lmb.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <image.h>
  10. #include <lmb.h>
  11. #include <log.h>
  12. #include <malloc.h>
  13. #define LMB_ALLOC_ANYWHERE 0
  14. static void lmb_dump_region(struct lmb_region *rgn, char *name)
  15. {
  16. unsigned long long base, size, end;
  17. enum lmb_flags flags;
  18. int i;
  19. printf(" %s.cnt = 0x%lx\n", name, rgn->cnt);
  20. for (i = 0; i < rgn->cnt; i++) {
  21. base = rgn->region[i].base;
  22. size = rgn->region[i].size;
  23. end = base + size - 1;
  24. flags = rgn->region[i].flags;
  25. printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
  26. name, i, base, end, size, flags);
  27. }
  28. }
  29. void lmb_dump_all_force(struct lmb *lmb)
  30. {
  31. printf("lmb_dump_all:\n");
  32. lmb_dump_region(&lmb->memory, "memory");
  33. lmb_dump_region(&lmb->reserved, "reserved");
  34. }
  35. void lmb_dump_all(struct lmb *lmb)
  36. {
  37. #ifdef DEBUG
  38. lmb_dump_all_force(lmb);
  39. #endif
  40. }
  41. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  42. phys_addr_t base2, phys_size_t size2)
  43. {
  44. const phys_addr_t base1_end = base1 + size1 - 1;
  45. const phys_addr_t base2_end = base2 + size2 - 1;
  46. return ((base1 <= base2_end) && (base2 <= base1_end));
  47. }
  48. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  49. phys_addr_t base2, phys_size_t size2)
  50. {
  51. if (base2 == base1 + size1)
  52. return 1;
  53. else if (base1 == base2 + size2)
  54. return -1;
  55. return 0;
  56. }
  57. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  58. unsigned long r2)
  59. {
  60. phys_addr_t base1 = rgn->region[r1].base;
  61. phys_size_t size1 = rgn->region[r1].size;
  62. phys_addr_t base2 = rgn->region[r2].base;
  63. phys_size_t size2 = rgn->region[r2].size;
  64. return lmb_addrs_adjacent(base1, size1, base2, size2);
  65. }
  66. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  67. {
  68. unsigned long i;
  69. for (i = r; i < rgn->cnt - 1; i++) {
  70. rgn->region[i].base = rgn->region[i + 1].base;
  71. rgn->region[i].size = rgn->region[i + 1].size;
  72. rgn->region[i].flags = rgn->region[i + 1].flags;
  73. }
  74. rgn->cnt--;
  75. }
  76. /* Assumption: base addr of region 1 < base addr of region 2 */
  77. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  78. unsigned long r2)
  79. {
  80. rgn->region[r1].size += rgn->region[r2].size;
  81. lmb_remove_region(rgn, r2);
  82. }
  83. void lmb_init(struct lmb *lmb)
  84. {
  85. #if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
  86. lmb->memory.max = CONFIG_LMB_MAX_REGIONS;
  87. lmb->reserved.max = CONFIG_LMB_MAX_REGIONS;
  88. #else
  89. lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS;
  90. lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS;
  91. lmb->memory.region = lmb->memory_regions;
  92. lmb->reserved.region = lmb->reserved_regions;
  93. #endif
  94. lmb->memory.cnt = 0;
  95. lmb->reserved.cnt = 0;
  96. }
  97. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  98. {
  99. arch_lmb_reserve(lmb);
  100. board_lmb_reserve(lmb);
  101. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  102. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  103. }
  104. /* Initialize the struct, add memory and call arch/board reserve functions */
  105. void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
  106. {
  107. int i;
  108. lmb_init(lmb);
  109. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  110. if (bd->bi_dram[i].size) {
  111. lmb_add(lmb, bd->bi_dram[i].start,
  112. bd->bi_dram[i].size);
  113. }
  114. }
  115. lmb_reserve_common(lmb, fdt_blob);
  116. }
  117. /* Initialize the struct, add memory and call arch/board reserve functions */
  118. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  119. phys_size_t size, void *fdt_blob)
  120. {
  121. lmb_init(lmb);
  122. lmb_add(lmb, base, size);
  123. lmb_reserve_common(lmb, fdt_blob);
  124. }
  125. /* This routine called with relocation disabled. */
