lmb.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <lmb.h>
  10. #define LMB_ALLOC_ANYWHERE 0
  11. void lmb_dump_all(struct lmb *lmb)
  12. {
  13. #ifdef DEBUG
  14. unsigned long i;
  15. debug("lmb_dump_all:\n");
  16. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  17. debug(" memory.size = 0x%llx\n",
  18. (unsigned long long)lmb->memory.size);
  19. for (i=0; i < lmb->memory.cnt ;i++) {
  20. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  21. (long long unsigned)lmb->memory.region[i].base);
  22. debug(" .size = 0x%llx\n",
  23. (long long unsigned)lmb->memory.region[i].size);
  24. }
  25. debug("\n reserved.cnt = 0x%lx\n",
  26. lmb->reserved.cnt);
  27. debug(" reserved.size = 0x%llx\n",
  28. (long long unsigned)lmb->reserved.size);
  29. for (i=0; i < lmb->reserved.cnt ;i++) {
  30. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  31. (long long unsigned)lmb->reserved.region[i].base);
  32. debug(" .size = 0x%llx\n",
  33. (long long unsigned)lmb->reserved.region[i].size);
  34. }
  35. #endif /* DEBUG */
  36. }
  37. static long lmb_addrs_overlap(phys_addr_t base1,
  38. phys_size_t size1, phys_addr_t base2, phys_size_t size2)
  39. {
  40. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  41. }
  42. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  43. phys_addr_t base2, phys_size_t size2)
  44. {
  45. if (base2 == base1 + size1)
  46. return 1;
  47. else if (base1 == base2 + size2)
  48. return -1;
  49. return 0;
  50. }
  51. static long lmb_regions_adjacent(struct lmb_region *rgn,
  52. unsigned long r1, unsigned long r2)
  53. {
  54. phys_addr_t base1 = rgn->region[r1].base;
  55. phys_size_t size1 = rgn->region[r1].size;
  56. phys_addr_t base2 = rgn->region[r2].base;
  57. phys_size_t size2 = rgn->region[r2].size;
  58. return lmb_addrs_adjacent(base1, size1, base2, size2);
  59. }
  60. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  61. {
  62. unsigned long i;
  63. for (i = r; i < rgn->cnt - 1; i++) {
  64. rgn->region[i].base = rgn->region[i + 1].base;
  65. rgn->region[i].size = rgn->region[i + 1].size;
  66. }
  67. rgn->cnt--;
  68. }
  69. /* Assumption: base addr of region 1 < base addr of region 2 */
  70. static void lmb_coalesce_regions(struct lmb_region *rgn,
  71. unsigned long r1, unsigned long r2)
  72. {
  73. rgn->region[r1].size += rgn->region[r2].size;
  74. lmb_remove_region(rgn, r2);
  75. }
  76. void lmb_init(struct lmb *lmb)
  77. {
  78. /* Create a dummy zero size LMB which will get coalesced away later.
  79. * This simplifies the lmb_add() code below...
  80. */
  81. lmb->memory.region[0].base = 0;
  82. lmb->memory.region[0].size = 0;
  83. lmb->memory.cnt = 1;
  84. lmb->memory.size = 0;
  85. /* Ditto. */
  86. lmb->reserved.region[0].base = 0;
  87. lmb->reserved.region[0].size = 0;
  88. lmb->reserved.cnt = 1;
  89. lmb->reserved.size = 0;
  90. }
  91. /* This routine called with relocation disabled. */
  92. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  93. {
  94. unsigned long coalesced = 0;
  95. long adjacent, i;
  96. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  97. rgn->region[0].base = base;
  98. rgn->region[0].size = size;
  99. return 0;
  100. }
  101. /* First try and coalesce this LMB with another. */
  102. for (i=0; i < rgn->cnt; i++) {
  103. phys_addr_t rgnbase = rgn->region[i].base;
  104. phys_size_t rgnsize = rgn->region[i].size;
  105. if ((rgnbase == base) && (rgnsize == size))
  106. /* Already have this region, so we're done */
  107. return 0;
  108. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  109. if ( adjacent > 0 ) {
  110. rgn->region[i].base -= size;
  111. rgn->region[i].size += size;
  112. coalesced++;
  113. break;
  114. }
  115. else if ( adjacent < 0 ) {
  116. rgn->region[i].size += size;
  117. coalesced++;
  118. break;
  119. }
  120. }
  121. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  122. lmb_coalesce_regions(rgn, i, i+1);
  123. coalesced++;
  124. }
  125. if (coalesced)
  126. return coalesced;
  127. if (rgn->cnt >= MAX_LMB_REGIONS)
  128. return -1;
  129. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  130. for (i = rgn->cnt-1; i >= 0; i--) {
  131. if (base < rgn->region[i].base) {
  132. rgn->region[i+1].base = rgn->region[i].base;
  133. rgn->region[i+1].size = rgn->region[i].size;
  134. } else {
  135. rgn->region[i+1].base = base;
  136. rgn->region[i+1].size = size;
  137. break;
  138. }
  139. }
  140. if (base < rgn->region[0].base) {
  141. rgn->region[0].base = base;
  142. rgn->region[0].size = size;
  143. }
  144. rgn->cnt++;
  145. return 0;
  146. }
