// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY UCLASS_MISC #include #include #include #include #include #include #include #include #include #include #include #define BSEC_OTP_MAX_VALUE 95 #define BSEC_TIMEOUT_US 10000 /* BSEC REGISTER OFFSET (base relative) */ #define BSEC_OTP_CONF_OFF 0x000 #define BSEC_OTP_CTRL_OFF 0x004 #define BSEC_OTP_WRDATA_OFF 0x008 #define BSEC_OTP_STATUS_OFF 0x00C #define BSEC_OTP_LOCK_OFF 0x010 #define BSEC_DENABLE_OFF 0x014 #define BSEC_DISTURBED_OFF 0x01C #define BSEC_ERROR_OFF 0x034 #define BSEC_WRLOCK_OFF 0x04C /* OTP write permananet lock */ #define BSEC_SPLOCK_OFF 0x064 /* OTP write sticky lock */ #define BSEC_SWLOCK_OFF 0x07C /* shadow write sticky lock */ #define BSEC_SRLOCK_OFF 0x094 /* shadow read sticky lock */ #define BSEC_OTP_DATA_OFF 0x200 /* BSEC_CONFIGURATION Register MASK */ #define BSEC_CONF_POWER_UP 0x001 /* BSEC_CONTROL Register */ #define BSEC_READ 0x000 #define BSEC_WRITE 0x100 /* LOCK Register */ #define OTP_LOCK_MASK 0x1F #define OTP_LOCK_BANK_SHIFT 0x05 #define OTP_LOCK_BIT_MASK 0x01 /* STATUS Register */ #define BSEC_MODE_BUSY_MASK 0x08 #define BSEC_MODE_PROGFAIL_MASK 0x10 #define BSEC_MODE_PWR_MASK 0x20 /* DENABLE Register */ #define BSEC_DENABLE_DBGSWENABLE BIT(10) /* * OTP Lock services definition * Value must corresponding to the bit number in the register */ #define BSEC_LOCK_PROGRAM 0x04 /** * bsec_lock() - manage lock for each type SR/SP/SW * @address: address of bsec IP register * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: true if locked else false */ static bool bsec_read_lock(u32 address, u32 otp) { u32 bit; u32 bank; bit = 1 << (otp & OTP_LOCK_MASK); bank = ((otp >> OTP_LOCK_BANK_SHIFT) & OTP_LOCK_MASK) * sizeof(u32); return !!(readl(address + bank) & bit); } /** * bsec_check_error() - Check status of one otp * @base: base address of bsec IP * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: 0 if no error, -EAGAIN or -ENOTSUPP */ static u32 bsec_check_error(u32 base, u32 otp) { u32 bit; u32 bank; bit = 1 << (otp & OTP_LOCK_MASK); bank = ((otp >> OTP_LOCK_BANK_SHIFT) & OTP_LOCK_MASK) * sizeof(u32); if (readl(base + BSEC_DISTURBED_OFF + bank) & bit) return -EAGAIN; else if (readl(base + BSEC_ERROR_OFF + bank) & bit) return -ENOTSUPP; return 0; } /** * bsec_read_SR_lock() - read SR lock (Shadowing) * @base: base address of bsec IP * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: true if locked else false */ static bool bsec_read_SR_lock(u32 base, u32 otp) { return bsec_read_lock(base + BSEC_SRLOCK_OFF, otp); } /** * bsec_read_SP_lock() - read SP lock (program Lock) * @base: base address of bsec IP * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: true if locked else false */ static bool bsec_read_SP_lock(u32 base, u32 otp) { return bsec_read_lock(base + BSEC_SPLOCK_OFF, otp); } /** * bsec_SW_lock() - manage SW lock (Write in Shadow) * @base: base address of bsec IP * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: true if locked else false */ static bool bsec_read_SW_lock(u32 base, u32 otp) { return bsec_read_lock(base + BSEC_SWLOCK_OFF, otp); } /** * bsec_power_safmem() - Activate or deactivate safmem power * @base: base address of bsec IP * @power: true to power up , false to power down * Return: 0 if succeed */ static int bsec_power_safmem(u32 base, bool power) { u32 val; u32 mask; if (power) { setbits_le32(base + BSEC_OTP_CONF_OFF, BSEC_CONF_POWER_UP); mask = BSEC_MODE_PWR_MASK; } else { clrbits_le32(base + BSEC_OTP_CONF_OFF, BSEC_CONF_POWER_UP); mask = 0; } /* waiting loop */ return readl_poll_timeout(base + BSEC_OTP_STATUS_OFF, val, (val & BSEC_MODE_PWR_MASK) == mask, BSEC_TIMEOUT_US); } /** * bsec_shadow_register() - copy safmen otp to bsec data * @base: base address of bsec IP * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: 0 if no error */ static int bsec_shadow_register(struct udevice *dev, u32 base, u32 otp) { u32 val; int ret; bool power_up = false; /* check if shadowing of otp is locked */ if (bsec_read_SR_lock(base, otp)) dev_dbg(dev, "OTP %d is locked and refreshed with 0\n", otp); /* check if safemem is power up */ val = readl(base + BSEC_OTP_STATUS_OFF); if (!