lmb.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <image.h>
  10. #include <lmb.h>
  11. #include <log.h>
  12. #include <malloc.h>
  13. #include <asm/global_data.h>
  14. DECLARE_GLOBAL_DATA_PTR;
  15. #define LMB_ALLOC_ANYWHERE 0
  16. static void lmb_dump_region(struct lmb_region *rgn, char *name)
  17. {
  18. unsigned long long base, size, end;
  19. enum lmb_flags flags;
  20. int i;
  21. printf(" %s.cnt = 0x%lx\n", name, rgn->cnt);
  22. for (i = 0; i < rgn->cnt; i++) {
  23. base = rgn->region[i].base;
  24. size = rgn->region[i].size;
  25. end = base + size - 1;
  26. flags = rgn->region[i].flags;
  27. printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
  28. name, i, base, end, size, flags);
  29. }
  30. }
  31. void lmb_dump_all_force(struct lmb *lmb)
  32. {
  33. printf("lmb_dump_all:\n");
  34. lmb_dump_region(&lmb->memory, "memory");
  35. lmb_dump_region(&lmb->reserved, "reserved");
  36. }
  37. void lmb_dump_all(struct lmb *lmb)
  38. {
  39. #ifdef DEBUG
  40. lmb_dump_all_force(lmb);
  41. #endif
  42. }
  43. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  44. phys_addr_t base2, phys_size_t size2)
  45. {
  46. const phys_addr_t base1_end = base1 + size1 - 1;
  47. const phys_addr_t base2_end = base2 + size2 - 1;
  48. return ((base1 <= base2_end) && (base2 <= base1_end));
  49. }
  50. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  51. phys_addr_t base2, phys_size_t size2)
  52. {
  53. if (base2 == base1 + size1)
  54. return 1;
  55. else if (base1 == base2 + size2)
  56. return -1;
  57. return 0;
  58. }
  59. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  60. unsigned long r2)
  61. {
  62. phys_addr_t base1 = rgn->region[r1].base;
  63. phys_size_t size1 = rgn->region[r1].size;
  64. phys_addr_t base2 = rgn->region[r2].base;
  65. phys_size_t size2 = rgn->region[r2].size;
  66. return lmb_addrs_adjacent(base1, size1, base2, size2);
  67. }
  68. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  69. {
  70. unsigned long i;
  71. for (i = r; i < rgn->cnt - 1; i++) {
  72. rgn->region[i].base = rgn->region[i + 1].base;
  73. rgn->region[i].size = rgn->region[i + 1].size;
  74. rgn->region[i].flags = rgn->region[i + 1].flags;
  75. }
  76. rgn->cnt--;
  77. }
  78. /* Assumption: base addr of region 1 < base addr of region 2 */
  79. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  80. unsigned long r2)
  81. {
  82. rgn->region[r1].size += rgn->region[r2].size;
  83. lmb_remove_region(rgn, r2);
  84. }
  85. void lmb_init(struct lmb *lmb)
  86. {
  87. #if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
  88. lmb->memory.max = CONFIG_LMB_MAX_REGIONS;
  89. lmb->reserved.max = CONFIG_LMB_MAX_REGIONS;
  90. #else
  91. lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS;
  92. lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS;
  93. lmb->memory.region = lmb->memory_regions;
  94. lmb->reserved.region = lmb->reserved_regions;
  95. #endif
  96. lmb->memory.cnt = 0;
  97. lmb->reserved.cnt = 0;
  98. }
  99. void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align)
  100. {
  101. ulong bank_end;
  102. int bank;
  103. /*
  104. * Reserve memory from aligned address below the bottom of U-Boot stack
  105. * until end of U-Boot area using LMB to prevent U-Boot from overwriting
  106. * that memory.
