/** Copyright (c) 2016, Microsoft Corporation All rights reserved. SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include /** Used to pass the FMP install function to this lib. This allows the library to have control of the handle that the FMP instance is installed on. This allows the library to use DriverBinding protocol model to locate its device(s) in the system. @param[in] Function pointer to FMP install function. @retval EFI_SUCCESS Library has saved function pointer and will call function pointer on each DriverBinding Start. @retval EFI_UNSUPPORTED Library doesn't use driver binding and only supports a single instance. @retval other error Error occurred. Don't install FMP **/ EFI_STATUS EFIAPI RegisterFmpInstaller( IN FMP_DEVICE_LIB_REGISTER_FMP_INSTALLER Func ) { // Because this is a sample lib with very simple fake device we don't use // the driverbinding protocol to locate our device. // return EFI_UNSUPPORTED; } /** Used to get the size of the image in bytes. NOTE - Do not return zero as that will identify the device as not updatable. @retval UINTN that represents the size of the firmware. **/ EFI_STATUS EFIAPI FmpDeviceGetSize ( IN UINTN *Size ) { if (Size == NULL) { return EFI_INVALID_PARAMETER; } *Size = 0x1000; return EFI_SUCCESS; } /** Used to return a library supplied guid that will be the ImageTypeId guid of the FMP descriptor. This is optional but can be used if at runtime the guid needs to be determined. @param Guid: Double Guid Ptr that will be updated to point to guid. This should be from static memory and will not be freed. @return EFI_UNSUPPORTED: if you library instance doesn't need dynamic guid return this. @return Error: Any error will cause the wrapper to use the GUID defined by PCD @return EFI_SUCCESS: Guid ptr should be updated to point to static memeory which contains a valid guid **/ EFI_STATUS EFIAPI FmpDeviceGetImageTypeIdGuidPtr( OUT EFI_GUID** Guid) { //this instance doesn't need dynamic guid detection. return EFI_UNSUPPORTED; } /** Returns values used to fill in the AttributesSupported and AttributesSettings fields of the EFI_FIRMWARE_IMAGE_DESCRIPTOR structure that is returned by the GetImageInfo() service of the Firmware Management Protocol. The following bit values from the Firmware Management Protocol may be combined: IMAGE_ATTRIBUTE_IMAGE_UPDATABLE IMAGE_ATTRIBUTE_RESET_REQUIRED IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED IMAGE_ATTRIBUTE_IN_USE IMAGE_ATTRIBUTE_UEFI_IMAGE @param[out] Supported Attributes supported by this firmware device. @param[out] Setting Attributes settings for this firmware device. @retval EFI_SUCCESS The attributes supported by the firmware device were returned. @retval EFI_INVALID_PARAMETER Supported is NULL. @retval EFI_INVALID_PARAMETER Setting is NULL. **/ EFI_STATUS EFIAPI FmpDeviceGetAttributes ( IN OUT UINT64 *Supported, IN OUT UINT64 *Setting ) { if (Supported == NULL || Setting == NULL) { return EFI_INVALID_PARAMETER; } *Supported = (IMAGE_ATTRIBUTE_IMAGE_UPDATABLE | IMAGE_ATTRIBUTE_IN_USE); *Setting = (IMAGE_ATTRIBUTE_IMAGE_UPDATABLE | IMAGE_ATTRIBUTE_IN_USE); return EFI_SUCCESS; } /** Gets the current Lowest Supported Version. This is a protection mechanism so that a previous version with known issue is not applied. ONLY implement this if your running firmware has a method to return this at runtime. @param[out] Version On return this value represents the current Lowest Supported Version (in same format as GetVersion). @retval EFI_SUCCESS The Lowest Supported Version was correctly retrieved @retval EFI_UNSUPPORTED Device firmware doesn't support reporting LSV @retval EFI_DEVICE_ERROR Error occurred when trying to get the LSV **/ EFI_STATUS EFIAPI FmpDeviceGetLowestSupportedVersion ( IN OUT UINT32* LowestSupportedVersion ) { return EFI_UNSUPPORTED; } /** Returns the Null-terminated Unicode string that is used to fill in the VersionName field of the EFI_FIRMWARE_IMAGE_DESCRIPTOR structure that is returned by the GetImageInfo() service of the Firmware Management Protocol. The returned string must be allocated using EFI_BOOT_SERVICES.AllocatePool(). @note It is recommended that all firmware devices support a method to report the VersionName string from the currently stored firmware image. @param[out] VersionString The version string retrieved from the currently stored firmware image. @retval EFI_SUCCESS The version string of currently stored firmware image was returned in Version. @retval EFI_INVALID_PARAMETER VersionString is NULL. @retval EFI_UNSUPPORTED The firmware device does not support a method to report the version string of the currently stored firmware image. @retval EFI_DEVICE_ERROR An error occurred attempting to retrieve the version string of the currently stored firmware image. @retval EFI_OUT_OF_RESOURCES There are not enough resources to allocate the buffer for the version string of the currently stored firmware image. **/ EFI_STATUS EFIAPI FmpDeviceGetVersionString ( OUT CHAR16 **VersionString ) { if (VersionString == NULL) { return EFI_INVALID_PARAMETER; } *VersionString = NULL; return EFI_UNSUPPORTED; } /** Gets the current running version. ONLY implement this if your running firmware has a method to return this at runtime. @param[out] Version On return this value represents the current running version @retval EFI_SUCCESS The version was correctly retrieved @retval EFI_UNSUPPORTED Device firmware doesn't support reporting current version @retval EFI_DEVICE_ERROR Error