nand_boot.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. /*
  2. * (C) Copyright 2006-2008
  3. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18. * MA 02111-1307 USA
  19. */
  20. #include <common.h>
  21. #include <nand.h>
  22. #include <asm/io.h>
  23. #define CONFIG_SYS_NAND_READ_DELAY \
  24. { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
  25. static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
  26. #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
  27. /*
  28. * NAND command for small page NAND devices (512)
  29. */
  30. static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  31. {
  32. struct nand_chip *this = mtd->priv;
  33. int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  34. if (this->dev_ready)
  35. while (!this->dev_ready(mtd))
  36. ;
  37. else
  38. CONFIG_SYS_NAND_READ_DELAY;
  39. /* Begin command latch cycle */
  40. this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  41. /* Set ALE and clear CLE to start address cycle */
  42. /* Column address */
  43. this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  44. this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
  45. this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
  46. NAND_CTRL_ALE); /* A[24:17] */
  47. #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
  48. /* One more address cycle for devices > 32MiB */
  49. this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
  50. NAND_CTRL_ALE); /* A[28:25] */
  51. #endif
  52. /* Latch in address */
  53. this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  54. /*
  55. * Wait a while for the data to be ready
  56. */
  57. if (this->dev_ready)
  58. while (!this->dev_ready(mtd))
  59. ;
  60. else
  61. CONFIG_SYS_NAND_READ_DELAY;
  62. return 0;
  63. }
  64. #else
  65. /*
  66. * NAND command for large page NAND devices (2k)
  67. */
  68. static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  69. {
  70. struct nand_chip *this = mtd->priv;
  71. int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  72. if (this->dev_ready)
  73. while (!this->dev_ready(mtd))
  74. ;
  75. else
  76. CONFIG_SYS_NAND_READ_DELAY;
  77. /* Emulate NAND_CMD_READOOB */
  78. if (cmd == NAND_CMD_READOOB) {
  79. offs += CONFIG_SYS_NAND_PAGE_SIZE;
  80. cmd = NAND_CMD_READ0;
  81. }
  82. /* Begin command latch cycle */
  83. this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  84. /* Set ALE and clear CLE to start address cycle */
  85. /* Column address */
  86. this->cmd_ctrl(mtd, offs & 0xff,
  87. NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
  88. this->cmd_ctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
  89. /* Row address */
  90. this->cmd_ctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
  91. this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff),
  92. NAND_CTRL_ALE); /* A[27:20] */
  93. #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
  94. /* One more address cycle for devices > 128MiB */
  95. this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
  96. NAND_CTRL_ALE); /* A[31:28] */
  97. #endif
  98. /* Latch in address */
  99. this->cmd_ctrl(mtd, NAND_CMD_READSTART,
  100. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  101. this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  102. /*
  103. * Wait a while for the data to be ready
  104. */
  105. if (this->dev_ready)
  106. while (!this->dev_ready(mtd))
  107. ;
  108. else
  109. CONFIG_SYS_NAND_READ_DELAY;
  110. return 0;
  111. }
  112. #endif
  113. static int nand_is_bad_block(struct mtd_info *mtd, int block)
  114. {
  115. struct nand_chip *this = mtd->priv;
  116. nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
  117. /*
  118. * Read one byte
  119. */
  120. if (readb(this->IO_ADDR_R) != 0xff)
  121. return 1;
  122. return 0;
  123. }
  124. static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
  125. {
  126. struct nand_chip *this = mtd->priv;
  127. u_char *ecc_calc;
  128. u_char *ecc_code;
  129. u_char *oob_data;
  130. int i;
  131. int eccsize = CONFIG_SYS_NAND_ECCSIZE;
  132. int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
  133. int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
  134. uint8_t *p = dst;
  135. int stat;
  136. nand_command(mtd, block, page, 0, NAND_CMD_READ0);
  137. /* No malloc available for now, just use some temporary locations
  138. * in SDRAM
  139. */
  140. ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
  141. ecc_code = ecc_calc + 0x100;
  142. oob_data = ecc_calc + 0x200;
  143. for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  144. this->ecc.hwctl(mtd, NAND_ECC_READ);
  145. this->read_buf(mtd, p, eccsize);
  146. this->ecc.calculate(mtd, p, &ecc_calc[i]);
  147. }
  148. this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
  149. /* Pick the ECC bytes out of the oob data */
  150. for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
  151. ecc_code[i] = oob_data[nand_ecc_pos[i]];
  152. eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
  153. p = dst;
  154. for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  155. /* No chance to do something with the possible error message
  156. * from correct_data(). We just hope that all possible errors
  157. * are corrected by this routine.
  158. */
  159. stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
  160. }
  161. return 0;
  162. }
  163. static int nand_load(struct mtd_info *mtd, unsigned int offs,
  164. unsigned int uboot_size, uchar *dst)
  165. {
  166. unsigned int block, lastblock;
  167. unsigned int page;
  168. /*
  169. * offs has to be aligned to a page address!
  170. */
  171. block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
  172. lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
  173. page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
  174. while (block <= lastblock) {
  175. if (!nand_is_bad_block(mtd, block)) {
  176. /*
  177. * Skip bad blocks
  178. */
  179. while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
  180. nand_read_page(mtd, block, page, dst);
  181. dst += CONFIG_SYS_NAND_PAGE_SIZE;
  182. page++;
  183. }
  184. page = 0;
  185. } else {
  186. lastblock++;
  187. }
  188. block++;
  189. }
  190. return 0;
  191. }
  192. /*
  193. * The main entry for NAND booting. It's necessary that SDRAM is already
  194. * configured and available since this code loads the main U-Boot image
  195. * from NAND into SDRAM and starts it from there.
  196. */
  197. void nand_boot(void)
  198. {
  199. struct nand_chip nand_chip;
  200. nand_info_t nand_info;
  201. int ret;
  202. __attribute__((noreturn)) void (*uboot)(void);
  203. /*
  204. * Init board specific nand support
  205. */
  206. nand_info.priv = &nand_chip;
  207. nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
  208. nand_chip.dev_ready = NULL; /* preset to NULL */
  209. board_nand_init(&nand_chip);
  210. if (nand_chip.select_chip)
  211. nand_chip.select_chip(&nand_info, 0);
  212. /*
  213. * Load U-Boot image from NAND into RAM
  214. */
  215. ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
  216. (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
  217. #ifdef CONFIG_NAND_ENV_DST
  218. nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
  219. (uchar *)CONFIG_NAND_ENV_DST);
  220. #ifdef CONFIG_ENV_OFFSET_REDUND
  221. nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
  222. (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
  223. #endif
  224. #endif
  225. if (nand_chip.select_chip)
  226. nand_chip.select_chip(&nand_info, -1);
  227. /*
  228. * Jump to U-Boot image
  229. */
  230. uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
  231. (*uboot)();
  232. }