE(LR_MUX6_PU1_PU2_AMUX_THM3, 0)
  528. VADC_CHAN_NO_SCALE(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0)
  529. VADC_CHAN_NO_SCALE(LR_MUX8_PU1_PU2_AMUX_THM4, 0)
  530. VADC_CHAN_NO_SCALE(LR_MUX9_PU1_PU2_AMUX_THM5, 0)
  531. VADC_CHAN_NO_SCALE(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0)
  532. VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0)
  533. };
  534. static int vadc_get_dt_channel_data(struct device *dev,
  535. struct vadc_channel_prop *prop,
  536. struct device_node *node)
  537. {
  538. const char *name = node->name;
  539. u32 chan, value, varr[2];
  540. int ret;
  541. ret = of_property_read_u32(node, "reg", &chan);
  542. if (ret) {
  543. dev_err(dev, "invalid channel number %s\n", name);
  544. return ret;
  545. }
  546. if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) {
  547. dev_err(dev, "%s invalid channel number %d\n", name, chan);
  548. return -EINVAL;
  549. }
  550. /* the channel has DT description */
  551. prop->channel = chan;
  552. ret = of_property_read_u32(node, "qcom,decimation", &value);
  553. if (!ret) {
  554. ret = qcom_vadc_decimation_from_dt(value);
  555. if (ret < 0) {
  556. dev_err(dev, "%02x invalid decimation %d\n",
  557. chan, value);
  558. return ret;
  559. }
  560. prop->decimation = ret;
  561. } else {
  562. prop->decimation = VADC_DEF_DECIMATION;
  563. }
  564. ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
  565. if (!ret) {
  566. ret = vadc_prescaling_from_dt(varr[0], varr[1]);
  567. if (ret < 0) {
  568. dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
  569. chan, varr[0], varr[1]);
  570. return ret;
  571. }
  572. prop->prescale = ret;
  573. } else {
  574. prop->prescale = vadc_chans[prop->channel].prescale_index;
  575. }
  576. ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
  577. if (!ret) {
  578. ret = vadc_hw_settle_time_from_dt(value);
  579. if (ret < 0) {
  580. dev_err(dev, "%02x invalid hw-settle-time %d us\n",
  581. chan, value);
  582. return ret;
  583. }
  584. prop->hw_settle_time = ret;
  585. } else {
  586. prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
  587. }
  588. ret = of_property_read_u32(node, "qcom,avg-samples", &value);
  589. if (!ret) {
  590. ret = vadc_avg_samples_from_dt(value);
  591. if (ret < 0) {
  592. dev_err(dev, "%02x invalid avg-samples %d\n",
  593. chan, value);
  594. return ret;
  595. }
  596. prop->avg_samples = ret;
  597. } else {
  598. prop->avg_samples = VADC_DEF_AVG_SAMPLES;
  599. }
  600. if (of_property_read_bool(node, "qcom,ratiometric"))
  601. prop->calibration = VADC_CALIB_RATIOMETRIC;
  602. else
  603. prop->calibration = VADC_CALIB_ABSOLUTE;
  604. dev_dbg(dev, "%02x name %s\n", chan, name);
  605. return 0;
  606. }
  607. static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
  608. {
  609. const struct vadc_channels *vadc_chan;
  610. struct iio_chan_spec *iio_chan;
  611. struct vadc_channel_prop prop;
  612. struct device_node *child;
  613. unsigned int index = 0;
  614. int ret;
  615. vadc->nchannels = of_get_available_child_count(node);
  616. if (!vadc->nchannels)
  617. return -EINVAL;
  618. vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels,
  619. sizeof(*vadc->iio_chans), GFP_KERNEL);
  620. if (!vadc->iio_chans)
  621. return -ENOMEM;
  622. vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels,
  623. sizeof(*vadc->chan_props), GFP_KERNEL);
  624. if (!vadc->chan_props)
  625. return -ENOMEM;
  626. iio_chan = vadc->iio_chans;
  627. for_each_available_child_of_node(node, child) {
  628. ret = vadc_get_dt_channel_data(vadc->dev, &prop, child);
  629. if (ret) {
  630. of_node_put(child);
  631. return ret;
  632. }
  633. prop.scale_fn_type = vadc_chans[prop.channel].scale_fn_type;
  634. vadc->chan_props[index] = prop;
  635. vadc_chan = &vadc_chans[prop.channel];
  636. iio_chan->channel = prop.channel;
  637. iio_chan->datasheet_name = vadc_chan->datasheet_name;
  638. iio_chan->info_mask_separate = vadc_chan->info_mask;
  639. iio_chan->type = vadc_chan->type;
  640. iio_chan->indexed = 1;
  641. iio_chan->address = index++;
  642. iio_chan++;
