pcf8563.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2001
  4. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  5. */
  6. /*
  7. * Date & Time support for Philips PCF8563 RTC
  8. */
  9. /* #define DEBUG */
  10. #include <common.h>
  11. #include <command.h>
  12. #include <dm.h>
  13. #include <log.h>
  14. #include <rtc.h>
  15. #include <i2c.h>
  16. #if !CONFIG_IS_ENABLED(DM_RTC)
  17. static uchar rtc_read (uchar reg);
  18. static void rtc_write (uchar reg, uchar val);
  19. /* ------------------------------------------------------------------------- */
  20. int rtc_get (struct rtc_time *tmp)
  21. {
  22. int rel = 0;
  23. uchar sec, min, hour, mday, wday, mon_cent, year;
  24. sec = rtc_read (0x02);
  25. min = rtc_read (0x03);
  26. hour = rtc_read (0x04);
  27. mday = rtc_read (0x05);
  28. wday = rtc_read (0x06);
  29. mon_cent= rtc_read (0x07);
  30. year = rtc_read (0x08);
  31. debug ( "Get RTC year: %02x mon/cent: %02x mday: %02x wday: %02x "
  32. "hr: %02x min: %02x sec: %02x\n",
  33. year, mon_cent, mday, wday,
  34. hour, min, sec );
  35. debug ( "Alarms: wday: %02x day: %02x hour: %02x min: %02x\n",
  36. rtc_read (0x0C),
  37. rtc_read (0x0B),
  38. rtc_read (0x0A),
  39. rtc_read (0x09) );
  40. if (sec & 0x80) {
  41. puts ("### Warning: RTC Low Voltage - date/time not reliable\n");
  42. rel = -1;
  43. }
  44. tmp->tm_sec = bcd2bin (sec & 0x7F);
  45. tmp->tm_min = bcd2bin (min & 0x7F);
  46. tmp->tm_hour = bcd2bin (hour & 0x3F);
  47. tmp->tm_mday = bcd2bin (mday & 0x3F);
  48. tmp->tm_mon = bcd2bin (mon_cent & 0x1F);
  49. tmp->tm_year = bcd2bin (year) + ((mon_cent & 0x80) ? 1900 : 2000);
  50. tmp->tm_wday = bcd2bin (wday & 0x07);
  51. tmp->tm_yday = 0;
  52. tmp->tm_isdst= 0;
  53. debug ( "Get DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
  54. tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
  55. tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
  56. return rel;
  57. }
  58. int rtc_set (struct rtc_time *tmp)
  59. {
  60. uchar century;
  61. debug ( "Set DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
  62. tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
  63. tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
  64. rtc_write (0x08, bin2bcd(tmp->tm_year % 100));
  65. century = (tmp->tm_year >= 2000) ? 0 : 0x80;
  66. rtc_write (0x07, bin2bcd(tmp->tm_mon) | century);
  67. rtc_write (0x06, bin2bcd(tmp->tm_wday));
  68. rtc_write (0x05, bin2bcd(tmp->tm_mday));
  69. rtc_write (0x04, bin2bcd(tmp->tm_hour));
  70. rtc_write (0x03, bin2bcd(tmp->tm_min ));
  71. rtc_write (0x02, bin2bcd(tmp->tm_sec ));
  72. return 0;
  73. }
  74. void rtc_reset (void)
  75. {
  76. /* clear all control & status registers */
  77. rtc_write (0x00, 0x00);
  78. rtc_write (0x01, 0x00);
  79. rtc_write (0x0D, 0x00);
  80. /* clear Voltage Low bit */
  81. rtc_write (0x02, rtc_read (0x02) & 0x7F);
  82. /* reset all alarms */
  83. rtc_write (0x09, 0x00);
  84. rtc_write (0x0A, 0x00);
  85. rtc_write (0x0B, 0x00);
  86. rtc_write (0x0C, 0x00);
  87. }
  88. /* ------------------------------------------------------------------------- */
  89. static uchar rtc_read (uchar reg)
  90. {
  91. return (i2c_reg_read (CONFIG_SYS_I2C_RTC_ADDR, reg));
  92. }
  93. static void rtc_write (uchar reg, uchar val)
  94. {
  95. i2c_reg_write (CONFIG_SYS_I2C_RTC_ADDR, reg, val);
  96. }
  97. #else