  107. */
  108. debug("## Current stack ends at 0x%08lx ", sp);
  109. /* adjust sp by 4K to be safe */
  110. sp -= align;
  111. for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
  112. if (!gd->bd->bi_dram[bank].size ||
  113. sp < gd->bd->bi_dram[bank].start)
  114. continue;
  115. /* Watch out for RAM at end of address space! */
  116. bank_end = gd->bd->bi_dram[bank].start +
  117. gd->bd->bi_dram[bank].size - 1;
  118. if (sp > bank_end)
  119. continue;
  120. if (bank_end > end)
  121. bank_end = end - 1;
  122. lmb_reserve(lmb, sp, bank_end - sp + 1);
  123. break;
  124. }
  125. }
  126. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  127. {
  128. arch_lmb_reserve(lmb);
  129. board_lmb_reserve(lmb);
  130. if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
  131. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  132. }
  133. /* Initialize the struct, add memory and call arch/board reserve functions */
  134. void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
  135. {
  136. int i;
  137. lmb_init(lmb);
  138. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  139. if (bd->bi_dram[i].size) {
  140. lmb_add(lmb, bd->bi_dram[i].start,
  141. bd->bi_dram[i].size);
  142. }
  143. }
  144. lmb_reserve_common(lmb, fdt_blob);
  145. }
  146. /* Initialize the struct, add memory and call arch/board reserve functions */
  147. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  148. phys_size_t size, void *fdt_blob)
  149. {
  150. lmb_init(lmb);
  151. lmb_add(lmb, base, size);
  152. lmb_reserve_common(lmb, fdt_blob);
  153. }
  154. /* This routine called with relocation disabled. */
  155. static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base,
  156. phys_size_t size, enum lmb_flags flags)
  157. {
  158. unsigned long coalesced = 0;
  159. long adjacent, i;
  160. if (rgn->cnt == 0) {
  161. rgn->region[0].base = base;
  162. rgn->region[0].size = size;
  163. rgn->region[0].flags = flags;
  164. rgn->cnt = 1;
  165. return 0;
  166. }
  167. /* First try and coalesce this LMB with another. */
  168. for (i = 0; i < rgn->cnt; i++) {
  169. phys_addr_t rgnbase = rgn->region[i].base;
  170. phys_size_t rgnsize = rgn->region[i].size;
  171. phys_size_t rgnflags = rgn->region[i].flags;
  172. if (rgnbase == base && rgnsize == size) {
  173. if (flags == rgnflags)
  174. /* Already have this region, so we're done */
  175. return 0;
  176. else
  177. return -1; /* regions with new flags */
  178. }
  179. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  180. if (adjacent > 0) {
  181. if (flags != rgnflags)
  182. break;
  183. rgn->region[i].base -= size;
  184. rgn->region[i].size += size;
  185. coalesced++;
  186. break;
  187. } else if (adjacent < 0) {
  188. if (flags != rgnflags)
  189. break;
  190. rgn->region[i].size += size;
  191. coalesced++;
  192. break;
  193. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  194. /* regions overlap */
  195. return -1;
  196. }
  197. }
  198. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  199. if (rgn->region[i].flags == rgn->region[i + 1].flags) {
  200. lmb_coalesce_regions(rgn, i, i + 1);
  201. coalesced++;
  202. }
  203. }
  204. if (coalesced)
  205. return coalesced;
  206. if (rgn->cnt >= rgn->max)
  207. return -1;
  208. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  209. for (i = rgn->cnt-1; i >= 0; i--) {
  210. if (base < rgn->region[i].base) {
  211. rgn->region[i + 1].base = rgn->region[i].base;
  212. rgn->region[i + 1].size = rgn->region[i].size;
  213. rgn->region[i + 1].flags = rgn->region[i].flags;
  214. } else {
  215. rgn->region[i + 1].base = base;
  216. rgn->region[i + 1].size = size;
  217. rgn->region[i + 1].flags = flags;
  218. break;
  219. }
  220. }
  221. if (base < rgn->region[0].base) {
  222. rgn->region[0].base = base;
  223. rgn->region[0].size = size;
  224. rgn->region[0].flags = flags;
  225. }
  226. rgn->cnt++;
  227. return 0;
  228. }
  229. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base,
  230. phys_size_t size)
  231. {
  232. return lmb_add_region_flags(rgn, base, size, LMB_NONE);
  233. }
  234. /* This routine may be called with relocation disabled. */
  235. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  236. {
  237. struct lmb_region *_rgn = &(lmb->memory);
  238. return lmb_add_region(_rgn, base, size);
  239. }
  240. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  241. {
  242. struct lmb_region *rgn = &(lmb->reserved);
  243. phys_addr_t rgnbegin, rgnend;
  244. phys_addr_t end = base + size - 1;
  245. int i;
  246. rgnbegin = rgnend = 0; /* supress gcc warnings */
  247. /* Find the region where (base, size) belongs to */
  248. for (i = 0; i < rgn->cnt; i++) {
  249. rgnbegin = rgn->region[i].base;
  250. rgnend = rgnbegin + rgn->region[i].size - 1;
  251. if ((rgnbegin <= base) && (end <= rgnend))
  252. break;
  253. }
  254. /* Didn't find the region */
  255. if (i == rgn->cnt)
  256. return -1;
  257. /* Check to see if we are removing entire region */
  258. if ((rgnbegin == base) && (rgnend == end)) {
  259. lmb_remove_region(rgn, i);
  260. return 0;
  261. }
  262. /* Check to see if region is matching at the front */
  263. if (rgnbegin == base) {
  264. rgn->region[i].base = end + 1;
  265. rgn->region[i].size -= size;
  266. return 0;
  267. }
  268. /* Check to see if the region is matching at the end */
  269. if (rgnend == end) {
  270. rgn->region[i].size -= size;
  271. return 0;
  272. }
  273. /*
  274. * We need to split the entry - adjust the current one to the
  275. * beginging of the hole and add the region after hole.