  643. }
  644. /* These channels are mandatory, they are used as reference points */
  645. if (!vadc_get_channel(vadc, VADC_REF_1250MV)) {
  646. dev_err(vadc->dev, "Please define 1.25V channel\n");
  647. return -ENODEV;
  648. }
  649. if (!vadc_get_channel(vadc, VADC_REF_625MV)) {
  650. dev_err(vadc->dev, "Please define 0.625V channel\n");
  651. return -ENODEV;
  652. }
  653. if (!vadc_get_channel(vadc, VADC_VDD_VADC)) {
  654. dev_err(vadc->dev, "Please define VDD channel\n");
  655. return -ENODEV;
  656. }
  657. if (!vadc_get_channel(vadc, VADC_GND_REF)) {
  658. dev_err(vadc->dev, "Please define GND channel\n");
  659. return -ENODEV;
  660. }
  661. return 0;
  662. }
  663. static irqreturn_t vadc_isr(int irq, void *dev_id)
  664. {
  665. struct vadc_priv *vadc = dev_id;
  666. complete(&vadc->complete);
  667. return IRQ_HANDLED;
  668. }
  669. static int vadc_check_revision(struct vadc_priv *vadc)
  670. {
  671. u8 val;
  672. int ret;
  673. ret = vadc_read(vadc, VADC_PERPH_TYPE, &val);
  674. if (ret)
  675. return ret;
  676. if (val < VADC_PERPH_TYPE_ADC) {
  677. dev_err(vadc->dev, "%d is not ADC\n", val);
  678. return -ENODEV;
  679. }
  680. ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val);
  681. if (ret)
  682. return ret;
  683. if (val < VADC_PERPH_SUBTYPE_VADC) {
  684. dev_err(vadc->dev, "%d is not VADC\n", val);
  685. return -ENODEV;
  686. }
  687. ret = vadc_read(vadc, VADC_REVISION2, &val);
  688. if (ret)
  689. return ret;
  690. if (val < VADC_REVISION2_SUPPORTED_VADC) {
  691. dev_err(vadc->dev, "revision %d not supported\n", val);
  692. return -ENODEV;
  693. }
  694. return 0;
  695. }
  696. static int vadc_probe(struct platform_device *pdev)
  697. {
  698. struct device_node *node = pdev->dev.of_node;
  699. struct device *dev = &pdev->dev;
  700. struct iio_dev *indio_dev;
  701. struct vadc_priv *vadc;
  702. struct regmap *regmap;
  703. int ret, irq_eoc;
  704. u32 reg;
  705. regmap = dev_get_regmap(dev->parent, NULL);
  706. if (!regmap)
  707. return -ENODEV;
  708. ret = of_property_read_u32(node, "reg", &reg);
  709. if (ret < 0)
  710. return ret;
  711. indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc));
  712. if (!indio_dev)
  713. return -ENOMEM;
  714. vadc = iio_priv(indio_dev);
  715. vadc->regmap = regmap;
  716. vadc->dev = dev;
  717. vadc->base = reg;
  718. vadc->are_ref_measured = false;
  719. init_completion(&vadc->complete);
  720. mutex_init(&vadc->lock);
  721. ret = vadc_check_revision(vadc);
  722. if (ret)
  723. return ret;
  724. ret = vadc_get_dt_data(vadc, node);
  725. if (ret)
  726. return ret;
  727. irq_eoc = platform_get_irq(pdev, 0);
  728. if (irq_eoc < 0) {
  729. if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
  730. return irq_eoc;
  731. vadc->poll_eoc = true;
  732. } else {
  733. ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0,
  734. "spmi-vadc", vadc);
  735. if (ret)
  736. return ret;
  737. }
  738. ret = vadc_reset(vadc);
  739. if (ret) {
  740. dev_err(dev, "reset failed\n");
  741. return ret;
  742. }
  743. ret = vadc_measure_ref_points(vadc);
  744. if (ret)
  745. return ret;
  746. indio_dev->name = pdev->name;
  747. indio_dev->modes = INDIO_DIRECT_MODE;
  748. indio_dev->info = &vadc_info;
  749. indio_dev->channels = vadc->iio_chans;
  750. indio_dev->num_channels = vadc->nchannels;
  751. return devm_iio_device_register(dev, indio_dev);
  752. }
  753. static const struct of_device_id vadc_match_table[] = {
  754. { .compatible = "qcom,spmi-vadc" },
  755. { }
  756. };
  757. MODULE_DEVICE_TABLE(of, vadc_match_table);
  758. static struct platform_driver vadc_driver = {
  759. .driver = {
  760. .name = "qcom-spmi-vadc",
  761. .of_match_table = vadc_match_table,
  762. },
  763. .probe = vadc_probe,
  764. };
  765. module_platform_driver(vadc_driver);
  766. MODULE_ALIAS("platform:qcom-spmi-vadc");
  767. MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver");
  768. MODULE_LICENSE("GPL v2");
  769. MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>");
  770. MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");