lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <image.h>
  10. #include <lmb.h>
  11. #include <malloc.h>
  12. #define LMB_ALLOC_ANYWHERE 0
  13. void lmb_dump_all(struct lmb *lmb)
  14. {
  15. #ifdef DEBUG
  16. unsigned long i;
  17. debug("lmb_dump_all:\n");
  18. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  19. debug(" memory.size = 0x%llx\n",
  20. (unsigned long long)lmb->memory.size);
  21. for (i = 0; i < lmb->memory.cnt; i++) {
  22. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  23. (unsigned long long)lmb->memory.region[i].base);
  24. debug(" .size = 0x%llx\n",
  25. (unsigned long long)lmb->memory.region[i].size);
  26. }
  27. debug("\n reserved.cnt = 0x%lx\n",
  28. lmb->reserved.cnt);
  29. debug(" reserved.size = 0x%llx\n",
  30. (unsigned long long)lmb->reserved.size);
  31. for (i = 0; i < lmb->reserved.cnt; i++) {
  32. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  33. (unsigned long long)lmb->reserved.region[i].base);
  34. debug(" .size = 0x%llx\n",
  35. (unsigned long long)lmb->reserved.region[i].size);
  36. }
  37. #endif /* DEBUG */
  38. }
  39. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  40. phys_addr_t base2, phys_size_t size2)
  41. {
  42. const phys_addr_t base1_end = base1 + size1 - 1;
  43. const phys_addr_t base2_end = base2 + size2 - 1;
  44. return ((base1 <= base2_end) && (base2 <= base1_end));
  45. }
  46. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  47. phys_addr_t base2, phys_size_t size2)
  48. {
  49. if (base2 == base1 + size1)
  50. return 1;
  51. else if (base1 == base2 + size2)
  52. return -1;
  53. return 0;
  54. }
  55. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  56. unsigned long r2)
  57. {
  58. phys_addr_t base1 = rgn->region[r1].base;
  59. phys_size_t size1 = rgn->region[r1].size;
  60. phys_addr_t base2 = rgn->region[r2].base;
  61. phys_size_t size2 = rgn->region[r2].size;
  62. return lmb_addrs_adjacent(base1, size1, base2, size2);
  63. }
  64. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  65. {
  66. unsigned long i;
  67. for (i = r; i < rgn->cnt - 1; i++) {
  68. rgn->region[i].base = rgn->region[i + 1].base;
  69. rgn->region[i].size = rgn->region[i + 1].size;
  70. }
  71. rgn->cnt--;
  72. }
  73. /* Assumption: base addr of region 1 < base addr of region 2 */
  74. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  75. unsigned long r2)
  76. {
  77. rgn->region[r1].size += rgn->region[r2].size;
  78. lmb_remove_region(rgn, r2);
  79. }
  80. void lmb_init(struct lmb *lmb)
  81. {
  82. lmb->memory.cnt = 0;
  83. lmb->memory.size = 0;
  84. lmb->reserved.cnt = 0;
  85. lmb->reserved.size = 0;
  86. }
  87. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  88. {
  89. arch_lmb_reserve(lmb);
  90. board_lmb_reserve(lmb);
  91. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  92. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  93. }
  94. /* Initialize the struct, add memory and call arch/board reserve functions */
  95. void lmb_init_and_reserve(struct lmb *lmb, bd_t *bd, void *fdt_blob)
  96. {
  97. #ifdef CONFIG_NR_DRAM_BANKS
  98. int i;
  99. #endif
  100. lmb_init(lmb);
  101. #ifdef CONFIG_NR_DRAM_BANKS
  102. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  103. if (bd->bi_dram[i].size) {
  104. lmb_add(lmb, bd->bi_dram[i].start,
  105. bd->bi_dram[i].size);
  106. }
  107. }
  108. #else
  109. if (bd->bi_memsize)
  110. lmb_add(lmb, bd->bi_memstart, bd->bi_memsize);
  111. #endif
  112. lmb_reserve_common(lmb, fdt_blob);
  113. }
  114. /* Initialize the struct, add memory and call arch/board reserve functions */
