mmc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2003
  4. * Kyle Harris, kharris@nexus-tech.net
  5. */
  6. #include <common.h>
  7. #include <command.h>
  8. #include <console.h>
  9. #include <mmc.h>
  10. #include <sparse_format.h>
  11. #include <image-sparse.h>
  12. static int curr_device = -1;
  13. static void print_mmcinfo(struct mmc *mmc)
  14. {
  15. int i;
  16. printf("Device: %s\n", mmc->cfg->name);
  17. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  18. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  19. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  20. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  21. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  22. printf("Bus Speed: %d\n", mmc->clock);
  23. #if CONFIG_IS_ENABLED(MMC_VERBOSE)
  24. printf("Mode: %s\n", mmc_mode_name(mmc->selected_mode));
  25. mmc_dump_capabilities("card capabilities", mmc->card_caps);
  26. mmc_dump_capabilities("host capabilities", mmc->host_caps);
  27. #endif
  28. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  29. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  30. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  31. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  32. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  33. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  34. printf("\n");
  35. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  36. puts("Capacity: ");
  37. print_size(mmc->capacity, "\n");
  38. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  39. mmc->ddr_mode ? " DDR" : "");
  40. #if CONFIG_IS_ENABLED(MMC_WRITE)
  41. puts("Erase Group Size: ");
  42. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  43. #endif
  44. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  45. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  46. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  47. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  48. puts("HC WP Group Size: ");
  49. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  50. #endif
  51. puts("User Capacity: ");
  52. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  53. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  54. puts(" WRREL\n");
  55. else
  56. putc('\n');
  57. if (usr_enh) {
  58. puts("User Enhanced Start: ");
  59. print_size(mmc->enh_user_start, "\n");
  60. puts("User Enhanced Size: ");
  61. print_size(mmc->enh_user_size, "\n");
  62. }
  63. puts("Boot Capacity: ");
  64. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  65. puts("RPMB Capacity: ");
  66. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  67. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  68. bool is_enh = has_enh &&
  69. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  70. if (mmc->capacity_gp[i]) {
  71. printf("GP%i Capacity: ", i+1);
  72. print_size(mmc->capacity_gp[i],
  73. is_enh ? " ENH" : "");
  74. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  75. puts(" WRREL\n");
  76. else
  77. putc('\n');
  78. }
  79. }
  80. }
  81. }
  82. static struct mmc *init_mmc_device(int dev, bool force_init)
  83. {
  84. struct mmc *mmc;
  85. mmc = find_mmc_device(dev);
  86. if (!mmc) {
  87. printf("no mmc device at slot %x\n", dev);
  88. return NULL;
  89. }
  90. if (!mmc_getcd(mmc))
  91. force_init = true;
  92. if (force_init)
  93. mmc->has_init = 0;
  94. if (mmc_init(mmc))
  95. return NULL;
  96. #ifdef CONFIG_BLOCK_CACHE
  97. struct blk_desc *bd = mmc_get_blk_desc(mmc);
  98. blkcache_invalidate(bd->if_type, bd->devnum);
  99. #endif
  100. return mmc;
  101. }
  102. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  103. {
  104. struct mmc *mmc;
  105. if (curr_device < 0) {
  106. if (get_mmc_num() > 0)
  107. curr_device = 0;
  108. else {
  109. puts("No MMC device available\n");
  110. return 1;
  111. }
  112. }
  113. mmc = init_mmc_device(curr_device, false);
  114. if (!mmc)
  115. return CMD_RET_FAILURE;
  116. print_mmcinfo(mmc);
  117. return CMD_RET_SUCCESS;
  118. }
  119. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  120. static int confirm_key_prog(void)
  121. {