  126. static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base,
  127. phys_size_t size, enum lmb_flags flags)
  128. {
  129. unsigned long coalesced = 0;
  130. long adjacent, i;
  131. if (rgn->cnt == 0) {
  132. rgn->region[0].base = base;
  133. rgn->region[0].size = size;
  134. rgn->region[0].flags = flags;
  135. rgn->cnt = 1;
  136. return 0;
  137. }
  138. /* First try and coalesce this LMB with another. */
  139. for (i = 0; i < rgn->cnt; i++) {
  140. phys_addr_t rgnbase = rgn->region[i].base;
  141. phys_size_t rgnsize = rgn->region[i].size;
  142. phys_size_t rgnflags = rgn->region[i].flags;
  143. if (rgnbase == base && rgnsize == size) {
  144. if (flags == rgnflags)
  145. /* Already have this region, so we're done */
  146. return 0;
  147. else
  148. return -1; /* regions with new flags */
  149. }
  150. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  151. if (adjacent > 0) {
  152. if (flags != rgnflags)
  153. break;
  154. rgn->region[i].base -= size;
  155. rgn->region[i].size += size;
  156. coalesced++;
  157. break;
  158. } else if (adjacent < 0) {
  159. if (flags != rgnflags)
  160. break;
  161. rgn->region[i].size += size;
  162. coalesced++;
  163. break;
  164. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  165. /* regions overlap */
  166. return -1;
  167. }
  168. }
  169. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  170. if (rgn->region[i].flags == rgn->region[i + 1].flags) {
  171. lmb_coalesce_regions(rgn, i, i + 1);
  172. coalesced++;
  173. }
  174. }
  175. if (coalesced)
  176. return coalesced;
  177. if (rgn->cnt >= rgn->max)
  178. return -1;
  179. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  180. for (i = rgn->cnt-1; i >= 0; i--) {
  181. if (base < rgn->region[i].base) {
  182. rgn->region[i + 1].base = rgn->region[i].base;
  183. rgn->region[i + 1].size = rgn->region[i].size;
  184. rgn->region[i + 1].flags = rgn->region[i].flags;
  185. } else {
  186. rgn->region[i + 1].base = base;
  187. rgn->region[i + 1].size = size;
  188. rgn->region[i + 1].flags = flags;
  189. break;
  190. }
  191. }
  192. if (base < rgn->region[0].base) {
  193. rgn->region[0].base = base;
  194. rgn->region[0].size = size;
  195. rgn->region[0].flags = flags;
  196. }
  197. rgn->cnt++;
  198. return 0;
  199. }
  200. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base,
  201. phys_size_t size)
  202. {
  203. return lmb_add_region_flags(rgn, base, size, LMB_NONE);
  204. }
  205. /* This routine may be called with relocation disabled. */
  206. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  207. {
  208. struct lmb_region *_rgn = &(lmb->memory);
  209. return lmb_add_region(_rgn, base, size);
  210. }
  211. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  212. {
  213. struct lmb_region *rgn = &(lmb->reserved);
  214. phys_addr_t rgnbegin, rgnend;
  215. phys_addr_t end = base + size - 1;
  216. int i;
  217. rgnbegin = rgnend = 0; /* supress gcc warnings */
  218. /* Find the region where (base, size) belongs to */
  219. for (i = 0; i < rgn->cnt; i++) {
  220. rgnbegin = rgn->region[i].base;
  221. rgnend = rgnbegin + rgn->region[i].size - 1;
  222. if ((rgnbegin <= base) && (end <= rgnend))
  223. break;
  224. }
  225. /* Didn't find the region */
  226. if (i == rgn->cnt)
  227. return -1;
  228. /* Check to see if we are removing entire region */
  229. if ((rgnbegin == base) && (rgnend == end)) {
  230. lmb_remove_region(rgn, i);
  231. return 0;
  232. }
  233. /* Check to see if region is matching at the front */
  234. if (rgnbegin == base) {
  235. rgn->region[i].base = end + 1;
  236. rgn->region[i].size -= size;
  237. return 0;
  238. }
  239. /* Check to see if the region is matching at the end */
  240. if (rgnend == end) {
  241. rgn->region[i].size -= size;
  242. return 0;
  243. }
  244. /*
  245. * We need to split the entry - adjust the current one to the
  246. * beginging of the hole and add the region after hole.
