mtdpart.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Simple MTD partitioning layer
  4. *
  5. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  6. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  7. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  8. *
  9. */
  10. #ifndef __UBOOT__
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/list.h>
  16. #include <linux/kmod.h>
  17. #endif
  18. #include <common.h>
  19. #include <malloc.h>
  20. #include <linux/errno.h>
  21. #include <linux/compat.h>
  22. #include <ubi_uboot.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/partitions.h>
  25. #include <linux/err.h>
  26. #include <linux/sizes.h>
  27. #include "mtdcore.h"
  28. #ifndef __UBOOT__
  29. static DEFINE_MUTEX(mtd_partitions_mutex);
  30. #else
  31. DEFINE_MUTEX(mtd_partitions_mutex);
  32. #endif
  33. #ifdef __UBOOT__
  34. /* from mm/util.c */
  35. /**
  36. * kstrdup - allocate space for and copy an existing string
  37. * @s: the string to duplicate
  38. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  39. */
  40. char *kstrdup(const char *s, gfp_t gfp)
  41. {
  42. size_t len;
  43. char *buf;
  44. if (!s)
  45. return NULL;
  46. len = strlen(s) + 1;
  47. buf = kmalloc(len, gfp);
  48. if (buf)
  49. memcpy(buf, s, len);
  50. return buf;
  51. }
  52. #endif
  53. #define MTD_SIZE_REMAINING (~0LLU)
  54. #define MTD_OFFSET_NOT_SPECIFIED (~0LLU)
  55. /**
  56. * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
  57. * with it and update the @mtdparts string pointer.
  58. *
  59. * The partition name is allocated and must be freed by the caller.
  60. *
  61. * This function is widely inspired from part_parse (mtdparts.c).
  62. *
  63. * @mtdparts: String describing the partition with mtdparts command syntax
  64. * @partition: MTD partition structure to fill
  65. *
  66. * @return 0 on success, an error otherwise.
  67. */
  68. static int mtd_parse_partition(const char **_mtdparts,
  69. struct mtd_partition *partition)
  70. {
  71. const char *mtdparts = *_mtdparts;
  72. const char *name = NULL;
  73. int name_len;
  74. char *buf;
  75. /* Ensure the partition structure is empty */
  76. memset(partition, 0, sizeof(struct mtd_partition));
  77. /* Fetch the partition size */
  78. if (*mtdparts == '-') {
  79. /* Assign all remaining space to this partition */
  80. partition->size = MTD_SIZE_REMAINING;
  81. mtdparts++;
  82. } else {
  83. partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
  84. if (partition->size < SZ_4K) {
  85. printf("Minimum partition size 4kiB, %lldB requested\n",
  86. partition->size);
  87. return -EINVAL;
  88. }
  89. }
  90. /* Check for the offset */
  91. partition->offset = MTD_OFFSET_NOT_SPECIFIED;
  92. if (*mtdparts == '@') {
  93. mtdparts++;
  94. partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
  95. }
  96. /* Now look for the name */
  97. if (*mtdparts == '(') {
  98. name = ++mtdparts;
  99. mtdparts = strchr(name, ')');
  100. if (!mtdparts) {
  101. printf("No closing ')' found in partition name\n");
  102. return -EINVAL;
  103. }
  104. name_len = mtdparts - name + 1;
  105. if ((name_len - 1) == 0) {
  106. printf("Empty partition name\n");
  107. return -EINVAL;
  108. }
  109. mtdparts++;
  110. } else {
  111. /* Name will be of the form size@offset */
  112. name_len = 22;
  113. }
  114. /* Check if the partition is read-only */
  115. if (strncmp(mtdparts, "ro", 2) == 0) {
  116. partition->mask_flags |= MTD_WRITEABLE;
  117. mtdparts += 2;
  118. }
  119. /* Check for a potential next partition definition */
  120. if (*mtdparts == ',') {
  121. if (partition->size == MTD_SIZE_REMAINING) {
  122. printf("No partitions allowed after a fill-up\n");
  123. return -EINVAL;
  124. }
  125. ++mtdparts;
  126. } else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
  127. /* NOP */
  128. } else {
  129. printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
  130. return -EINVAL;
  131. }
  132. /*
  133. * Allocate a buffer for the name and either copy the provided name or
  134. * auto-generate it with the form 'size@offset'.