(val & BSEC_MODE_PWR_MASK)) { ret = bsec_power_safmem(base, true); if (ret) return ret; power_up = true; } /* set BSEC_OTP_CTRL_OFF with the otp value*/ writel(otp | BSEC_READ, base + BSEC_OTP_CTRL_OFF); /* check otp status*/ ret = readl_poll_timeout(base + BSEC_OTP_STATUS_OFF, val, (val & BSEC_MODE_BUSY_MASK) == 0, BSEC_TIMEOUT_US); if (ret) return ret; ret = bsec_check_error(base, otp); if (power_up) bsec_power_safmem(base, false); return ret; } /** * bsec_read_shadow() - read an otp data value from shadow * @base: base address of bsec IP * @val: read value * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: 0 if no error */ static int bsec_read_shadow(struct udevice *dev, u32 base, u32 *val, u32 otp) { *val = readl(base + BSEC_OTP_DATA_OFF + otp * sizeof(u32)); return bsec_check_error(base, otp); } /** * bsec_write_shadow() - write value in BSEC data register in shadow * @base: base address of bsec IP * @val: value to write * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * Return: 0 if no error */ static int bsec_write_shadow(struct udevice *dev, u32 base, u32 val, u32 otp) { /* check if programming of otp is locked */ if (bsec_read_SW_lock(base, otp)) dev_dbg(dev, "OTP %d is lock, write will be ignore\n", otp); writel(val, base + BSEC_OTP_DATA_OFF + otp * sizeof(u32)); return bsec_check_error(base, otp); } /** * bsec_program_otp() - program a bit in SAFMEM * @base: base address of bsec IP * @val: value to program * @otp: otp number (0 - BSEC_OTP_MAX_VALUE) * after the function the otp data is not refreshed in shadow * Return: 0 if no error */ static int bsec_program_otp(struct udevice *dev, long base, u32 val, u32 otp) { u32 ret; bool power_up = false; if (bsec_read_SP_lock(base, otp)) dev_dbg(dev, "OTP %d locked, prog will be ignore\n", otp); if (readl(base + BSEC_OTP_LOCK_OFF) & (1 << BSEC_LOCK_PROGRAM)) dev_dbg(dev, "Global lock, prog will be ignore\n"); /* check if safemem is power up */ if (!(readl(base + BSEC_OTP_STATUS_OFF) & BSEC_MODE_PWR_MASK)) { ret = bsec_power_safmem(base, true); if (ret) return ret; power_up = true; } /* set value in write register*/ writel(val, base + BSEC_OTP_WRDATA_OFF); /* set BSEC_OTP_CTRL_OFF with the otp value */ writel(otp | BSEC_WRITE, base + BSEC_OTP_CTRL_OFF); /* check otp status*/ ret = readl_poll_timeout(base + BSEC_OTP_STATUS_OFF, val, (val & BSEC_MODE_BUSY_MASK) == 0, BSEC_TIMEOUT_US); if (ret) return ret; if (val & BSEC_MODE_PROGFAIL_MASK) ret = -EACCES; else ret = bsec_check_error(base, otp); if (power_up) bsec_power_safmem(base, false); return ret; } /* BSEC MISC driver *******************************************************/ struct stm32mp_bsec_plat { u32 base; }; static int stm32mp_bsec_read_otp(struct udevice *dev, u32 *val, u32 otp) { struct stm32mp_bsec_plat *plat; u32 tmp_data = 0; int ret; if (IS_ENABLED(CONFIG_TFABOOT)) return stm32_smc(STM32_SMC_BSEC, STM32_SMC_READ_OTP, otp, 0, val); plat = dev_get_plat(dev); /* read current shadow value */ ret = bsec_read_shadow(dev, plat->base, &tmp_data, otp); if (ret) return ret; /* copy otp in shadow */ ret = bsec_shadow_register(dev, plat->base, otp); if (ret) return ret; ret = bsec_read_shadow(dev, plat->base, val, otp); if (ret) return ret; /* restore shadow value */ ret = bsec_write_shadow(dev, plat->base, tmp_data, otp); return ret; } static int stm32mp_bsec_read_shadow(struct udevice *dev, u32 *val, u32 otp) { struct stm32mp_bsec_plat *plat; if (IS_ENABLED(CONFIG_TFABOOT)) return stm32_smc(STM32_SMC_BSEC, STM32_SMC_READ_SHADOW, otp, 0, val); plat = dev_get_plat(dev); return bsec_read_shadow(dev, plat->base, val, otp); } static int stm32mp_bsec_read_lock(struct udevice *dev, u32 *val, u32 otp) { struct stm32mp_bsec_plat *plat = dev_get_plat(dev); /* return OTP permanent write lock status */ *val = bsec_read_lock(plat->base + BSEC_WRLOCK_OFF, otp); return 0; } static int stm32mp_bsec_write_otp(struct