  147. /* This routine may be called with relocation disabled. */
  148. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  149. {
  150. struct lmb_region *_rgn = &(lmb->memory);
  151. return lmb_add_region(_rgn, base, size);
  152. }
  153. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  154. {
  155. struct lmb_region *rgn = &(lmb->reserved);
  156. phys_addr_t rgnbegin, rgnend;
  157. phys_addr_t end = base + size;
  158. int i;
  159. rgnbegin = rgnend = 0; /* supress gcc warnings */
  160. /* Find the region where (base, size) belongs to */
  161. for (i=0; i < rgn->cnt; i++) {
  162. rgnbegin = rgn->region[i].base;
  163. rgnend = rgnbegin + rgn->region[i].size;
  164. if ((rgnbegin <= base) && (end <= rgnend))
  165. break;
  166. }
  167. /* Didn't find the region */
  168. if (i == rgn->cnt)
  169. return -1;
  170. /* Check to see if we are removing entire region */
  171. if ((rgnbegin == base) && (rgnend == end)) {
  172. lmb_remove_region(rgn, i);
  173. return 0;
  174. }
  175. /* Check to see if region is matching at the front */
  176. if (rgnbegin == base) {
  177. rgn->region[i].base = end;
  178. rgn->region[i].size -= size;
  179. return 0;
  180. }
  181. /* Check to see if the region is matching at the end */
  182. if (rgnend == end) {
  183. rgn->region[i].size -= size;
  184. return 0;
  185. }
  186. /*
  187. * We need to split the entry - adjust the current one to the
  188. * beginging of the hole and add the region after hole.
  189. */
  190. rgn->region[i].size = base - rgn->region[i].base;
  191. return lmb_add_region(rgn, end, rgnend - end);
  192. }
  193. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  194. {
  195. struct lmb_region *_rgn = &(lmb->reserved);
  196. return lmb_add_region(_rgn, base, size);
  197. }
  198. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  199. phys_size_t size)
  200. {
  201. unsigned long i;
  202. for (i=0; i < rgn->cnt; i++) {
  203. phys_addr_t rgnbase = rgn->region[i].base;
  204. phys_size_t rgnsize = rgn->region[i].size;
  205. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  206. break;
  207. }
  208. }
  209. return (i < rgn->cnt) ? i : -1;
  210. }
  211. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  212. {
  213. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  214. }
  215. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  216. {
  217. phys_addr_t alloc;
  218. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  219. if (alloc == 0)
  220. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  221. (ulong)size, (ulong)max_addr);
  222. return alloc;
  223. }
  224. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  225. {
  226. return addr & ~(size - 1);
  227. }
  228. static phys_addr_t lmb_align_up(phys_addr_t addr, ulong size)
  229. {
  230. return (addr + (size - 1)) & ~(size - 1);
  231. }
  232. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  233. {
  234. long i, j;
  235. phys_addr_t base = 0;
  236. phys_addr_t res_base;
  237. for (i = lmb->memory.cnt-1; i >= 0; i--) {
  238. phys_addr_t lmbbase = lmb->memory.region[i].base;
  239. phys_size_t lmbsize = lmb->memory.region[i].size;
  240. if (lmbsize < size)
  241. continue;
  242. if (max_addr == LMB_ALLOC_ANYWHERE)
  243. base = lmb_align_down(lmbbase + lmbsize - size, align);
  244. else if (lmbbase < max_addr) {
  245. base = lmbbase + lmbsize;
  246. if (base < lmbbase)
  247. base = -1;
  248. base = min(base, max_addr);
  249. base = lmb_align_down(base - size, align);
  250. } else
  251. continue;
  252. while (base && lmbbase <= base) {
  253. j = lmb_overlaps_region(&lmb->reserved, base, size);
  254. if (j < 0) {
  255. /* This area isn't reserved, take it */
  256. if (lmb_add_region(&lmb->reserved, base,
  257. lmb_align_up(size,
  258. align)) < 0)
  259. return 0;
  260. return base;
  261. }
  262. res_base = lmb->reserved.region[j].base;
  263. if (res_base < size)
  264. break;
  265. base = lmb_align_down(res_base - size, align);
  266. }
  267. }
  268. return 0;
  269. }
  270. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  271. {
  272. int i;
  273. for (i = 0; i < lmb->reserved.cnt; i++) {
  274. phys_addr_t upper = lmb->reserved.region[i].base +
  275. lmb->reserved.region[i].size - 1;
  276. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  277. return 1;
  278. }
  279. return 0;
  280. }
  281. __weak void board_lmb_reserve(struct lmb *lmb)
  282. {
  283. /* please define platform specific board_lmb_reserve() */
  284. }
  285. __weak void arch_lmb_reserve(struct lmb *lmb)
  286. {
  287. /* please define platform specific arch_lmb_reserve() */
  288. }