  135. */
  136. buf = malloc(name_len);
  137. if (!buf)
  138. return -ENOMEM;
  139. if (name)
  140. strncpy(buf, name, name_len - 1);
  141. else
  142. snprintf(buf, name_len, "0x%08llx@0x%08llx",
  143. partition->size, partition->offset);
  144. buf[name_len - 1] = '\0';
  145. partition->name = buf;
  146. *_mtdparts = mtdparts;
  147. return 0;
  148. }
  149. /**
  150. * mtd_parse_partitions - Create a partition array from an mtdparts definition
  151. *
  152. * Stateless function that takes a @parent MTD device, a string @_mtdparts
  153. * describing the partitions (with the "mtdparts" command syntax) and creates
  154. * the corresponding MTD partition structure array @_parts. Both the name and
  155. * the structure partition itself must be freed freed, the caller may use
  156. * @mtd_free_parsed_partitions() for this purpose.
  157. *
  158. * @parent: MTD device which contains the partitions
  159. * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
  160. * command syntax.
  161. * @_parts: Allocated array containing the partitions, must be freed by the
  162. * caller.
  163. * @_nparts: Size of @_parts array.
  164. *
  165. * @return 0 on success, an error otherwise.
  166. */
  167. int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
  168. struct mtd_partition **_parts, int *_nparts)
  169. {
  170. struct mtd_partition partition = {}, *parts;
  171. const char *mtdparts = *_mtdparts;
  172. int cur_off = 0, cur_sz = 0;
  173. int nparts = 0;
  174. int ret, idx;
  175. u64 sz;
  176. /* First, iterate over the partitions until we know their number */
  177. while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
  178. ret = mtd_parse_partition(&mtdparts, &partition);
  179. if (ret)
  180. return ret;
  181. free((char *)partition.name);
  182. nparts++;
  183. }
  184. /* Allocate an array of partitions to give back to the caller */
  185. parts = malloc(sizeof(*parts) * nparts);
  186. if (!parts) {
  187. printf("Not enough space to save partitions meta-data\n");
  188. return -ENOMEM;
  189. }
  190. /* Iterate again over each partition to save the data in our array */
  191. for (idx = 0; idx < nparts; idx++) {
  192. ret = mtd_parse_partition(_mtdparts, &parts[idx]);
  193. if (ret)
  194. return ret;
  195. if (parts[idx].size == MTD_SIZE_REMAINING)
  196. parts[idx].size = parent->size - cur_sz;
  197. cur_sz += parts[idx].size;
  198. sz = parts[idx].size;
  199. if (sz < parent->writesize || do_div(sz, parent->writesize)) {
  200. printf("Partition size must be a multiple of %d\n",
  201. parent->writesize);
  202. return -EINVAL;
  203. }
  204. if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
  205. parts[idx].offset = cur_off;
  206. cur_off += parts[idx].size;
  207. parts[idx].ecclayout = parent->ecclayout;
  208. }
  209. /* Offset by one mtdparts to point to the next device if any */
  210. if (*_mtdparts[0] == ';')
  211. (*_mtdparts)++;
  212. *_parts = parts;
  213. *_nparts = nparts;
  214. return 0;
  215. }
  216. /**
  217. * mtd_free_parsed_partitions - Free dynamically allocated partitions
  218. *
  219. * Each successful call to @mtd_parse_partitions must be followed by a call to
  220. * @mtd_free_parsed_partitions to free any allocated array during the parsing
  221. * process.
  222. *
  223. * @parts: Array containing the partitions that will be freed.
  224. * @nparts: Size of @parts array.
  225. */
  226. void mtd_free_parsed_partitions(struct mtd_partition *parts,
  227. unsigned int nparts)
  228. {
  229. int i;
  230. for (i = 0; i < nparts; i++)
  231. free((char *)parts[i].name);
  232. free(parts);
  233. }
  234. /*
  235. * MTD methods which simply translate the effective address and pass through
  236. * to the _real_ device.