  122. puts("Warning: Programming authentication key can be done only once !\n"
  123. " Use this command only if you are sure of what you are doing,\n"
  124. "Really perform the key programming? <y/N> ");
  125. if (confirm_yesno())
  126. return 1;
  127. puts("Authentication key programming aborted\n");
  128. return 0;
  129. }
  130. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  131. int argc, char * const argv[])
  132. {
  133. void *key_addr;
  134. struct mmc *mmc = find_mmc_device(curr_device);
  135. if (argc != 2)
  136. return CMD_RET_USAGE;
  137. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  138. if (!confirm_key_prog())
  139. return CMD_RET_FAILURE;
  140. if (mmc_rpmb_set_key(mmc, key_addr)) {
  141. printf("ERROR - Key already programmed ?\n");
  142. return CMD_RET_FAILURE;
  143. }
  144. return CMD_RET_SUCCESS;
  145. }
  146. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  147. int argc, char * const argv[])
  148. {
  149. u16 blk, cnt;
  150. void *addr;
  151. int n;
  152. void *key_addr = NULL;
  153. struct mmc *mmc = find_mmc_device(curr_device);
  154. if (argc < 4)
  155. return CMD_RET_USAGE;
  156. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  157. blk = simple_strtoul(argv[2], NULL, 16);
  158. cnt = simple_strtoul(argv[3], NULL, 16);
  159. if (argc == 5)
  160. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  161. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  162. curr_device, blk, cnt);
  163. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  164. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  165. if (n != cnt)
  166. return CMD_RET_FAILURE;
  167. return CMD_RET_SUCCESS;
  168. }
  169. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  170. int argc, char * const argv[])
  171. {
  172. u16 blk, cnt;
  173. void *addr;
  174. int n;
  175. void *key_addr;
  176. struct mmc *mmc = find_mmc_device(curr_device);
  177. if (argc != 5)
  178. return CMD_RET_USAGE;
  179. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  180. blk = simple_strtoul(argv[2], NULL, 16);
  181. cnt = simple_strtoul(argv[3], NULL, 16);
  182. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  183. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  184. curr_device, blk, cnt);
  185. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  186. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  187. if (n != cnt)
  188. return CMD_RET_FAILURE;
  189. return CMD_RET_SUCCESS;
  190. }
  191. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  192. int argc, char * const argv[])
  193. {
  194. unsigned long counter;
  195. struct mmc *mmc = find_mmc_device(curr_device);
  196. if (mmc_rpmb_get_counter(mmc, &counter))
  197. return CMD_RET_FAILURE;
  198. printf("RPMB Write counter= %lx\n", counter);
  199. return CMD_RET_SUCCESS;
  200. }
  201. static cmd_tbl_t cmd_rpmb[] = {
  202. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  203. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  204. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  205. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  206. };
  207. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  208. int argc, char * const argv[])
  209. {
  210. cmd_tbl_t *cp;
  211. struct mmc *mmc;
  212. char original_part;
  213. int ret;
  214. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  215. /* Drop the rpmb subcommand */
  216. argc--;
  217. argv++;
  218. if (cp == NULL || argc > cp->maxargs)
  219. return CMD_RET_USAGE;
  220. if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
  221. return CMD_RET_SUCCESS;
  222. mmc = init_mmc_device(curr_device, false);
  223. if (!mmc)
  224. return CMD_RET_FAILURE;
  225. if (!(mmc->version & MMC_VERSION_MMC)) {
  226. printf("It is not an eMMC device\n");
  227. return CMD_RET_FAILURE;
  228. }
  229. if (mmc->version < MMC_VERSION_4_41) {
  230. printf("RPMB not supported before version 4.41\n");
  231. return CMD_RET_FAILURE;
  232. }
  233. /* Switch to the RPMB partition */
  234. #ifndef CONFIG_BLK
  235. original_part = mmc->block_dev.hwpart;
  236. #else
  237. original_part = mmc_get_blk_desc(mmc)->hwpart;
  238. #endif
