sha256.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. /*
  2. * FIPS-180-2 compliant SHA-256 implementation
  3. *
  4. * Copyright (C) 2001-2003 Christophe Devine
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #ifndef USE_HOSTCC
  21. #include <common.h>
  22. #endif /* USE_HOSTCC */
  23. #include <watchdog.h>
  24. #include <linux/string.h>
  25. #include <sha256.h>
  26. /*
  27. * 32-bit integer manipulation macros (big endian)
  28. */
  29. #ifndef GET_UINT32_BE
  30. #define GET_UINT32_BE(n,b,i) { \
  31. (n) = ( (unsigned long) (b)[(i) ] << 24 ) \
  32. | ( (unsigned long) (b)[(i) + 1] << 16 ) \
  33. | ( (unsigned long) (b)[(i) + 2] << 8 ) \
  34. | ( (unsigned long) (b)[(i) + 3] ); \
  35. }
  36. #endif
  37. #ifndef PUT_UINT32_BE
  38. #define PUT_UINT32_BE(n,b,i) { \
  39. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  40. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  41. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  42. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  43. }
  44. #endif
  45. void sha256_starts(sha256_context * ctx)
  46. {
  47. ctx->total[0] = 0;
  48. ctx->total[1] = 0;
  49. ctx->state[0] = 0x6A09E667;
  50. ctx->state[1] = 0xBB67AE85;
  51. ctx->state[2] = 0x3C6EF372;
  52. ctx->state[3] = 0xA54FF53A;
  53. ctx->state[4] = 0x510E527F;
  54. ctx->state[5] = 0x9B05688C;
  55. ctx->state[6] = 0x1F83D9AB;
  56. ctx->state[7] = 0x5BE0CD19;
  57. }
  58. void sha256_process(sha256_context * ctx, uint8_t data[64])
  59. {
  60. uint32_t temp1, temp2;
  61. uint32_t W[64];
  62. uint32_t A, B, C, D, E, F, G, H;
  63. GET_UINT32_BE(W[0], data, 0);
  64. GET_UINT32_BE(W[1], data, 4);
  65. GET_UINT32_BE(W[2], data, 8);
  66. GET_UINT32_BE(W[3], data, 12);
  67. GET_UINT32_BE(W[4], data, 16);
  68. GET_UINT32_BE(W[5], data, 20);
  69. GET_UINT32_BE(W[6], data, 24);
  70. GET_UINT32_BE(W[7], data, 28);
  71. GET_UINT32_BE(W[8], data, 32);
  72. GET_UINT32_BE(W[9], data, 36);
  73. GET_UINT32_BE(W[10], data, 40);
  74. GET_UINT32_BE(W[11], data, 44);
  75. GET_UINT32_BE(W[12], data, 48);
  76. GET_UINT32_BE(W[13], data, 52);
  77. GET_UINT32_BE(W[14], data, 56);
  78. GET_UINT32_BE(W[15], data, 60);
  79. #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
  80. #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
  81. #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
  82. #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
  83. #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
  84. #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
  85. #define F0(x,y,z) ((x & y) | (z & (x | y)))
  86. #define F1(x,y,z) (z ^ (x & (y ^ z)))
  87. #define R(t) \
  88. ( \
  89. W[t] = S1(W[t - 2]) + W[t - 7] + \
  90. S0(W[t - 15]) + W[t - 16] \
  91. )
  92. #define P(a,b,c,d,e,f,g,h,x,K) { \
  93. temp1 = h + S3(e) + F1(e,f,g) + K + x; \
  94. temp2 = S2(a) + F0(a,b,c); \
  95. d += temp1; h = temp1 + temp2; \
  96. }
  97. A = ctx->state[0];
  98. B = ctx->state[1];
  99. C = ctx->state[2];
  100. D = ctx->state[3];
  101. E = ctx->state[4];
  102. F = ctx->state[5];
  103. G = ctx->state[6];
  104. H = ctx->state[7];
  105. P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
  106. P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
  107. P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
  108. P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
  109. P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
  110. P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
  111. P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
  112. P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
  113. P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
  114. P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
  115. P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
  116. P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
  117. P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
  118. P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
  119. P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
  120. P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
  121. P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
  122. P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
  123. P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
  124. P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
  125. P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
  126. P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
  127. P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
  128. P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
  129. P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
  130. P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
  131. P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
  132. P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
  133. P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
  134. P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
  135. P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
  136. P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
  137. P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
  138. P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
  139. P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
  140. P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
  141. P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
  142. P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
  143. P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
  144. P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
  145. P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
  146. P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
  147. P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
  148. P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
  149. P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
  150. P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
  151. P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
  152. P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
  153. P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
  154. P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
  155. P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
  156. P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
  157. P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
  158. P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
  159. P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
  160. P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
  161. P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
  162. P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
  163. P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
  164. P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
  165. P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
  166. P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
  167. P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
  168. P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
  169. ctx->state[0] += A;
  170. ctx->state[1] += B;
  171. ctx->state[2] += C;
  172. ctx->state[3] += D;
  173. ctx->state[4] += E;
  174. ctx->state[5] += F;
  175. ctx->state[6] += G;
  176. ctx->state[7] += H;
  177. }
  178. void sha256_update(sha256_context * ctx, uint8_t * input, uint32_t length)
  179. {
  180. uint32_t left, fill;
  181. if (!length)
  182. return;
  183. left = ctx->total[0] & 0x3F;
  184. fill = 64 - left;
  185. ctx->total[0] += length;
  186. ctx->total[0] &= 0xFFFFFFFF;
  187. if (ctx->total[0] < length)
  188. ctx->total[1]++;
  189. if (left && length >= fill) {
  190. memcpy((void *) (ctx->buffer + left), (void *) input, fill);
  191. sha256_process(ctx, ctx->buffer);
  192. length -= fill;
  193. input += fill;
  194. left = 0;
  195. }
  196. while (length >= 64) {
  197. sha256_process(ctx, input);
  198. length -= 64;
  199. input += 64;
  200. }
  201. if (length)
  202. memcpy((void *) (ctx->buffer + left), (void *) input, length);
  203. }
  204. static uint8_t sha256_padding[64] = {
  205. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  206. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  207. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  208. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  209. };
  210. void sha256_finish(sha256_context * ctx, uint8_t digest[32])
  211. {
  212. uint32_t last, padn;
  213. uint32_t high, low;
  214. uint8_t msglen[8];
  215. high = ((ctx->total[0] >> 29)
  216. | (ctx->total[1] << 3));
  217. low = (ctx->total[0] << 3);
  218. PUT_UINT32_BE(high, msglen, 0);
  219. PUT_UINT32_BE(low, msglen, 4);
  220. last = ctx->total[0] & 0x3F;
  221. padn = (last < 56) ? (56 - last) : (120 - last);
  222. sha256_update(ctx, sha256_padding, padn);
  223. sha256_update(ctx, msglen, 8);
  224. PUT_UINT32_BE(ctx->state[0], digest, 0);
  225. PUT_UINT32_BE(ctx->state[1], digest, 4);
  226. PUT_UINT32_BE(ctx->state[2], digest, 8);
  227. PUT_UINT32_BE(ctx->state[3], digest, 12);
  228. PUT_UINT32_BE(ctx->state[4], digest, 16);
  229. PUT_UINT32_BE(ctx->state[5], digest, 20);
  230. PUT_UINT32_BE(ctx->state[6], digest, 24);
  231. PUT_UINT32_BE(ctx->state[7], digest, 28);
  232. }