  247. */
  248. rgn->region[i].size = base - rgn->region[i].base;
  249. return lmb_add_region_flags(rgn, end + 1, rgnend - end,
  250. rgn->region[i].flags);
  251. }
  252. long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size,
  253. enum lmb_flags flags)
  254. {
  255. struct lmb_region *_rgn = &(lmb->reserved);
  256. return lmb_add_region_flags(_rgn, base, size, flags);
  257. }
  258. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  259. {
  260. return lmb_reserve_flags(lmb, base, size, LMB_NONE);
  261. }
  262. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  263. phys_size_t size)
  264. {
  265. unsigned long i;
  266. for (i = 0; i < rgn->cnt; i++) {
  267. phys_addr_t rgnbase = rgn->region[i].base;
  268. phys_size_t rgnsize = rgn->region[i].size;
  269. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  270. break;
  271. }
  272. return (i < rgn->cnt) ? i : -1;
  273. }
  274. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  275. {
  276. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  277. }
  278. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  279. {
  280. phys_addr_t alloc;
  281. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  282. if (alloc == 0)
  283. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  284. (ulong)size, (ulong)max_addr);
  285. return alloc;
  286. }
  287. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  288. {
  289. return addr & ~(size - 1);
  290. }
  291. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  292. {
  293. long i, rgn;
  294. phys_addr_t base = 0;
  295. phys_addr_t res_base;
  296. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  297. phys_addr_t lmbbase = lmb->memory.region[i].base;
  298. phys_size_t lmbsize = lmb->memory.region[i].size;
  299. if (lmbsize < size)
  300. continue;
  301. if (max_addr == LMB_ALLOC_ANYWHERE)
  302. base = lmb_align_down(lmbbase + lmbsize - size, align);
  303. else if (lmbbase < max_addr) {
  304. base = lmbbase + lmbsize;
  305. if (base < lmbbase)
  306. base = -1;
  307. base = min(base, max_addr);
  308. base = lmb_align_down(base - size, align);
  309. } else
  310. continue;
  311. while (base && lmbbase <= base) {
  312. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  313. if (rgn < 0) {
  314. /* This area isn't reserved, take it */
  315. if (lmb_add_region(&lmb->reserved, base,
  316. size) < 0)
  317. return 0;
  318. return base;
  319. }
  320. res_base = lmb->reserved.region[rgn].base;
  321. if (res_base < size)
  322. break;
  323. base = lmb_align_down(res_base - size, align);
  324. }
  325. }
  326. return 0;
  327. }
  328. /*
  329. * Try to allocate a specific address range: must be in defined memory but not
  330. * reserved
  331. */
  332. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  333. {
  334. long rgn;
  335. /* Check if the requested address is in one of the memory regions */
  336. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  337. if (rgn >= 0) {
  338. /*
  339. * Check if the requested end address is in the same memory
  340. * region we found.
  341. */
  342. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  343. lmb->memory.region[rgn].size,
  344. base + size - 1, 1)) {
  345. /* ok, reserve the memory */
  346. if (lmb_reserve(lmb, base, size) >= 0)
  347. return base;
  348. }
  349. }
  350. return 0;
  351. }
  352. /* Return number of bytes from a given address that are free */
  353. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  354. {
  355. int i;
  356. long rgn;
  357. /* check if the requested address is in the memory regions */
  358. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  359. if (rgn >= 0) {
  360. for (i = 0; i < lmb->reserved.cnt; i++) {
  361. if (addr < lmb->reserved.region[i].base) {
  362. /* first reserved range > requested address */
  363. return lmb->reserved.region[i].base - addr;
  364. }
  365. if (lmb->reserved.region[i].base +
  366. lmb->reserved.region[i].size > addr) {
  367. /* requested addr is in this reserved range */
  368. return 0;
  369. }
  370. }
  371. /* if we come here: no reserved ranges above requested addr */
  372. return lmb->memory.region[lmb->memory.cnt - 1].base +
  373. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  374. }
  375. return 0;
  376. }
  377. int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags)
  378. {
  379. int i;
  380. for (i = 0; i < lmb->reserved.cnt; i++) {
  381. phys_addr_t upper = lmb->reserved.region[i].base +
  382. lmb->reserved.region[i].size - 1;
  383. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  384. return (lmb->reserved.region[i].flags & flags) == flags;
  385. }
  386. return 0;
  387. }
  388. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  389. {
  390. return lmb_is_reserved_flags(lmb, addr, LMB_NONE);
  391. }
  392. __weak void board_lmb_reserve(struct lmb *lmb)
  393. {
  394. /* please define platform specific board_lmb_reserve() */
  395. }
  396. __weak void arch_lmb_reserve(struct lmb *lmb)
  397. {
  398. /* please define platform specific arch_lmb_reserve() */
  399. }