  239. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  240. 0)
  241. return CMD_RET_FAILURE;
  242. ret = cp->cmd(cmdtp, flag, argc, argv);
  243. /* Return to original partition */
  244. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  245. 0)
  246. return CMD_RET_FAILURE;
  247. return ret;
  248. }
  249. #endif
  250. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  251. int argc, char * const argv[])
  252. {
  253. struct mmc *mmc;
  254. u32 blk, cnt, n;
  255. void *addr;
  256. if (argc != 4)
  257. return CMD_RET_USAGE;
  258. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  259. blk = simple_strtoul(argv[2], NULL, 16);
  260. cnt = simple_strtoul(argv[3], NULL, 16);
  261. mmc = init_mmc_device(curr_device, false);
  262. if (!mmc)
  263. return CMD_RET_FAILURE;
  264. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  265. curr_device, blk, cnt);
  266. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  267. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  268. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  269. }
  270. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  271. static lbaint_t mmc_sparse_write(struct sparse_storage *info, lbaint_t blk,
  272. lbaint_t blkcnt, const void *buffer)
  273. {
  274. struct blk_desc *dev_desc = info->priv;
  275. return blk_dwrite(dev_desc, blk, blkcnt, buffer);
  276. }
  277. static lbaint_t mmc_sparse_reserve(struct sparse_storage *info,
  278. lbaint_t blk, lbaint_t blkcnt)
  279. {
  280. return blkcnt;
  281. }
  282. static int do_mmc_sparse_write(cmd_tbl_t *cmdtp, int flag,
  283. int argc, char * const argv[])
  284. {
  285. struct sparse_storage sparse;
  286. struct blk_desc *dev_desc;
  287. struct mmc *mmc;
  288. char dest[11];
  289. void *addr;
  290. u32 blk;
  291. if (argc != 3)
  292. return CMD_RET_USAGE;
  293. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  294. blk = simple_strtoul(argv[2], NULL, 16);
  295. if (!is_sparse_image(addr)) {
  296. printf("Not a sparse image\n");
  297. return CMD_RET_FAILURE;
  298. }
  299. mmc = init_mmc_device(curr_device, false);
  300. if (!mmc)
  301. return CMD_RET_FAILURE;
  302. printf("\nMMC Sparse write: dev # %d, block # %d ... ",
  303. curr_device, blk);
  304. if (mmc_getwp(mmc) == 1) {
  305. printf("Error: card is write protected!\n");
  306. return CMD_RET_FAILURE;
  307. }
  308. dev_desc = mmc_get_blk_desc(mmc);
  309. sparse.priv = dev_desc;
  310. sparse.blksz = 512;
  311. sparse.start = blk;
  312. sparse.size = dev_desc->lba - blk;
  313. sparse.write = mmc_sparse_write;
  314. sparse.reserve = mmc_sparse_reserve;
  315. sparse.mssg = NULL;
  316. sprintf(dest, "0x" LBAF, sparse.start * sparse.blksz);
  317. if (write_sparse_image(&sparse, dest, addr, NULL))
  318. return CMD_RET_FAILURE;
  319. else
  320. return CMD_RET_SUCCESS;
  321. }
  322. #endif
  323. #if CONFIG_IS_ENABLED(MMC_WRITE)
  324. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  325. int argc, char * const argv[])
  326. {
  327. struct mmc *mmc;
  328. u32 blk, cnt, n;
  329. void *addr;
  330. if (argc != 4)
  331. return CMD_RET_USAGE;
  332. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  333. blk = simple_strtoul(argv[2], NULL, 16);
  334. cnt = simple_strtoul(argv[3], NULL, 16);
  335. mmc = init_mmc_device(curr_device, false);
  336. if (!mmc)
  337. return CMD_RET_FAILURE;
  338. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  339. curr_device, blk, cnt);
  340. if (mmc_getwp(mmc) == 1) {
  341. printf("Error: card is write protected!\n");
  342. return CMD_RET_FAILURE;
  343. }
  344. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  345. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  346. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  347. }
  348. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  349. int argc, char * const argv[])
  350. {
  351. struct mmc *mmc;
  352. u32 blk, cnt, n;
  353. if (argc != 3)
  354. return CMD_RET_USAGE;
  355. blk = simple_strtoul(argv[1], NULL, 16);
  356. cnt = simple_strtoul(argv[2], NULL, 16);
  357. mmc = init_mmc_device(curr_device, false);
  358. if (!mmc)
  359. return CMD_RET_FAILURE;
