lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <image.h>
  10. #include <lmb.h>
  11. #include <log.h>
  12. #include <malloc.h>
  13. #define LMB_ALLOC_ANYWHERE 0
  14. void lmb_dump_all(struct lmb *lmb)
  15. {
  16. #ifdef DEBUG
  17. unsigned long i;
  18. debug("lmb_dump_all:\n");
  19. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  20. debug(" memory.size = 0x%llx\n",
  21. (unsigned long long)lmb->memory.size);
  22. for (i = 0; i < lmb->memory.cnt; i++) {
  23. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  24. (unsigned long long)lmb->memory.region[i].base);
  25. debug(" .size = 0x%llx\n",
  26. (unsigned long long)lmb->memory.region[i].size);
  27. }
  28. debug("\n reserved.cnt = 0x%lx\n",
  29. lmb->reserved.cnt);
  30. debug(" reserved.size = 0x%llx\n",
  31. (unsigned long long)lmb->reserved.size);
  32. for (i = 0; i < lmb->reserved.cnt; i++) {
  33. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  34. (unsigned long long)lmb->reserved.region[i].base);
  35. debug(" .size = 0x%llx\n",
  36. (unsigned long long)lmb->reserved.region[i].size);
  37. }
  38. #endif /* DEBUG */
  39. }
  40. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  41. phys_addr_t base2, phys_size_t size2)
  42. {
  43. const phys_addr_t base1_end = base1 + size1 - 1;
  44. const phys_addr_t base2_end = base2 + size2 - 1;
  45. return ((base1 <= base2_end) && (base2 <= base1_end));
  46. }
  47. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  48. phys_addr_t base2, phys_size_t size2)
  49. {
  50. if (base2 == base1 + size1)
  51. return 1;
  52. else if (base1 == base2 + size2)
  53. return -1;
  54. return 0;
  55. }
  56. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  57. unsigned long r2)
  58. {
  59. phys_addr_t base1 = rgn->region[r1].base;
  60. phys_size_t size1 = rgn->region[r1].size;
  61. phys_addr_t base2 = rgn->region[r2].base;
  62. phys_size_t size2 = rgn->region[r2].size;
  63. return lmb_addrs_adjacent(base1, size1, base2, size2);
  64. }
  65. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  66. {
  67. unsigned long i;
  68. for (i = r; i < rgn->cnt - 1; i++) {
  69. rgn->region[i].base = rgn->region[i + 1].base;
  70. rgn->region[i].size = rgn->region[i + 1].size;
  71. }
  72. rgn->cnt--;
  73. }
  74. /* Assumption: base addr of region 1 < base addr of region 2 */
  75. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  76. unsigned long r2)
  77. {
  78. rgn->region[r1].size += rgn->region[r2].size;
  79. lmb_remove_region(rgn, r2);
  80. }
  81. void lmb_init(struct lmb *lmb)
  82. {
  83. lmb->memory.cnt = 0;
  84. lmb->memory.size = 0;
  85. lmb->reserved.cnt = 0;
  86. lmb->reserved.size = 0;
  87. }
  88. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  89. {
  90. arch_lmb_reserve(lmb);
  91. board_lmb_reserve(lmb);
  92. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  93. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  94. }
  95. /* Initialize the struct, add memory and call arch/board reserve functions */
  96. void lmb_init_and_reserve(struct lmb *lmb, bd_t *bd, void *fdt_blob)
  97. {
  98. #ifdef CONFIG_NR_DRAM_BANKS
  99. int i;
  100. #endif
  101. lmb_init(lmb);
  102. #ifdef CONFIG_NR_DRAM_BANKS
  103. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  104. if (bd->bi_dram[i].size) {
  105. lmb_add(lmb, bd->bi_dram[i].start,
  106. bd->bi_dram[i].size);
  107. }
  108. }
  109. #else
  110. if (bd->bi_memsize)
  111. lmb_add(lmb, bd->bi_memstart, bd->bi_memsize);
  112. #endif
  113. lmb_reserve_common(lmb, fdt_blob);
  114. }