  237. */
  238. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  239. size_t *retlen, u_char *buf)
  240. {
  241. struct mtd_ecc_stats stats;
  242. int res;
  243. stats = mtd->parent->ecc_stats;
  244. res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
  245. retlen, buf);
  246. if (unlikely(mtd_is_eccerr(res)))
  247. mtd->ecc_stats.failed +=
  248. mtd->parent->ecc_stats.failed - stats.failed;
  249. else
  250. mtd->ecc_stats.corrected +=
  251. mtd->parent->ecc_stats.corrected - stats.corrected;
  252. return res;
  253. }
  254. #ifndef __UBOOT__
  255. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  256. size_t *retlen, void **virt, resource_size_t *phys)
  257. {
  258. return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
  259. retlen, virt, phys);
  260. }
  261. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  262. {
  263. return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
  264. }
  265. #endif
  266. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  267. unsigned long len,
  268. unsigned long offset,
  269. unsigned long flags)
  270. {
  271. offset += mtd->offset;
  272. return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
  273. }
  274. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  275. struct mtd_oob_ops *ops)
  276. {
  277. int res;
  278. if (from >= mtd->size)
  279. return -EINVAL;
  280. if (ops->datbuf && from + ops->len > mtd->size)
  281. return -EINVAL;
  282. /*
  283. * If OOB is also requested, make sure that we do not read past the end
  284. * of this partition.
  285. */
  286. if (ops->oobbuf) {
  287. size_t len, pages;
  288. if (ops->mode == MTD_OPS_AUTO_OOB)
  289. len = mtd->oobavail;
  290. else
  291. len = mtd->oobsize;
  292. pages = mtd_div_by_ws(mtd->size, mtd);
  293. pages -= mtd_div_by_ws(from, mtd);
  294. if (ops->ooboffs + ops->ooblen > pages * len)
  295. return -EINVAL;
  296. }
  297. res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
  298. if (unlikely(res)) {
  299. if (mtd_is_bitflip(res))
  300. mtd->ecc_stats.corrected++;
  301. if (mtd_is_eccerr(res))
  302. mtd->ecc_stats.failed++;
  303. }
  304. return res;
  305. }
  306. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  307. size_t len, size_t *retlen, u_char *buf)
  308. {
  309. return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
  310. retlen, buf);
  311. }
  312. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  313. size_t *retlen, struct otp_info *buf)
  314. {
  315. return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
  316. buf);
  317. }
  318. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  319. size_t len, size_t *retlen, u_char *buf)
  320. {
  321. return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
  322. retlen, buf);
  323. }
  324. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  325. size_t *retlen, struct otp_info *buf)
  326. {
  327. return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
  328. buf);
  329. }
  330. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  331. size_t *retlen, const u_char *buf)
  332. {
  333. return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
  334. retlen, buf);
  335. }
  336. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  337. size_t *retlen, const u_char *buf)
  338. {
  339. return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
  340. retlen, buf);
  341. }
  342. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  343. struct mtd_oob_ops *ops)
  344. {
  345. if (to >= mtd->size)
  346. return -EINVAL;
  347. if (ops->datbuf && to + ops->len > mtd->size)
  348. return -EINVAL;
  349. return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
  350. }
  351. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  352. size_t len, size_t *retlen, u_char *buf)
  353. {
  354. return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
  355. retlen, buf);
  356. }
  357. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  358. size_t len)
  359. {
  360. return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
  361. }
  362. #ifndef __UBOOT__
  363. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  364. unsigned long count, loff_t to, size_t *retlen)
  365. {
  366. return mtd->parent->_writev(mtd->parent, vecs, count,
  367. to + mtd->offset, retlen);
  368. }
  369. #endif
  370. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  371. {
  372. int ret;
  373. instr->addr += mtd->offset;