  115. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  116. phys_size_t size, void *fdt_blob)
  117. {
  118. lmb_init(lmb);
  119. lmb_add(lmb, base, size);
  120. lmb_reserve_common(lmb, fdt_blob);
  121. }
  122. /* This routine called with relocation disabled. */
  123. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  124. {
  125. unsigned long coalesced = 0;
  126. long adjacent, i;
  127. if (rgn->cnt == 0) {
  128. rgn->region[0].base = base;
  129. rgn->region[0].size = size;
  130. rgn->cnt = 1;
  131. return 0;
  132. }
  133. /* First try and coalesce this LMB with another. */
  134. for (i = 0; i < rgn->cnt; i++) {
  135. phys_addr_t rgnbase = rgn->region[i].base;
  136. phys_size_t rgnsize = rgn->region[i].size;
  137. if ((rgnbase == base) && (rgnsize == size))
  138. /* Already have this region, so we're done */
  139. return 0;
  140. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  141. if (adjacent > 0) {
  142. rgn->region[i].base -= size;
  143. rgn->region[i].size += size;
  144. coalesced++;
  145. break;
  146. } else if (adjacent < 0) {
  147. rgn->region[i].size += size;
  148. coalesced++;
  149. break;
  150. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  151. /* regions overlap */
  152. return -1;
  153. }
  154. }
  155. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  156. lmb_coalesce_regions(rgn, i, i + 1);
  157. coalesced++;
  158. }
  159. if (coalesced)
  160. return coalesced;
  161. if (rgn->cnt >= MAX_LMB_REGIONS)
  162. return -1;
  163. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  164. for (i = rgn->cnt-1; i >= 0; i--) {
  165. if (base < rgn->region[i].base) {
  166. rgn->region[i + 1].base = rgn->region[i].base;
  167. rgn->region[i + 1].size = rgn->region[i].size;
  168. } else {
  169. rgn->region[i + 1].base = base;
  170. rgn->region[i + 1].size = size;
  171. break;
  172. }
  173. }
  174. if (base < rgn->region[0].base) {
  175. rgn->region[0].base = base;
  176. rgn->region[0].size = size;
  177. }
  178. rgn->cnt++;
  179. return 0;
  180. }
  181. /* This routine may be called with relocation disabled. */
  182. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  183. {
  184. struct lmb_region *_rgn = &(lmb->memory);
  185. return lmb_add_region(_rgn, base, size);
  186. }
  187. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  188. {
  189. struct lmb_region *rgn = &(lmb->reserved);
  190. phys_addr_t rgnbegin, rgnend;
  191. phys_addr_t end = base + size - 1;
  192. int i;
  193. rgnbegin = rgnend = 0; /* supress gcc warnings */
  194. /* Find the region where (base, size) belongs to */
  195. for (i = 0; i < rgn->cnt; i++) {
  196. rgnbegin = rgn->region[i].base;
  197. rgnend = rgnbegin + rgn->region[i].size - 1;
  198. if ((rgnbegin <= base) && (end <= rgnend))
  199. break;
  200. }
  201. /* Didn't find the region */
  202. if (i == rgn->cnt)
  203. return -1;
  204. /* Check to see if we are removing entire region */
  205. if ((rgnbegin == base) && (rgnend == end)) {
  206. lmb_remove_region(rgn, i);
  207. return 0;
  208. }
  209. /* Check to see if region is matching at the front */
  210. if (rgnbegin == base) {
  211. rgn->region[i].base = end + 1;
  212. rgn->region[i].size -= size;
  213. return 0;
  214. }
  215. /* Check to see if the region is matching at the end */
  216. if (rgnend == end) {
  217. rgn->region[i].size -= size;
  218. return 0;
  219. }
  220. /*
  221. * We need to split the entry - adjust the current one to the
  222. * beginging of the hole and add the region after hole.