  276. */
  277. rgn->region[i].size = base - rgn->region[i].base;
  278. return lmb_add_region_flags(rgn, end + 1, rgnend - end,
  279. rgn->region[i].flags);
  280. }
  281. long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size,
  282. enum lmb_flags flags)
  283. {
  284. struct lmb_region *_rgn = &(lmb->reserved);
  285. return lmb_add_region_flags(_rgn, base, size, flags);
  286. }
  287. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  288. {
  289. return lmb_reserve_flags(lmb, base, size, LMB_NONE);
  290. }
  291. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  292. phys_size_t size)
  293. {
  294. unsigned long i;
  295. for (i = 0; i < rgn->cnt; i++) {
  296. phys_addr_t rgnbase = rgn->region[i].base;
  297. phys_size_t rgnsize = rgn->region[i].size;
  298. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  299. break;
  300. }
  301. return (i < rgn->cnt) ? i : -1;
  302. }
  303. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  304. {
  305. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  306. }
  307. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  308. {
  309. phys_addr_t alloc;
  310. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  311. if (alloc == 0)
  312. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  313. (ulong)size, (ulong)max_addr);
  314. return alloc;
  315. }
  316. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  317. {
  318. return addr & ~(size - 1);
  319. }
  320. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  321. {
  322. long i, rgn;
  323. phys_addr_t base = 0;
  324. phys_addr_t res_base;
  325. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  326. phys_addr_t lmbbase = lmb->memory.region[i].base;
  327. phys_size_t lmbsize = lmb->memory.region[i].size;
  328. if (lmbsize < size)
  329. continue;
  330. if (max_addr == LMB_ALLOC_ANYWHERE)
  331. base = lmb_align_down(lmbbase + lmbsize - size, align);
  332. else if (lmbbase < max_addr) {
  333. base = lmbbase + lmbsize;
  334. if (base < lmbbase)
  335. base = -1;
  336. base = min(base, max_addr);
  337. base = lmb_align_down(base - size, align);
  338. } else
  339. continue;
  340. while (base && lmbbase <= base) {
  341. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  342. if (rgn < 0) {
  343. /* This area isn't reserved, take it */
  344. if (lmb_add_region(&lmb->reserved, base,
  345. size) < 0)
  346. return 0;
  347. return base;
  348. }
  349. res_base = lmb->reserved.region[rgn].base;
  350. if (res_base < size)
  351. break;
  352. base = lmb_align_down(res_base - size, align);
  353. }
  354. }
  355. return 0;
  356. }
  357. /*
  358. * Try to allocate a specific address range: must be in defined memory but not
  359. * reserved
  360. */
  361. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  362. {
  363. long rgn;
  364. /* Check if the requested address is in one of the memory regions */
  365. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  366. if (rgn >= 0) {
  367. /*
  368. * Check if the requested end address is in the same memory
  369. * region we found.
  370. */
  371. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  372. lmb->memory.region[rgn].size,
  373. base + size - 1, 1)) {
  374. /* ok, reserve the memory */
  375. if (lmb_reserve(lmb, base, size) >= 0)
  376. return base;
  377. }
  378. }
  379. return 0;
  380. }
  381. /* Return number of bytes from a given address that are free */
  382. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  383. {
  384. int i;
  385. long rgn;
  386. /* check if the requested address is in the memory regions */
  387. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  388. if (rgn >= 0) {
  389. for (i = 0; i < lmb->reserved.cnt; i++) {
  390. if (addr < lmb->reserved.region[i].base) {
  391. /* first reserved range > requested address */
  392. return lmb->reserved.region[i].base - addr;
  393. }
  394. if (lmb->reserved.region[i].base +
  395. lmb->reserved.region[i].size > addr) {
  396. /* requested addr is in this reserved range */
  397. return 0;
  398. }
  399. }
  400. /* if we come here: no reserved ranges above requested addr */
  401. return lmb->memory.region[lmb->memory.cnt - 1].base +
  402. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  403. }
  404. return 0;
  405. }
  406. int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags)
  407. {
  408. int i;
  409. for (i = 0; i < lmb->reserved.cnt; i++) {
  410. phys_addr_t upper = lmb->reserved.region[i].base +
  411. lmb->reserved.region[i].size - 1;
  412. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  413. return (lmb->reserved.region[i].flags & flags) == flags;
  414. }
  415. return 0;
  416. }
  417. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  418. {
  419. return lmb_is_reserved_flags(lmb, addr, LMB_NONE);
  420. }
  421. __weak void board_lmb_reserve(struct lmb *lmb)
  422. {
  423. /* please define platform specific board_lmb_reserve() */
  424. }
  425. __weak void arch_lmb_reserve(struct lmb *lmb)
  426. {
  427. /* please define platform specific arch_lmb_reserve() */
  428. }