tpm_api.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2019 Google LLC
  4. */
  5. #include <common.h>
  6. #include <dm.h>
  7. #include <log.h>
  8. #include <tpm_api.h>
  9. #include <tpm-v1.h>
  10. #include <tpm-v2.h>
  11. #include <tpm_api.h>
  12. static bool is_tpm1(struct udevice *dev)
  13. {
  14. return IS_ENABLED(CONFIG_TPM_V1) && tpm_get_version(dev) == TPM_V1;
  15. }
  16. static bool is_tpm2(struct udevice *dev)
  17. {
  18. return IS_ENABLED(CONFIG_TPM_V2) && tpm_get_version(dev) == TPM_V2;
  19. }
  20. u32 tpm_startup(struct udevice *dev, enum tpm_startup_type mode)
  21. {
  22. if (is_tpm1(dev)) {
  23. return tpm1_startup(dev, mode);
  24. } else if (is_tpm2(dev)) {
  25. enum tpm2_startup_types type;
  26. switch (mode) {
  27. case TPM_ST_CLEAR:
  28. type = TPM2_SU_CLEAR;
  29. break;
  30. case TPM_ST_STATE:
  31. type = TPM2_SU_STATE;
  32. break;
  33. default:
  34. case TPM_ST_DEACTIVATED:
  35. return -EINVAL;
  36. }
  37. return tpm2_startup(dev, type);
  38. } else {
  39. return -ENOSYS;
  40. }
  41. }
  42. u32 tpm_resume(struct udevice *dev)
  43. {
  44. if (is_tpm1(dev))
  45. return tpm1_startup(dev, TPM_ST_STATE);
  46. else if (is_tpm2(dev))
  47. return tpm2_startup(dev, TPM2_SU_STATE);
  48. else
  49. return -ENOSYS;
  50. }
  51. u32 tpm_self_test_full(struct udevice *dev)
  52. {
  53. if (is_tpm1(dev))
  54. return tpm1_self_test_full(dev);
  55. else if (is_tpm2(dev))
  56. return tpm2_self_test(dev, TPMI_YES);
  57. else
  58. return -ENOSYS;
  59. }
  60. u32 tpm_continue_self_test(struct udevice *dev)
  61. {
  62. if (is_tpm1(dev))
  63. return tpm1_continue_self_test(dev);
  64. else if (is_tpm2(dev))
  65. return tpm2_self_test(dev, TPMI_NO);
  66. else
  67. return -ENOSYS;
  68. }
  69. u32 tpm_clear_and_reenable(struct udevice *dev)
  70. {
  71. u32 ret;
  72. log_info("TPM: Clear and re-enable\n");
  73. ret = tpm_force_clear(dev);
  74. if (ret != TPM_SUCCESS) {
  75. log_err("Can't initiate a force clear\n");
  76. return ret;
  77. }
  78. if (is_tpm1(dev)) {
  79. ret = tpm1_physical_enable(dev);
  80. if (ret != TPM_SUCCESS) {
  81. log_err("TPM: Can't set enabled state\n");
  82. return ret;
  83. }
  84. ret = tpm1_physical_set_deactivated(dev, 0);
  85. if (ret != TPM_SUCCESS) {
  86. log_err("TPM: Can't set deactivated state\n");
  87. return ret;
  88. }
  89. }
  90. return TPM_SUCCESS;
  91. }
  92. u32 tpm_nv_enable_locking(struct udevice *dev)
  93. {
  94. if (is_tpm1(dev))
  95. return tpm1_nv_define_space(dev, TPM_NV_INDEX_LOCK, 0, 0);
  96. else if (is_tpm2(dev))
  97. return -ENOSYS;
  98. else
  99. return -ENOSYS;
  100. }
  101. u32 tpm_nv_read_value(struct udevice *dev, u32 index, void *data, u32 count)
  102. {
  103. if (is_tpm1(dev))
  104. return tpm1_nv_read_value(dev, index, data, count);
  105. else if (is_tpm2(dev))
  106. return tpm2_nv_read_value(dev, index, data, count);
  107. else
  108. return -ENOSYS;
  109. }
  110. u32 tpm_nv_write_value(struct udevice *dev, u32 index, const void *data,
  111. u32 count)
  112. {
  113. if (is_tpm1(dev))
  114. return tpm1_nv_write_value(dev, index, data, count);
  115. else if (is_tpm2(dev))
  116. return tpm2_nv_write_value(dev, index, data, count);
  117. else
  118. return -ENOSYS;
  119. }
  120. u32 tpm_set_global_lock(struct udevice *dev)
  121. {
  122. return tpm_nv_write_value(dev, TPM_NV_INDEX_0, NULL, 0);
  123. }
  124. u32 tpm_write_lock(struct udevice *dev, u32 index)
  125. {
  126. if (is_tpm1(dev))
  127. return -ENOSYS;
  128. else if (is_tpm2(dev))
  129. return tpm2_write_lock(dev, index);
  130. else
  131. return -ENOSYS;
  132. }
  133. u32 tpm_pcr_extend(struct udevice *dev, u32 index, const void *in_digest,
  134. void *out_digest)
  135. {
  136. if (is_tpm1(dev))
  137. return tpm1_extend(dev, index, in_digest, out_digest);
  138. else if (is_tpm2(dev))
  139. return tpm2_pcr_extend(dev, index, TPM2_ALG_SHA256, in_digest,
  140. TPM2_DIGEST_LEN);
  141. else
  142. return -ENOSYS;
  143. }
  144. u32 tpm_pcr_read(struct udevice *dev, u32 index, void *data, size_t count)
  145. {
  146. if (is_tpm1(dev))
  147. return tpm1_pcr_read(dev, index, data, count);
  148. else if (is_tpm2(dev))
  149. return -ENOSYS;
  150. else
  151. return -ENOSYS;
  152. }
  153. u32 tpm_tsc_physical_presence(struct udevice *dev, u16 presence)
  154. {
  155. if (is_tpm1(dev))
  156. return tpm1_tsc_physical_presence(dev, presence);
  157. /*
  158. * Nothing to do on TPM2 for this; use platform hierarchy availability
  159. * instead.