  360. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  361. curr_device, blk, cnt);
  362. if (mmc_getwp(mmc) == 1) {
  363. printf("Error: card is write protected!\n");
  364. return CMD_RET_FAILURE;
  365. }
  366. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  367. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  368. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  369. }
  370. #endif
  371. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  372. int argc, char * const argv[])
  373. {
  374. struct mmc *mmc;
  375. mmc = init_mmc_device(curr_device, true);
  376. if (!mmc)
  377. return CMD_RET_FAILURE;
  378. return CMD_RET_SUCCESS;
  379. }
  380. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  381. int argc, char * const argv[])
  382. {
  383. struct blk_desc *mmc_dev;
  384. struct mmc *mmc;
  385. mmc = init_mmc_device(curr_device, false);
  386. if (!mmc)
  387. return CMD_RET_FAILURE;
  388. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  389. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  390. part_print(mmc_dev);
  391. return CMD_RET_SUCCESS;
  392. }
  393. puts("get mmc type error!\n");
  394. return CMD_RET_FAILURE;
  395. }
  396. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  397. int argc, char * const argv[])
  398. {
  399. int dev, part = 0, ret;
  400. struct mmc *mmc;
  401. if (argc == 1) {
  402. dev = curr_device;
  403. } else if (argc == 2) {
  404. dev = simple_strtoul(argv[1], NULL, 10);
  405. } else if (argc == 3) {
  406. dev = (int)simple_strtoul(argv[1], NULL, 10);
  407. part = (int)simple_strtoul(argv[2], NULL, 10);
  408. if (part > PART_ACCESS_MASK) {
  409. printf("#part_num shouldn't be larger than %d\n",
  410. PART_ACCESS_MASK);
  411. return CMD_RET_FAILURE;
  412. }
  413. } else {
  414. return CMD_RET_USAGE;
  415. }
  416. mmc = init_mmc_device(dev, true);
  417. if (!mmc)
  418. return CMD_RET_FAILURE;
  419. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  420. printf("switch to partitions #%d, %s\n",
  421. part, (!ret) ? "OK" : "ERROR");
  422. if (ret)
  423. return 1;
  424. curr_device = dev;
  425. if (mmc->part_config == MMCPART_NOAVAILABLE)
  426. printf("mmc%d is current device\n", curr_device);
  427. else
  428. printf("mmc%d(part %d) is current device\n",
  429. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  430. return CMD_RET_SUCCESS;
  431. }
  432. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  433. int argc, char * const argv[])
  434. {
  435. print_mmc_devices('\n');
  436. return CMD_RET_SUCCESS;
  437. }
  438. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  439. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  440. int argc, char * const argv[])
  441. {
  442. int i = 0;
  443. memset(&pconf->user, 0, sizeof(pconf->user));
  444. while (i < argc) {
  445. if (!strcmp(argv[i], "enh")) {
  446. if (i + 2 >= argc)
  447. return -1;
  448. pconf->user.enh_start =
  449. simple_strtoul(argv[i+1], NULL, 10);
  450. pconf->user.enh_size =
  451. simple_strtoul(argv[i+2], NULL, 10);
  452. i += 3;
  453. } else if (!strcmp(argv[i], "wrrel")) {
  454. if (i + 1 >= argc)
  455. return -1;
  456. pconf->user.wr_rel_change = 1;
  457. if (!strcmp(argv[i+1], "on"))
  458. pconf->user.wr_rel_set = 1;
  459. else if (!strcmp(argv[i+1], "off"))
  460. pconf->user.wr_rel_set = 0;
  461. else
  462. return -1;
  463. i += 2;
  464. } else {
  465. break;
  466. }
  467. }
  468. return i;
  469. }
  470. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  471. int argc, char * const argv[])
  472. {
  473. int i;
  474. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  475. if (1 >= argc)
  476. return -1;
  477. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  478. i = 1;
  479. while (i < argc) {
  480. if (!strcmp(argv[i], "enh")) {
  481. pconf->gp_part[pidx].enhanced = 1;
  482. i += 1;
  483. } else if (!strcmp(argv[i], "wrrel")) {
  484. if (i + 1 >= argc)
  485. return -1;
  486. pconf->gp_part[pidx].wr_rel_change = 1;
  487. if (!strcmp(argv[i+1], "on"))
  488. pconf->gp_part[pidx].wr_rel_set = 1;
  489. else if (!strcmp(argv[i+1], "off"))
  490. pconf->gp_part[pidx].wr_rel_set = 0;