  374. ret = mtd->parent->_erase(mtd->parent, instr);
  375. if (ret) {
  376. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  377. instr->fail_addr -= mtd->offset;
  378. instr->addr -= mtd->offset;
  379. }
  380. return ret;
  381. }
  382. void mtd_erase_callback(struct erase_info *instr)
  383. {
  384. if (instr->mtd->_erase == part_erase) {
  385. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  386. instr->fail_addr -= instr->mtd->offset;
  387. instr->addr -= instr->mtd->offset;
  388. }
  389. if (instr->callback)
  390. instr->callback(instr);
  391. }
  392. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  393. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  394. {
  395. return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
  396. }
  397. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  398. {
  399. return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
  400. }
  401. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  402. {
  403. return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
  404. }
  405. static void part_sync(struct mtd_info *mtd)
  406. {
  407. mtd->parent->_sync(mtd->parent);
  408. }
  409. #ifndef __UBOOT__
  410. static int part_suspend(struct mtd_info *mtd)
  411. {
  412. return mtd->parent->_suspend(mtd->parent);
  413. }
  414. static void part_resume(struct mtd_info *mtd)
  415. {
  416. mtd->parent->_resume(mtd->parent);
  417. }
  418. #endif
  419. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  420. {
  421. ofs += mtd->offset;
  422. return mtd->parent->_block_isreserved(mtd->parent, ofs);
  423. }
  424. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  425. {
  426. ofs += mtd->offset;
  427. return mtd->parent->_block_isbad(mtd->parent, ofs);
  428. }
  429. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  430. {
  431. int res;
  432. ofs += mtd->offset;
  433. res = mtd->parent->_block_markbad(mtd->parent, ofs);
  434. if (!res)
  435. mtd->ecc_stats.badblocks++;
  436. return res;
  437. }
  438. static inline void free_partition(struct mtd_info *p)
  439. {
  440. kfree(p->name);
  441. kfree(p);
  442. }
  443. /*
  444. * This function unregisters and destroy all slave MTD objects which are
  445. * attached to the given master MTD object, recursively.
  446. */
  447. static int do_del_mtd_partitions(struct mtd_info *master)
  448. {
  449. struct mtd_info *slave, *next;
  450. int ret, err = 0;
  451. list_for_each_entry_safe(slave, next, &master->partitions, node) {
  452. if (mtd_has_partitions(slave))
  453. del_mtd_partitions(slave);
  454. debug("Deleting %s MTD partition\n", slave->name);
  455. ret = del_mtd_device(slave);
  456. if (ret < 0) {
  457. printf("Error when deleting partition \"%s\" (%d)\n",
  458. slave->name, ret);
  459. err = ret;
  460. continue;
  461. }
  462. list_del(&slave->node);
  463. free_partition(slave);
  464. }
  465. return err;
  466. }
  467. int del_mtd_partitions(struct mtd_info *master)
  468. {
  469. int ret;
  470. debug("Deleting MTD partitions on \"%s\":\n", master->name);
  471. mutex_lock(&mtd_partitions_mutex);
  472. ret = do_del_mtd_partitions(master);
  473. mutex_unlock(&mtd_partitions_mutex);
  474. return ret;
  475. }
  476. static struct mtd_info *allocate_partition(struct mtd_info *master,
  477. const struct mtd_partition *part,
  478. int partno, uint64_t cur_offset)
  479. {
  480. struct mtd_info *slave;
  481. char *name;
  482. /* allocate the partition structure */
  483. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  484. name = kstrdup(part->name, GFP_KERNEL);
  485. if (!name || !slave) {
  486. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  487. master->name);
  488. kfree(name);
  489. kfree(slave);
  490. return ERR_PTR(-ENOMEM);
  491. }
  492. /* set up the MTD object for this partition */
  493. slave->type = master->type;
  494. slave->flags = master->flags & ~part->mask_flags;
  495. slave->size = part->size;
  496. slave->writesize = master->writesize;
  497. slave->writebufsize = master->writebufsize;
  498. slave->oobsize = master->oobsize;
  499. slave->oobavail = master->oobavail;
  500. slave->subpage_sft = master->subpage_sft;
  501. slave->name = name;
  502. slave->owner = master->owner;
  503. #ifndef __UBOOT__
  504. slave->backing_dev_info = master->backing_dev_info;
  505. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  506. * to have the same data be in two different partitions.