udevice *dev, u32 val, u32 otp) { struct stm32mp_bsec_plat *plat; if (IS_ENABLED(CONFIG_TFABOOT)) return stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_PROG_OTP, otp, val); plat = dev_get_plat(dev); return bsec_program_otp(dev, plat->base, val, otp); } static int stm32mp_bsec_write_shadow(struct udevice *dev, u32 val, u32 otp) { struct stm32mp_bsec_plat *plat; if (IS_ENABLED(CONFIG_TFABOOT)) return stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_WRITE_SHADOW, otp, val); plat = dev_get_plat(dev); return bsec_write_shadow(dev, plat->base, val, otp); } static int stm32mp_bsec_write_lock(struct udevice *dev, u32 val, u32 otp) { if (!IS_ENABLED(CONFIG_TFABOOT)) return -ENOTSUPP; if (val == 1) return stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_WRLOCK_OTP, otp, 0); if (val == 0) return 0; /* nothing to do */ return -EINVAL; } static int stm32mp_bsec_read(struct udevice *dev, int offset, void *buf, int size) { int ret; int i; bool shadow = true, lock = false; int nb_otp = size / sizeof(u32); int otp; unsigned int offs = offset; if (offs >= STM32_BSEC_LOCK_OFFSET) { offs -= STM32_BSEC_LOCK_OFFSET; lock = true; } else if (offs >= STM32_BSEC_OTP_OFFSET) { offs -= STM32_BSEC_OTP_OFFSET; shadow = false; } if ((offs % 4) || (size % 4)) return -EINVAL; otp = offs / sizeof(u32); for (i = otp; i < (otp + nb_otp) && i <= BSEC_OTP_MAX_VALUE; i++) { u32 *addr = &((u32 *)buf)[i - otp]; if (lock) ret = stm32mp_bsec_read_lock(dev, addr, i); else if (shadow) ret = stm32mp_bsec_read_shadow(dev, addr, i); else ret = stm32mp_bsec_read_otp(dev, addr, i); if (ret) break; } if (ret) return ret; else return (i - otp) * 4; } static int stm32mp_bsec_write(struct udevice *dev, int offset, const void *buf, int size) { int ret = 0; int i; bool shadow = true, lock = false; int nb_otp = size / sizeof(u32); int otp; unsigned int offs = offset; if (offs >= STM32_BSEC_LOCK_OFFSET) { offs -= STM32_BSEC_LOCK_OFFSET; lock = true; } else if (offs >= STM32_BSEC_OTP_OFFSET) { offs -= STM32_BSEC_OTP_OFFSET; shadow = false; } if ((offs % 4) || (size % 4)) return -EINVAL; otp = offs / sizeof(u32); for (i = otp; i < otp + nb_otp && i <= BSEC_OTP_MAX_VALUE; i++) { u32 *val = &((u32 *)buf)[i - otp]; if (lock) ret = stm32mp_bsec_write_lock(dev, *val, i); else if (shadow) ret = stm32mp_bsec_write_shadow(dev, *val, i); else ret = stm32mp_bsec_write_otp(dev, *val, i); if (ret) break; } if (ret) return ret; else return (i - otp) * 4; } static const struct misc_ops stm32mp_bsec_ops = { .read = stm32mp_bsec_read, .write = stm32mp_bsec_write, }; static int stm32mp_bsec_of_to_plat(struct udevice *dev) { struct stm32mp_bsec_plat *plat = dev_get_plat(dev); plat->base = (u32)dev_read_addr_ptr(dev); return 0; } static int stm32mp_bsec_probe(struct udevice *dev) { int otp; struct stm32mp_bsec_plat *plat; struct clk_bulk clk_bulk; int ret; ret = clk_get_bulk(dev, &clk_bulk); if (!ret) { ret = clk_enable_bulk(&clk_bulk); if (ret) return ret; } /* * update unlocked shadow for OTP cleared by the rom code * only executed in U-Boot proper when TF-A is not used */ if (!IS_ENABLED(CONFIG_TFABOOT) && !IS_ENABLED(CONFIG_SPL_BUILD)) { plat = dev_get_plat(dev); for (otp = 57; otp <= BSEC_OTP_MAX_VALUE; otp++) if (!bsec_read_SR_lock(plat->base, otp)) bsec_shadow_register(dev, plat->base, otp); } return 0; } static const struct udevice_id stm32mp_bsec_ids[] = { { .compatible = "st,stm32mp15-bsec" }, {} }; U_BOOT_DRIVER(stm32mp_bsec) = { .name = "stm32mp_bsec", .id = UCLASS_MISC, .of_match = stm32mp_bsec_ids, .of_to_plat = stm32mp_bsec_of_to_plat, .plat_auto = sizeof(struct stm32mp_bsec_plat), .ops = &stm32mp_bsec_ops, .probe = stm32mp_bsec_probe, }; bool bsec_dbgswenable(void) { struct udevice *dev; struct stm32mp_bsec_plat *plat; int ret; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret || !dev) { log_debug("bsec driver not available\n"); return false; } plat = dev_get_plat(dev); if (readl(plat->base + BSEC_DENABLE_OFF) & BSEC_DENABLE_DBGSWENABLE) return true; return false; }