  223. */
  224. rgn->region[i].size = base - rgn->region[i].base;
  225. return lmb_add_region(rgn, end + 1, rgnend - end);
  226. }
  227. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  228. {
  229. struct lmb_region *_rgn = &(lmb->reserved);
  230. return lmb_add_region(_rgn, base, size);
  231. }
  232. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  233. phys_size_t size)
  234. {
  235. unsigned long i;
  236. for (i = 0; i < rgn->cnt; i++) {
  237. phys_addr_t rgnbase = rgn->region[i].base;
  238. phys_size_t rgnsize = rgn->region[i].size;
  239. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  240. break;
  241. }
  242. return (i < rgn->cnt) ? i : -1;
  243. }
  244. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  245. {
  246. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  247. }
  248. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  249. {
  250. phys_addr_t alloc;
  251. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  252. if (alloc == 0)
  253. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  254. (ulong)size, (ulong)max_addr);
  255. return alloc;
  256. }
  257. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  258. {
  259. return addr & ~(size - 1);
  260. }
  261. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  262. {
  263. long i, rgn;
  264. phys_addr_t base = 0;
  265. phys_addr_t res_base;
  266. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  267. phys_addr_t lmbbase = lmb->memory.region[i].base;
  268. phys_size_t lmbsize = lmb->memory.region[i].size;
  269. if (lmbsize < size)
  270. continue;
  271. if (max_addr == LMB_ALLOC_ANYWHERE)
  272. base = lmb_align_down(lmbbase + lmbsize - size, align);
  273. else if (lmbbase < max_addr) {
  274. base = lmbbase + lmbsize;
  275. if (base < lmbbase)
  276. base = -1;
  277. base = min(base, max_addr);
  278. base = lmb_align_down(base - size, align);
  279. } else
  280. continue;
  281. while (base && lmbbase <= base) {
  282. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  283. if (rgn < 0) {
  284. /* This area isn't reserved, take it */
  285. if (lmb_add_region(&lmb->reserved, base,
  286. size) < 0)
  287. return 0;
  288. return base;
  289. }
  290. res_base = lmb->reserved.region[rgn].base;
  291. if (res_base < size)
  292. break;
  293. base = lmb_align_down(res_base - size, align);
  294. }
  295. }
  296. return 0;
  297. }
  298. /*
  299. * Try to allocate a specific address range: must be in defined memory but not
  300. * reserved
  301. */
  302. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  303. {
  304. long rgn;
  305. /* Check if the requested address is in one of the memory regions */
  306. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  307. if (rgn >= 0) {
  308. /*
  309. * Check if the requested end address is in the same memory
  310. * region we found.
  311. */
  312. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  313. lmb->memory.region[rgn].size,
  314. base + size - 1, 1)) {
  315. /* ok, reserve the memory */
  316. if (lmb_reserve(lmb, base, size) >= 0)
  317. return base;
  318. }
  319. }
  320. return 0;
  321. }
  322. /* Return number of bytes from a given address that are free */
  323. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  324. {
  325. int i;
  326. long rgn;
  327. /* check if the requested address is in the memory regions */
  328. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  329. if (rgn >= 0) {
  330. for (i = 0; i < lmb->reserved.cnt; i++) {
  331. if (addr < lmb->reserved.region[i].base) {
  332. /* first reserved range > requested address */
  333. return lmb->reserved.region[i].base - addr;
  334. }
  335. if (lmb->reserved.region[i].base +
  336. lmb->reserved.region[i].size > addr) {
  337. /* requested addr is in this reserved range */
  338. return 0;
  339. }
  340. }
  341. /* if we come here: no reserved ranges above requested addr */
  342. return lmb->memory.region[lmb->memory.cnt - 1].base +
  343. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  344. }
  345. return 0;
  346. }
  347. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  348. {
  349. int i;
  350. for (i = 0; i < lmb->reserved.cnt; i++) {
  351. phys_addr_t upper = lmb->reserved.region[i].base +
  352. lmb->reserved.region[i].size - 1;
  353. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  354. return 1;
  355. }
  356. return 0;
  357. }
  358. __weak void board_lmb_reserve(struct lmb *lmb)
  359. {
  360. /* please define platform specific board_lmb_reserve() */
  361. }
  362. __weak void arch_lmb_reserve(struct lmb *lmb)
  363. {
  364. /* please define platform specific arch_lmb_reserve() */
  365. }