  507. */
  508. slave->dev.parent = master->dev.parent;
  509. #endif
  510. if (master->_read)
  511. slave->_read = part_read;
  512. if (master->_write)
  513. slave->_write = part_write;
  514. if (master->_panic_write)
  515. slave->_panic_write = part_panic_write;
  516. #ifndef __UBOOT__
  517. if (master->_point && master->_unpoint) {
  518. slave->_point = part_point;
  519. slave->_unpoint = part_unpoint;
  520. }
  521. #endif
  522. if (master->_get_unmapped_area)
  523. slave->_get_unmapped_area = part_get_unmapped_area;
  524. if (master->_read_oob)
  525. slave->_read_oob = part_read_oob;
  526. if (master->_write_oob)
  527. slave->_write_oob = part_write_oob;
  528. if (master->_read_user_prot_reg)
  529. slave->_read_user_prot_reg = part_read_user_prot_reg;
  530. if (master->_read_fact_prot_reg)
  531. slave->_read_fact_prot_reg = part_read_fact_prot_reg;
  532. if (master->_write_user_prot_reg)
  533. slave->_write_user_prot_reg = part_write_user_prot_reg;
  534. if (master->_lock_user_prot_reg)
  535. slave->_lock_user_prot_reg = part_lock_user_prot_reg;
  536. if (master->_get_user_prot_info)
  537. slave->_get_user_prot_info = part_get_user_prot_info;
  538. if (master->_get_fact_prot_info)
  539. slave->_get_fact_prot_info = part_get_fact_prot_info;
  540. if (master->_sync)
  541. slave->_sync = part_sync;
  542. #ifndef __UBOOT__
  543. if (!partno && !master->dev.class && master->_suspend &&
  544. master->_resume) {
  545. slave->_suspend = part_suspend;
  546. slave->_resume = part_resume;
  547. }
  548. if (master->_writev)
  549. slave->_writev = part_writev;
  550. #endif
  551. if (master->_lock)
  552. slave->_lock = part_lock;
  553. if (master->_unlock)
  554. slave->_unlock = part_unlock;
  555. if (master->_is_locked)
  556. slave->_is_locked = part_is_locked;
  557. if (master->_block_isreserved)
  558. slave->_block_isreserved = part_block_isreserved;
  559. if (master->_block_isbad)
  560. slave->_block_isbad = part_block_isbad;
  561. if (master->_block_markbad)
  562. slave->_block_markbad = part_block_markbad;
  563. slave->_erase = part_erase;
  564. slave->parent = master;
  565. slave->offset = part->offset;
  566. INIT_LIST_HEAD(&slave->partitions);
  567. INIT_LIST_HEAD(&slave->node);
  568. if (slave->offset == MTDPART_OFS_APPEND)
  569. slave->offset = cur_offset;
  570. if (slave->offset == MTDPART_OFS_NXTBLK) {
  571. slave->offset = cur_offset;
  572. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  573. /* Round up to next erasesize */
  574. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  575. debug("Moving partition %d: "
  576. "0x%012llx -> 0x%012llx\n", partno,
  577. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  578. }
  579. }
  580. if (slave->offset == MTDPART_OFS_RETAIN) {
  581. slave->offset = cur_offset;
  582. if (master->size - slave->offset >= slave->size) {
  583. slave->size = master->size - slave->offset
  584. - slave->size;
  585. } else {
  586. debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  587. part->name, master->size - slave->offset,
  588. slave->size);
  589. /* register to preserve ordering */
  590. goto out_register;
  591. }
  592. }
  593. if (slave->size == MTDPART_SIZ_FULL)
  594. slave->size = master->size - slave->offset;
  595. debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  596. (unsigned long long)(slave->offset + slave->size), slave->name);
  597. /* let's do some sanity checks */
  598. if (slave->offset >= master->size) {
  599. /* let's register it anyway to preserve ordering */
  600. slave->offset = 0;
  601. slave->size = 0;
  602. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  603. part->name);
  604. goto out_register;
  605. }
  606. if (slave->offset + slave->size > master->size) {
  607. slave->size = master->size - slave->offset;
  608. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  609. part->name, master->name, slave->size);
  610. }
  611. if (master->numeraseregions > 1) {
  612. /* Deal with variable erase size stuff */