  98. static int pcf8563_rtc_get(struct udevice *dev, struct rtc_time *tmp)
  99. {
  100. int rel = 0;
  101. uchar sec, min, hour, mday, wday, mon_cent, year;
  102. sec = dm_i2c_reg_read(dev, 0x02);
  103. min = dm_i2c_reg_read(dev, 0x03);
  104. hour = dm_i2c_reg_read(dev, 0x04);
  105. mday = dm_i2c_reg_read(dev, 0x05);
  106. wday = dm_i2c_reg_read(dev, 0x06);
  107. mon_cent = dm_i2c_reg_read(dev, 0x07);
  108. year = dm_i2c_reg_read(dev, 0x08);
  109. debug("Get RTC year: %02x mon/cent: %02x mday: %02x wday: %02x ",
  110. year, mon_cent, mday, wday);
  111. debug("hr: %02x min: %02x sec: %02x\n",
  112. hour, min, sec);
  113. debug("Alarms: wday: %02x day: %02x hour: %02x min: %02x\n",
  114. dm_i2c_reg_read(dev, 0x0C),
  115. dm_i2c_reg_read(dev, 0x0B),
  116. dm_i2c_reg_read(dev, 0x0A),
  117. dm_i2c_reg_read(dev, 0x09));
  118. if (sec & 0x80) {
  119. puts("### Warning: RTC Low Voltage - date/time not reliable\n");
  120. rel = -1;
  121. }
  122. tmp->tm_sec = bcd2bin(sec & 0x7F);
  123. tmp->tm_min = bcd2bin(min & 0x7F);
  124. tmp->tm_hour = bcd2bin(hour & 0x3F);
  125. tmp->tm_mday = bcd2bin(mday & 0x3F);
  126. tmp->tm_mon = bcd2bin(mon_cent & 0x1F);
  127. tmp->tm_year = bcd2bin(year) + ((mon_cent & 0x80) ? 1900 : 2000);
  128. tmp->tm_wday = bcd2bin(wday & 0x07);
  129. tmp->tm_yday = 0;
  130. tmp->tm_isdst = 0;
  131. debug("Get DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
  132. tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
  133. tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
  134. return rel;
  135. }
  136. static int pcf8563_rtc_set(struct udevice *dev, const struct rtc_time *tmp)
  137. {
  138. uchar century;
  139. debug("Set DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
  140. tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
  141. tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
  142. dm_i2c_reg_write(dev, 0x08, bin2bcd(tmp->tm_year % 100));
  143. century = (tmp->tm_year >= 2000) ? 0 : 0x80;
  144. dm_i2c_reg_write(dev, 0x07, bin2bcd(tmp->tm_mon) | century);
  145. dm_i2c_reg_write(dev, 0x06, bin2bcd(tmp->tm_wday));
  146. dm_i2c_reg_write(dev, 0x05, bin2bcd(tmp->tm_mday));
  147. dm_i2c_reg_write(dev, 0x04, bin2bcd(tmp->tm_hour));
  148. dm_i2c_reg_write(dev, 0x03, bin2bcd(tmp->tm_min));
  149. dm_i2c_reg_write(dev, 0x02, bin2bcd(tmp->tm_sec));
  150. return 0;
  151. }
  152. static int pcf8563_rtc_reset(struct udevice *dev)
  153. {
  154. /* clear all control & status registers */
  155. dm_i2c_reg_write(dev, 0x00, 0x00);
  156. dm_i2c_reg_write(dev, 0x01, 0x00);
  157. dm_i2c_reg_write(dev, 0x0D, 0x00);
  158. /* clear Voltage Low bit */
  159. dm_i2c_reg_write(dev, 0x02, dm_i2c_reg_read(dev, 0x02) & 0x7F);
  160. /* reset all alarms */
  161. dm_i2c_reg_write(dev, 0x09, 0x00);
  162. dm_i2c_reg_write(dev, 0x0A, 0x00);
  163. dm_i2c_reg_write(dev, 0x0B, 0x00);
  164. dm_i2c_reg_write(dev, 0x0C, 0x00);
  165. return 0;
  166. }
  167. static const struct rtc_ops pcf8563_rtc_ops = {
  168. .get = pcf8563_rtc_get,
  169. .set = pcf8563_rtc_set,
  170. .reset = pcf8563_rtc_reset,
  171. };
  172. static const struct udevice_id pcf8563_rtc_ids[] = {
  173. { .compatible = "nxp,pcf8563" },
  174. { }
  175. };
  176. U_BOOT_DRIVER(rtc_pcf8563) = {
  177. .name = "rtc-pcf8563",
  178. .id = UCLASS_RTC,
  179. .of_match = pcf8563_rtc_ids,
  180. .ops = &pcf8563_rtc_ops,
  181. };
  182. #endif