dma-uclass.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Direct Memory Access U-Class driver
  4. *
  5. * Copyright (C) 2018 Álvaro Fernández Rojas <noltari@gmail.com>
  6. * Copyright (C) 2015 - 2018 Texas Instruments Incorporated <www.ti.com>
  7. * Written by Mugunthan V N <mugunthanvnm@ti.com>
  8. *
  9. * Author: Mugunthan V N <mugunthanvnm@ti.com>
  10. */
  11. #define LOG_CATEGORY UCLASS_DMA
  12. #include <common.h>
  13. #include <cpu_func.h>
  14. #include <dm.h>
  15. #include <log.h>
  16. #include <malloc.h>
  17. #include <asm/cache.h>
  18. #include <dm/read.h>
  19. #include <dma-uclass.h>
  20. #include <dt-structs.h>
  21. #include <errno.h>
  22. #ifdef CONFIG_DMA_CHANNELS
  23. static inline struct dma_ops *dma_dev_ops(struct udevice *dev)
  24. {
  25. return (struct dma_ops *)dev->driver->ops;
  26. }
  27. # if CONFIG_IS_ENABLED(OF_CONTROL)
  28. static int dma_of_xlate_default(struct dma *dma,
  29. struct ofnode_phandle_args *args)
  30. {
  31. debug("%s(dma=%p)\n", __func__, dma);
  32. if (args->args_count > 1) {
  33. pr_err("Invaild args_count: %d\n", args->args_count);
  34. return -EINVAL;
  35. }
  36. if (args->args_count)
  37. dma->id = args->args[0];
  38. else
  39. dma->id = 0;
  40. return 0;
  41. }
  42. int dma_get_by_index(struct udevice *dev, int index, struct dma *dma)
  43. {
  44. int ret;
  45. struct ofnode_phandle_args args;
  46. struct udevice *dev_dma;
  47. const struct dma_ops *ops;
  48. debug("%s(dev=%p, index=%d, dma=%p)\n", __func__, dev, index, dma);
  49. assert(dma);
  50. dma->dev = NULL;
  51. ret = dev_read_phandle_with_args(dev, "dmas", "#dma-cells", 0, index,
  52. &args);
  53. if (ret) {
  54. pr_err("%s: dev_read_phandle_with_args failed: err=%d\n",
  55. __func__, ret);
  56. return ret;
  57. }
  58. ret = uclass_get_device_by_ofnode(UCLASS_DMA, args.node, &dev_dma);
  59. if (ret) {
  60. pr_err("%s: uclass_get_device_by_ofnode failed: err=%d\n",
  61. __func__, ret);
  62. return ret;
  63. }
  64. dma->dev = dev_dma;
  65. ops = dma_dev_ops(dev_dma);
  66. if (ops->of_xlate)
  67. ret = ops->of_xlate(dma, &args);
  68. else
  69. ret = dma_of_xlate_default(dma, &args);
  70. if (ret) {
  71. pr_err("of_xlate() failed: %d\n", ret);
  72. return ret;
  73. }
  74. return dma_request(dev_dma, dma);
  75. }
  76. int dma_get_by_name(struct udevice *dev, const char *name, struct dma *dma)
  77. {
  78. int index;
  79. debug("%s(dev=%p, name=%s, dma=%p)\n", __func__, dev, name, dma);
  80. dma->dev = NULL;
  81. index = dev_read_stringlist_search(dev, "dma-names", name);
  82. if (index < 0) {
  83. pr_err("dev_read_stringlist_search() failed: %d\n", index);
  84. return index;
  85. }
  86. return dma_get_by_index(dev, index, dma);
  87. }
  88. # endif /* OF_CONTROL */
  89. int dma_request(struct udevice *dev, struct dma *dma)
  90. {
  91. struct dma_ops *ops = dma_dev_ops(dev);
  92. debug("%s(dev=%p, dma=%p)\n", __func__, dev, dma);
  93. dma->dev = dev;
  94. if (!ops->request)
  95. return 0;
  96. return ops->request(dma);
  97. }
  98. int dma_free(struct dma *dma)
  99. {
  100. struct dma_ops *ops = dma_dev_ops(dma->dev);