  613. int i, max = master->numeraseregions;
  614. u64 end = slave->offset + slave->size;
  615. struct mtd_erase_region_info *regions = master->eraseregions;
  616. /* Find the first erase regions which is part of this
  617. * partition. */
  618. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  619. ;
  620. /* The loop searched for the region _behind_ the first one */
  621. if (i > 0)
  622. i--;
  623. /* Pick biggest erasesize */
  624. for (; i < max && regions[i].offset < end; i++) {
  625. if (slave->erasesize < regions[i].erasesize)
  626. slave->erasesize = regions[i].erasesize;
  627. }
  628. WARN_ON(slave->erasesize == 0);
  629. } else {
  630. /* Single erase size */
  631. slave->erasesize = master->erasesize;
  632. }
  633. if ((slave->flags & MTD_WRITEABLE) &&
  634. mtd_mod_by_eb(slave->offset, slave)) {
  635. /* Doesn't start on a boundary of major erase size */
  636. /* FIXME: Let it be writable if it is on a boundary of
  637. * _minor_ erase size though */
  638. slave->flags &= ~MTD_WRITEABLE;
  639. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  640. part->name);
  641. }
  642. if ((slave->flags & MTD_WRITEABLE) &&
  643. mtd_mod_by_eb(slave->size, slave)) {
  644. slave->flags &= ~MTD_WRITEABLE;
  645. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  646. part->name);
  647. }
  648. slave->ecclayout = master->ecclayout;
  649. slave->ecc_step_size = master->ecc_step_size;
  650. slave->ecc_strength = master->ecc_strength;
  651. slave->bitflip_threshold = master->bitflip_threshold;
  652. if (master->_block_isbad) {
  653. uint64_t offs = 0;
  654. while (offs < slave->size) {
  655. if (mtd_block_isbad(master, offs + slave->offset))
  656. slave->ecc_stats.badblocks++;
  657. offs += slave->erasesize;
  658. }
  659. }
  660. out_register:
  661. return slave;
  662. }
  663. #ifndef __UBOOT__
  664. int mtd_add_partition(struct mtd_info *master, const char *name,
  665. long long offset, long long length)
  666. {
  667. struct mtd_partition part;
  668. struct mtd_info *p, *new;
  669. uint64_t start, end;
  670. int ret = 0;
  671. /* the direct offset is expected */
  672. if (offset == MTDPART_OFS_APPEND ||
  673. offset == MTDPART_OFS_NXTBLK)
  674. return -EINVAL;
  675. if (length == MTDPART_SIZ_FULL)
  676. length = master->size - offset;
  677. if (length <= 0)
  678. return -EINVAL;
  679. part.name = name;
  680. part.size = length;
  681. part.offset = offset;
  682. part.mask_flags = 0;
  683. part.ecclayout = NULL;
  684. new = allocate_partition(master, &part, -1, offset);
  685. if (IS_ERR(new))
  686. return PTR_ERR(new);
  687. start = offset;
  688. end = offset + length;
  689. mutex_lock(&mtd_partitions_mutex);
  690. list_for_each_entry(p, &master->partitions, node) {
  691. if (start >= p->offset &&
  692. (start < (p->offset + p->size)))
  693. goto err_inv;
  694. if (end >= p->offset &&
  695. (end < (p->offset + p->size)))
  696. goto err_inv;
  697. }
  698. list_add_tail(&new->node, &master->partitions);
  699. mutex_unlock(&mtd_partitions_mutex);
  700. add_mtd_device(new);
  701. return ret;
  702. err_inv:
  703. mutex_unlock(&mtd_partitions_mutex);
  704. free_partition(new);
  705. return -EINVAL;
  706. }
  707. EXPORT_SYMBOL_GPL(mtd_add_partition);
  708. int mtd_del_partition(struct mtd_info *master, int partno)
  709. {
  710. struct mtd_info *slave, *next;
  711. int ret = -EINVAL;
  712. mutex_lock(&mtd_partitions_mutex);
  713. list_for_each_entry_safe(slave, next, &master->partitions, node)
  714. if (slave->index == partno) {
  715. ret = del_mtd_device(slave);
  716. if (ret < 0)
  717. break;
  718. list_del(&slave->node);
  719. free_partition(slave);
  720. break;
  721. }
  722. mutex_unlock(&mtd_partitions_mutex);
  723. return ret;
  724. }
  725. EXPORT_SYMBOL_GPL(mtd_del_partition);
  726. #endif
  727. /*
  728. * This function, given a master MTD object and a partition table, creates
  729. * and registers slave MTD objects which are bound to the master according to
  730. * the partition definitions.