  491. else
  492. return -1;
  493. i += 2;
  494. } else {
  495. break;
  496. }
  497. }
  498. return i;
  499. }
  500. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  501. int argc, char * const argv[])
  502. {
  503. struct mmc *mmc;
  504. struct mmc_hwpart_conf pconf = { };
  505. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  506. int i, r, pidx;
  507. mmc = init_mmc_device(curr_device, false);
  508. if (!mmc)
  509. return CMD_RET_FAILURE;
  510. if (argc < 1)
  511. return CMD_RET_USAGE;
  512. i = 1;
  513. while (i < argc) {
  514. if (!strcmp(argv[i], "user")) {
  515. i++;
  516. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  517. if (r < 0)
  518. return CMD_RET_USAGE;
  519. i += r;
  520. } else if (!strncmp(argv[i], "gp", 2) &&
  521. strlen(argv[i]) == 3 &&
  522. argv[i][2] >= '1' && argv[i][2] <= '4') {
  523. pidx = argv[i][2] - '1';
  524. i++;
  525. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  526. if (r < 0)
  527. return CMD_RET_USAGE;
  528. i += r;
  529. } else if (!strcmp(argv[i], "check")) {
  530. mode = MMC_HWPART_CONF_CHECK;
  531. i++;
  532. } else if (!strcmp(argv[i], "set")) {
  533. mode = MMC_HWPART_CONF_SET;
  534. i++;
  535. } else if (!strcmp(argv[i], "complete")) {
  536. mode = MMC_HWPART_CONF_COMPLETE;
  537. i++;
  538. } else {
  539. return CMD_RET_USAGE;
  540. }
  541. }
  542. puts("Partition configuration:\n");
  543. if (pconf.user.enh_size) {
  544. puts("\tUser Enhanced Start: ");
  545. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  546. puts("\tUser Enhanced Size: ");
  547. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  548. } else {
  549. puts("\tNo enhanced user data area\n");
  550. }
  551. if (pconf.user.wr_rel_change)
  552. printf("\tUser partition write reliability: %s\n",
  553. pconf.user.wr_rel_set ? "on" : "off");
  554. for (pidx = 0; pidx < 4; pidx++) {
  555. if (pconf.gp_part[pidx].size) {
  556. printf("\tGP%i Capacity: ", pidx+1);
  557. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  558. pconf.gp_part[pidx].enhanced ?
  559. " ENH\n" : "\n");
  560. } else {
  561. printf("\tNo GP%i partition\n", pidx+1);
  562. }
  563. if (pconf.gp_part[pidx].wr_rel_change)
  564. printf("\tGP%i write reliability: %s\n", pidx+1,
  565. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  566. }
  567. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  568. if (mode == MMC_HWPART_CONF_COMPLETE)
  569. puts("Partitioning successful, "
  570. "power-cycle to make effective\n");
  571. return CMD_RET_SUCCESS;
  572. } else {
  573. puts("Failed!\n");
  574. return CMD_RET_FAILURE;
  575. }
  576. }
  577. #endif
  578. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  579. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  580. int argc, char * const argv[])
  581. {
  582. int dev;
  583. struct mmc *mmc;
  584. u8 width, reset, mode;
  585. if (argc != 5)
  586. return CMD_RET_USAGE;
  587. dev = simple_strtoul(argv[1], NULL, 10);
  588. width = simple_strtoul(argv[2], NULL, 10);
  589. reset = simple_strtoul(argv[3], NULL, 10);
  590. mode = simple_strtoul(argv[4], NULL, 10);
  591. mmc = init_mmc_device(dev, false);
  592. if (!mmc)
  593. return CMD_RET_FAILURE;
  594. if (IS_SD(mmc)) {
  595. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  596. return CMD_RET_FAILURE;
  597. }
  598. /* acknowledge to be sent during boot operation */
  599. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  600. }
  601. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  602. int argc, char * const argv[])
  603. {
  604. int dev;
  605. struct mmc *mmc;
  606. u32 bootsize, rpmbsize;
  607. if (argc != 4)
  608. return CMD_RET_USAGE;
  609. dev = simple_strtoul(argv[1], NULL, 10);
  610. bootsize = simple_strtoul(argv[2], NULL, 10);
  611. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  612. mmc = init_mmc_device(dev, false);
  613. if (!mmc)
  614. return CMD_RET_FAILURE;
  615. if (IS_SD(mmc)) {
  616. printf("It is not an eMMC device\n");
  617. return CMD_RET_FAILURE;
  618. }
  619. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  620. printf("EMMC boot partition Size change Failed.\n");