  115. /* Initialize the struct, add memory and call arch/board reserve functions */
  116. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  117. phys_size_t size, void *fdt_blob)
  118. {
  119. lmb_init(lmb);
  120. lmb_add(lmb, base, size);
  121. lmb_reserve_common(lmb, fdt_blob);
  122. }
  123. /* This routine called with relocation disabled. */
  124. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  125. {
  126. unsigned long coalesced = 0;
  127. long adjacent, i;
  128. if (rgn->cnt == 0) {
  129. rgn->region[0].base = base;
  130. rgn->region[0].size = size;
  131. rgn->cnt = 1;
  132. return 0;
  133. }
  134. /* First try and coalesce this LMB with another. */
  135. for (i = 0; i < rgn->cnt; i++) {
  136. phys_addr_t rgnbase = rgn->region[i].base;
  137. phys_size_t rgnsize = rgn->region[i].size;
  138. if ((rgnbase == base) && (rgnsize == size))
  139. /* Already have this region, so we're done */
  140. return 0;
  141. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  142. if (adjacent > 0) {
  143. rgn->region[i].base -= size;
  144. rgn->region[i].size += size;
  145. coalesced++;
  146. break;
  147. } else if (adjacent < 0) {
  148. rgn->region[i].size += size;
  149. coalesced++;
  150. break;
  151. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  152. /* regions overlap */
  153. return -1;
  154. }
  155. }
  156. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  157. lmb_coalesce_regions(rgn, i, i + 1);
  158. coalesced++;
  159. }
  160. if (coalesced)
  161. return coalesced;
  162. if (rgn->cnt >= MAX_LMB_REGIONS)
  163. return -1;
  164. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  165. for (i = rgn->cnt-1; i >= 0; i--) {
  166. if (base < rgn->region[i].base) {
  167. rgn->region[i + 1].base = rgn->region[i].base;
  168. rgn->region[i + 1].size = rgn->region[i].size;
  169. } else {
  170. rgn->region[i + 1].base = base;
  171. rgn->region[i + 1].size = size;
  172. break;
  173. }
  174. }
  175. if (base < rgn->region[0].base) {
  176. rgn->region[0].base = base;
  177. rgn->region[0].size = size;
  178. }
  179. rgn->cnt++;
  180. return 0;
  181. }
  182. /* This routine may be called with relocation disabled. */
  183. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  184. {
  185. struct lmb_region *_rgn = &(lmb->memory);
  186. return lmb_add_region(_rgn, base, size);
  187. }
  188. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  189. {
  190. struct lmb_region *rgn = &(lmb->reserved);
  191. phys_addr_t rgnbegin, rgnend;
  192. phys_addr_t end = base + size - 1;
  193. int i;
  194. rgnbegin = rgnend = 0; /* supress gcc warnings */
  195. /* Find the region where (base, size) belongs to */
  196. for (i = 0; i < rgn->cnt; i++) {
  197. rgnbegin = rgn->region[i].base;
  198. rgnend = rgnbegin + rgn->region[i].size - 1;
  199. if ((rgnbegin <= base) && (end <= rgnend))
  200. break;
  201. }
  202. /* Didn't find the region */
  203. if (i == rgn->cnt)
  204. return -1;
  205. /* Check to see if we are removing entire region */
  206. if ((rgnbegin == base) && (rgnend == end)) {
  207. lmb_remove_region(rgn, i);
  208. return 0;
  209. }
  210. /* Check to see if region is matching at the front */
  211. if (rgnbegin == base) {
  212. rgn->region[i].base = end + 1;
  213. rgn->region[i].size -= size;
  214. return 0;
  215. }
  216. /* Check to see if the region is matching at the end */
  217. if (rgnend == end) {
  218. rgn->region[i].size -= size;
  219. return 0;
  220. }
  221. /*
  222. * We need to split the entry - adjust the current one to the
  223. * beginging of the hole and add the region after hole.