  160. */
  161. else if (is_tpm2(dev))
  162. return 0;
  163. else
  164. return -ENOSYS;
  165. }
  166. u32 tpm_finalise_physical_presence(struct udevice *dev)
  167. {
  168. if (is_tpm1(dev))
  169. return tpm1_finalise_physical_presence(dev);
  170. /* Nothing needs to be done with tpm2 */
  171. else if (is_tpm2(dev))
  172. return 0;
  173. else
  174. return -ENOSYS;
  175. }
  176. u32 tpm_read_pubek(struct udevice *dev, void *data, size_t count)
  177. {
  178. if (is_tpm1(dev))
  179. return tpm1_read_pubek(dev, data, count);
  180. else if (is_tpm2(dev))
  181. return -ENOSYS; /* not implemented yet */
  182. else
  183. return -ENOSYS;
  184. }
  185. u32 tpm_force_clear(struct udevice *dev)
  186. {
  187. if (is_tpm1(dev))
  188. return tpm1_force_clear(dev);
  189. else if (is_tpm2(dev))
  190. return tpm2_clear(dev, TPM2_RH_PLATFORM, NULL, 0);
  191. else
  192. return -ENOSYS;
  193. }
  194. u32 tpm_physical_enable(struct udevice *dev)
  195. {
  196. if (is_tpm1(dev))
  197. return tpm1_physical_enable(dev);
  198. /* Nothing needs to be done with tpm2 */
  199. else if (is_tpm2(dev))
  200. return 0;
  201. else
  202. return -ENOSYS;
  203. }
  204. u32 tpm_physical_disable(struct udevice *dev)
  205. {
  206. if (is_tpm1(dev))
  207. return tpm1_physical_disable(dev);
  208. /* Nothing needs to be done with tpm2 */
  209. else if (is_tpm2(dev))
  210. return 0;
  211. else
  212. return -ENOSYS;
  213. }
  214. u32 tpm_physical_set_deactivated(struct udevice *dev, u8 state)
  215. {
  216. if (is_tpm1(dev))
  217. return tpm1_physical_set_deactivated(dev, state);
  218. /* Nothing needs to be done with tpm2 */
  219. else if (is_tpm2(dev))
  220. return 0;
  221. else
  222. return -ENOSYS;
  223. }
  224. u32 tpm_get_capability(struct udevice *dev, u32 cap_area, u32 sub_cap,
  225. void *cap, size_t count)
  226. {
  227. if (is_tpm1(dev))
  228. return tpm1_get_capability(dev, cap_area, sub_cap, cap, count);
  229. else if (is_tpm2(dev))
  230. return tpm2_get_capability(dev, cap_area, sub_cap, cap, count);
  231. else
  232. return -ENOSYS;
  233. }
  234. u32 tpm_get_permissions(struct udevice *dev, u32 index, u32 *perm)
  235. {
  236. if (is_tpm1(dev))
  237. return tpm1_get_permissions(dev, index, perm);
  238. else if (is_tpm2(dev))
  239. return -ENOSYS; /* not implemented yet */
  240. else
  241. return -ENOSYS;
  242. }
  243. u32 tpm_get_random(struct udevice *dev, void *data, u32 count)
  244. {
  245. if (is_tpm1(dev))
  246. return tpm1_get_random(dev, data, count);
  247. else if (is_tpm2(dev))
  248. return -ENOSYS; /* not implemented yet */
  249. else
  250. return -ENOSYS;
  251. }