  731. *
  732. * We don't register the master, or expect the caller to have done so,
  733. * for reasons of data integrity.
  734. */
  735. int add_mtd_partitions(struct mtd_info *master,
  736. const struct mtd_partition *parts,
  737. int nbparts)
  738. {
  739. struct mtd_info *slave;
  740. uint64_t cur_offset = 0;
  741. int i;
  742. debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  743. for (i = 0; i < nbparts; i++) {
  744. slave = allocate_partition(master, parts + i, i, cur_offset);
  745. if (IS_ERR(slave))
  746. return PTR_ERR(slave);
  747. mutex_lock(&mtd_partitions_mutex);
  748. list_add_tail(&slave->node, &master->partitions);
  749. mutex_unlock(&mtd_partitions_mutex);
  750. add_mtd_device(slave);
  751. cur_offset = slave->offset + slave->size;
  752. }
  753. return 0;
  754. }
  755. #ifndef __UBOOT__
  756. static DEFINE_SPINLOCK(part_parser_lock);
  757. static LIST_HEAD(part_parsers);
  758. static struct mtd_part_parser *get_partition_parser(const char *name)
  759. {
  760. struct mtd_part_parser *p, *ret = NULL;
  761. spin_lock(&part_parser_lock);
  762. list_for_each_entry(p, &part_parsers, list)
  763. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  764. ret = p;
  765. break;
  766. }
  767. spin_unlock(&part_parser_lock);
  768. return ret;
  769. }
  770. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  771. void register_mtd_parser(struct mtd_part_parser *p)
  772. {
  773. spin_lock(&part_parser_lock);
  774. list_add(&p->list, &part_parsers);
  775. spin_unlock(&part_parser_lock);
  776. }
  777. EXPORT_SYMBOL_GPL(register_mtd_parser);
  778. void deregister_mtd_parser(struct mtd_part_parser *p)
  779. {
  780. spin_lock(&part_parser_lock);
  781. list_del(&p->list);
  782. spin_unlock(&part_parser_lock);
  783. }
  784. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  785. /*
  786. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  787. * are changing this array!
  788. */
  789. static const char * const default_mtd_part_types[] = {
  790. "cmdlinepart",
  791. "ofpart",
  792. NULL
  793. };
  794. /**
  795. * parse_mtd_partitions - parse MTD partitions
  796. * @master: the master partition (describes whole MTD device)
  797. * @types: names of partition parsers to try or %NULL
  798. * @pparts: array of partitions found is returned here
  799. * @data: MTD partition parser-specific data
  800. *
  801. * This function tries to find partition on MTD device @master. It uses MTD
  802. * partition parsers, specified in @types. However, if @types is %NULL, then
  803. * the default list of parsers is used. The default list contains only the
  804. * "cmdlinepart" and "ofpart" parsers ATM.
  805. * Note: If there are more then one parser in @types, the kernel only takes the
  806. * partitions parsed out by the first parser.
  807. *
  808. * This function may return:
  809. * o a negative error code in case of failure
  810. * o zero if no partitions were found
  811. * o a positive number of found partitions, in which case on exit @pparts will
  812. * point to an array containing this number of &struct mtd_info objects.
  813. */
  814. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  815. struct mtd_partition **pparts,
  816. struct mtd_part_parser_data *data)
  817. {
  818. struct mtd_part_parser *parser;
  819. int ret = 0;
  820. if (!types)
  821. types = default_mtd_part_types;
  822. for ( ; ret <= 0 && *types; types++) {
  823. parser = get_partition_parser(*types);
  824. if (!parser && !request_module("%s", *types))
  825. parser = get_partition_parser(*types);
  826. if (!parser)
  827. continue;
  828. ret = (*parser->parse_fn)(master, pparts, data);
  829. put_partition_parser(parser);
  830. if (ret > 0) {
  831. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  832. ret, parser->name, master->name);
  833. break;
  834. }
  835. }
  836. return ret;
  837. }
  838. #endif
  839. /* Returns the size of the entire flash chip */
  840. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  841. {
  842. if (mtd_is_partition(mtd))
  843. return mtd->parent->size;
  844. return mtd->size;
  845. }
  846. EXPORT_SYMBOL_GPL(mtd_get_device_size);