  101. debug("%s(dma=%p)\n", __func__, dma);
  102. if (!ops->rfree)
  103. return 0;
  104. return ops->rfree(dma);
  105. }
  106. int dma_enable(struct dma *dma)
  107. {
  108. struct dma_ops *ops = dma_dev_ops(dma->dev);
  109. debug("%s(dma=%p)\n", __func__, dma);
  110. if (!ops->enable)
  111. return -ENOSYS;
  112. return ops->enable(dma);
  113. }
  114. int dma_disable(struct dma *dma)
  115. {
  116. struct dma_ops *ops = dma_dev_ops(dma->dev);
  117. debug("%s(dma=%p)\n", __func__, dma);
  118. if (!ops->disable)
  119. return -ENOSYS;
  120. return ops->disable(dma);
  121. }
  122. int dma_prepare_rcv_buf(struct dma *dma, void *dst, size_t size)
  123. {
  124. struct dma_ops *ops = dma_dev_ops(dma->dev);
  125. debug("%s(dma=%p)\n", __func__, dma);
  126. if (!ops->prepare_rcv_buf)
  127. return -1;
  128. return ops->prepare_rcv_buf(dma, dst, size);
  129. }
  130. int dma_receive(struct dma *dma, void **dst, void *metadata)
  131. {
  132. struct dma_ops *ops = dma_dev_ops(dma->dev);
  133. debug("%s(dma=%p)\n", __func__, dma);
  134. if (!ops->receive)
  135. return -ENOSYS;
  136. return ops->receive(dma, dst, metadata);
  137. }
  138. int dma_send(struct dma *dma, void *src, size_t len, void *metadata)
  139. {
  140. struct dma_ops *ops = dma_dev_ops(dma->dev);
  141. debug("%s(dma=%p)\n", __func__, dma);
  142. if (!ops->send)
  143. return -ENOSYS;
  144. return ops->send(dma, src, len, metadata);
  145. }
  146. int dma_get_cfg(struct dma *dma, u32 cfg_id, void **cfg_data)
  147. {
  148. struct dma_ops *ops = dma_dev_ops(dma->dev);
  149. debug("%s(dma=%p)\n", __func__, dma);
  150. if (!ops->get_cfg)
  151. return -ENOSYS;
  152. return ops->get_cfg(dma, cfg_id, cfg_data);
  153. }
  154. #endif /* CONFIG_DMA_CHANNELS */
  155. int dma_get_device(u32 transfer_type, struct udevice **devp)
  156. {
  157. struct udevice *dev;
  158. int ret;
  159. for (ret = uclass_first_device(UCLASS_DMA, &dev); dev && !ret;
  160. ret = uclass_next_device(&dev)) {
  161. struct dma_dev_priv *uc_priv;
  162. uc_priv = dev_get_uclass_priv(dev);
  163. if (uc_priv->supported & transfer_type)
  164. break;
  165. }
  166. if (!dev) {
  167. pr_debug("No DMA device found that supports %x type\n",
  168. transfer_type);
  169. return -EPROTONOSUPPORT;
  170. }
  171. *devp = dev;
  172. return ret;
  173. }
  174. int dma_memcpy(void *dst, void *src, size_t len)
  175. {
  176. struct udevice *dev;
  177. const struct dma_ops *ops;
  178. int ret;
  179. ret = dma_get_device(DMA_SUPPORTS_MEM_TO_MEM, &dev);
  180. if (ret < 0)
  181. return ret;
  182. ops = device_get_ops(dev);
  183. if (!ops->transfer)
  184. return -ENOSYS;
  185. /* Invalidate the area, so no writeback into the RAM races with DMA */
  186. invalidate_dcache_range((unsigned long)dst, (unsigned long)dst +
  187. roundup(len, ARCH_DMA_MINALIGN));
  188. return ops->transfer(dev, DMA_MEM_TO_MEM, dst, src, len);
  189. }
  190. UCLASS_DRIVER(dma) = {
  191. .id = UCLASS_DMA,
  192. .name = "dma",
  193. .flags = DM_UC_FLAG_SEQ_ALIAS,
  194. .per_device_auto = sizeof(struct dma_dev_priv),
  195. };