  621. return CMD_RET_FAILURE;
  622. }
  623. printf("EMMC boot partition Size %d MB\n", bootsize);
  624. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  625. return CMD_RET_SUCCESS;
  626. }
  627. static int mmc_partconf_print(struct mmc *mmc)
  628. {
  629. u8 ack, access, part;
  630. if (mmc->part_config == MMCPART_NOAVAILABLE) {
  631. printf("No part_config info for ver. 0x%x\n", mmc->version);
  632. return CMD_RET_FAILURE;
  633. }
  634. access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
  635. ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
  636. part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
  637. printf("EXT_CSD[179], PARTITION_CONFIG:\n"
  638. "BOOT_ACK: 0x%x\n"
  639. "BOOT_PARTITION_ENABLE: 0x%x\n"
  640. "PARTITION_ACCESS: 0x%x\n", ack, part, access);
  641. return CMD_RET_SUCCESS;
  642. }
  643. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  644. int argc, char * const argv[])
  645. {
  646. int dev;
  647. struct mmc *mmc;
  648. u8 ack, part_num, access;
  649. if (argc != 2 && argc != 5)
  650. return CMD_RET_USAGE;
  651. dev = simple_strtoul(argv[1], NULL, 10);
  652. mmc = init_mmc_device(dev, false);
  653. if (!mmc)
  654. return CMD_RET_FAILURE;
  655. if (IS_SD(mmc)) {
  656. puts("PARTITION_CONFIG only exists on eMMC\n");
  657. return CMD_RET_FAILURE;
  658. }
  659. if (argc == 2)
  660. return mmc_partconf_print(mmc);
  661. ack = simple_strtoul(argv[2], NULL, 10);
  662. part_num = simple_strtoul(argv[3], NULL, 10);
  663. access = simple_strtoul(argv[4], NULL, 10);
  664. /* acknowledge to be sent during boot operation */
  665. return mmc_set_part_conf(mmc, ack, part_num, access);
  666. }
  667. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  668. int argc, char * const argv[])
  669. {
  670. int dev;
  671. struct mmc *mmc;
  672. u8 enable;
  673. /*
  674. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  675. * The only valid values are 0x0, 0x1 and 0x2 and writing
  676. * a value of 0x1 or 0x2 sets the value permanently.
  677. */
  678. if (argc != 3)
  679. return CMD_RET_USAGE;
  680. dev = simple_strtoul(argv[1], NULL, 10);
  681. enable = simple_strtoul(argv[2], NULL, 10);
  682. if (enable > 2) {
  683. puts("Invalid RST_n_ENABLE value\n");
  684. return CMD_RET_USAGE;
  685. }
  686. mmc = init_mmc_device(dev, false);
  687. if (!mmc)
  688. return CMD_RET_FAILURE;
  689. if (IS_SD(mmc)) {
  690. puts("RST_n_FUNCTION only exists on eMMC\n");
  691. return CMD_RET_FAILURE;
  692. }
  693. return mmc_set_rst_n_function(mmc, enable);
  694. }
  695. #endif
  696. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  697. int argc, char * const argv[])
  698. {
  699. struct mmc *mmc;
  700. u32 val;
  701. int ret;
  702. if (argc != 2)
  703. return CMD_RET_USAGE;
  704. val = simple_strtoul(argv[1], NULL, 16);
  705. mmc = find_mmc_device(curr_device);
  706. if (!mmc) {
  707. printf("no mmc device at slot %x\n", curr_device);
  708. return CMD_RET_FAILURE;
  709. }
  710. ret = mmc_set_dsr(mmc, val);
  711. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  712. if (!ret) {
  713. mmc->has_init = 0;
  714. if (mmc_init(mmc))
  715. return CMD_RET_FAILURE;
  716. else
  717. return CMD_RET_SUCCESS;
  718. }
  719. return ret;
  720. }
  721. #ifdef CONFIG_CMD_BKOPS_ENABLE
  722. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  723. int argc, char * const argv[])
  724. {
  725. int dev;
  726. struct mmc *mmc;
  727. if (argc != 2)
  728. return CMD_RET_USAGE;
  729. dev = simple_strtoul(argv[1], NULL, 10);
  730. mmc = init_mmc_device(dev, false);
  731. if (!mmc)
  732. return CMD_RET_FAILURE;
  733. if (IS_SD(mmc)) {
  734. puts("BKOPS_EN only exists on eMMC\n");
  735. return CMD_RET_FAILURE;
  736. }
  737. return mmc_set_bkops_enable(mmc);
  738. }
  739. #endif
  740. static cmd_tbl_t cmd_mmc[] = {
  741. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  742. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  743. #if CONFIG_IS_ENABLED(MMC_WRITE)
  744. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  745. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  746. #endif