  224. */
  225. rgn->region[i].size = base - rgn->region[i].base;
  226. return lmb_add_region(rgn, end + 1, rgnend - end);
  227. }
  228. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  229. {
  230. struct lmb_region *_rgn = &(lmb->reserved);
  231. return lmb_add_region(_rgn, base, size);
  232. }
  233. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  234. phys_size_t size)
  235. {
  236. unsigned long i;
  237. for (i = 0; i < rgn->cnt; i++) {
  238. phys_addr_t rgnbase = rgn->region[i].base;
  239. phys_size_t rgnsize = rgn->region[i].size;
  240. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  241. break;
  242. }
  243. return (i < rgn->cnt) ? i : -1;
  244. }
  245. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  246. {
  247. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  248. }
  249. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  250. {
  251. phys_addr_t alloc;
  252. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  253. if (alloc == 0)
  254. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  255. (ulong)size, (ulong)max_addr);
  256. return alloc;
  257. }
  258. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  259. {
  260. return addr & ~(size - 1);
  261. }
  262. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  263. {
  264. long i, rgn;
  265. phys_addr_t base = 0;
  266. phys_addr_t res_base;
  267. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  268. phys_addr_t lmbbase = lmb->memory.region[i].base;
  269. phys_size_t lmbsize = lmb->memory.region[i].size;
  270. if (lmbsize < size)
  271. continue;
  272. if (max_addr == LMB_ALLOC_ANYWHERE)
  273. base = lmb_align_down(lmbbase + lmbsize - size, align);
  274. else if (lmbbase < max_addr) {
  275. base = lmbbase + lmbsize;
  276. if (base < lmbbase)
  277. base = -1;
  278. base = min(base, max_addr);
  279. base = lmb_align_down(base - size, align);
  280. } else
  281. continue;
  282. while (base && lmbbase <= base) {
  283. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  284. if (rgn < 0) {
  285. /* This area isn't reserved, take it */
  286. if (lmb_add_region(&lmb->reserved, base,
  287. size) < 0)
  288. return 0;
  289. return base;
  290. }
  291. res_base = lmb->reserved.region[rgn].base;
  292. if (res_base < size)
  293. break;
  294. base = lmb_align_down(res_base - size, align);
  295. }
  296. }
  297. return 0;
  298. }
  299. /*
  300. * Try to allocate a specific address range: must be in defined memory but not
  301. * reserved
  302. */
  303. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  304. {
  305. long rgn;
  306. /* Check if the requested address is in one of the memory regions */
  307. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  308. if (rgn >= 0) {
  309. /*
  310. * Check if the requested end address is in the same memory
  311. * region we found.
  312. */
  313. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  314. lmb->memory.region[rgn].size,
  315. base + size - 1, 1)) {
  316. /* ok, reserve the memory */
  317. if (lmb_reserve(lmb, base, size) >= 0)
  318. return base;
  319. }
  320. }
  321. return 0;
  322. }
  323. /* Return number of bytes from a given address that are free */
  324. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  325. {
  326. int i;
  327. long rgn;
  328. /* check if the requested address is in the memory regions */
  329. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  330. if (rgn >= 0) {
  331. for (i = 0; i < lmb->reserved.cnt; i++) {
  332. if (addr < lmb->reserved.region[i].base) {
  333. /* first reserved range > requested address */
  334. return lmb->reserved.region[i].base - addr;
  335. }
  336. if (lmb->reserved.region[i].base +
  337. lmb->reserved.region[i].size > addr) {
  338. /* requested addr is in this reserved range */
  339. return 0;
  340. }
  341. }
  342. /* if we come here: no reserved ranges above requested addr */
  343. return lmb->memory.region[lmb->memory.cnt - 1].base +
  344. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  345. }
  346. return 0;
  347. }
  348. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  349. {
  350. int i;
  351. for (i = 0; i < lmb->reserved.cnt; i++) {
  352. phys_addr_t upper = lmb->reserved.region[i].base +
  353. lmb->reserved.region[i].size - 1;
  354. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  355. return 1;
  356. }
  357. return 0;
  358. }
  359. __weak void board_lmb_reserve(struct lmb *lmb)
  360. {
  361. /* please define platform specific board_lmb_reserve() */
  362. }
  363. __weak void arch_lmb_reserve(struct lmb *lmb)
  364. {
  365. /* please define platform specific arch_lmb_reserve() */
  366. }