  747. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  748. U_BOOT_CMD_MKENT(swrite, 3, 0, do_mmc_sparse_write, "", ""),
  749. #endif
  750. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  751. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  752. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  753. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  754. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  755. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  756. #endif
  757. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  758. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  759. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  760. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  761. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  762. #endif
  763. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  764. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  765. #endif
  766. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  767. #ifdef CONFIG_CMD_BKOPS_ENABLE
  768. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  769. #endif
  770. };
  771. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  772. {
  773. cmd_tbl_t *cp;
  774. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  775. /* Drop the mmc command */
  776. argc--;
  777. argv++;
  778. if (cp == NULL || argc > cp->maxargs)
  779. return CMD_RET_USAGE;
  780. if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
  781. return CMD_RET_SUCCESS;
  782. if (curr_device < 0) {
  783. if (get_mmc_num() > 0) {
  784. curr_device = 0;
  785. } else {
  786. puts("No MMC device available\n");
  787. return CMD_RET_FAILURE;
  788. }
  789. }
  790. return cp->cmd(cmdtp, flag, argc, argv);
  791. }
  792. U_BOOT_CMD(
  793. mmc, 29, 1, do_mmcops,
  794. "MMC sub system",
  795. "info - display info of the current MMC device\n"
  796. "mmc read addr blk# cnt\n"
  797. "mmc write addr blk# cnt\n"
  798. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  799. "mmc swrite addr blk#\n"
  800. #endif
  801. "mmc erase blk# cnt\n"
  802. "mmc rescan\n"
  803. "mmc part - lists available partition on current mmc device\n"
  804. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  805. "mmc list - lists available devices\n"
  806. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  807. "mmc hwpartition [args...] - does hardware partitioning\n"
  808. " arguments (sizes in 512-byte blocks):\n"
  809. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  810. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  811. " [check|set|complete] - mode, complete set partitioning completed\n"
  812. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  813. " Power cycling is required to initialize partitions after set to complete.\n"
  814. #endif
  815. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  816. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  817. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  818. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  819. " - Change sizes of boot and RPMB partitions of specified device\n"
  820. "mmc partconf dev [boot_ack boot_partition partition_access]\n"
  821. " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
  822. "mmc rst-function dev value\n"
  823. " - Change the RST_n_FUNCTION field of the specified device\n"
  824. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  825. #endif
  826. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  827. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  828. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  829. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  830. "mmc rpmb counter - read the value of the write counter\n"
  831. #endif
  832. "mmc setdsr <value> - set DSR register value\n"
  833. #ifdef CONFIG_CMD_BKOPS_ENABLE
  834. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  835. " WARNING: This is a write-once setting.\n"
  836. #endif
  837. );
  838. /* Old command kept for compatibility. Same as 'mmc info' */
  839. U_BOOT_CMD(
  840. mmcinfo, 1, 0, do_mmcinfo,
  841. "display MMC info",
  842. "- display info of the current MMC device"
  843. );