occurred when trying to get the version **/ EFI_STATUS EFIAPI FmpDeviceGetVersion( IN OUT UINT32* Version ) { return EFI_UNSUPPORTED; } /** Retrieves a copy of the current firmware image of the device. This function allows a copy of the current firmware image to be created and saved. The saved copy could later been used, for example, in firmware image recovery or rollback. @param[out] Image Points to the buffer where the current image is copied to. @param[out] ImageSize On entry, points to the size of the buffer pointed to by Image, in bytes. On return, points to the length of the image, in bytes. @retval EFI_SUCCESS The device was successfully updated with the new image. @retval EFI_BUFFER_TOO_SMALL The buffer specified by ImageSize is too small to hold the image. The current buffer size needed to hold the image is returned in ImageSize. @retval EFI_INVALID_PARAMETER The Image was NULL. @retval EFI_NOT_FOUND The current image is not copied to the buffer. @retval EFI_UNSUPPORTED The operation is not supported. **/ EFI_STATUS EFIAPI FmpDeviceGetImage( IN OUT VOID *Image, IN OUT UINTN *ImageSize ) /*++ Routine Description: This is a function used to read the current firmware from the device into memory. This is an optional function and can return EFI_UNSUPPORTED. This is useful for test and diagnostics. Arguments: Image -- Buffer to place the image into. ImageSize -- Size of the Image buffer. Return Value: EFI_STATUS code. If not possible or not practical return EFI_UNSUPPORTED. --*/ { return EFI_UNSUPPORTED; }//GetImage() /** Updates the firmware image of the device. This function updates the hardware with the new firmware image. This function returns EFI_UNSUPPORTED if the firmware image is not updatable. If the firmware image is updatable, the function should perform the following minimal validations before proceeding to do the firmware image update. - Validate the image is a supported image for this device. The function returns EFI_ABORTED if the image is unsupported. The function can optionally provide more detailed information on why the image is not a supported image. - Validate the data from VendorCode if not null. Image validation must be performed before VendorCode data validation. VendorCode data is ignored or considered invalid if image validation failed. The function returns EFI_ABORTED if the data is invalid. VendorCode enables vendor to implement vendor-specific firmware image update policy. Null if the caller did not specify the policy or use the default policy. As an example, vendor can implement a policy to allow an option to force a firmware image update when the abort reason is due to the new firmware image version is older than the current firmware image version or bad image checksum. Sensitive operations such as those wiping the entire firmware image and render the device to be non-functional should be encoded in the image itself rather than passed with the VendorCode. AbortReason enables vendor to have the option to provide a more detailed description of the abort reason to the caller. @param[in] Image Points to the new image. @param[in] ImageSize Size of the new image in bytes. @param[in] VendorCode This enables vendor to implement vendor-specific firmware image update policy. Null indicates the caller did not specify the policy or use the default policy. @param[in] Progress A function used by the driver to report the progress of the firmware update. @param[in] CapsuleFwVersion FMP Payload Header version of the image @param[out] AbortReason A pointer to a pointer to a null-terminated string providing more details for the aborted operation. The buffer is allocated by this function with AllocatePool(), and it is the caller's responsibility to free it with a call to FreePool(). @retval EFI_SUCCESS The device was successfully updated with the new image. @retval EFI_ABORTED The operation is aborted. @retval EFI_INVALID_PARAMETER The Image was NULL. @retval EFI_UNSUPPORTED The operation is not supported. **/ EFI_STATUS EFIAPI FmpDeviceSetImage ( IN CONST VOID *Image, IN UINTN ImageSize, IN CONST VOID *VendorCode, IN EFI_FIRMWARE_MANAGEMENT_UPDATE_IMAGE_PROGRESS Progress, IN UINT32 CapsuleFwVersion, OUT CHAR16 **AbortReason ) { EFI_STATUS Status = EFI_SUCCESS; UINT32 Updateable = 0; Status = FmpDeviceCheckImage(Image, ImageSize, &Updateable); if (EFI_ERROR(Status)) { DEBUG((DEBUG_ERROR, "SetImage - Check Image failed with %r.\n", Status)); goto cleanup; } if (Updateable != IMAGE_UPDATABLE_VALID) { DEBUG((DEBUG_ERROR, "SetImage - Check Image returned that the Image was not valid for update. Updatable value = 0x%X.\n", Updateable)); Status = EFI_ABORTED; goto cleanup; } if (Progress == NULL) { DEBUG((DEBUG_ERROR, "SetImage - Invalid progress callback\n")); Status = EFI_INVALID_PARAMETER; goto cleanup; } Status = Progress(15); if (EFI_ERROR(Status)) { DEBUG((DEBUG_ERROR, "SetImage - Progress Callback failed with Status %r.\n", Status)); } { UINTN p; for (p = 20; p < 100; p++) { gBS->Stall (100000); //us = 0.1 seconds Progress (p); } } //TODO: add support for VendorCode, and AbortReason cleanup: return Status; }// SetImage() /** Checks if the firmware image is valid for the device. This function allows firmware update application to validate the firmware image without invoking the SetImage() first. @param[in] Image Points to the new image. @param[in] ImageSize Size of the new image in bytes. @param[out] ImageUpdatable Indicates if the new image is valid for update. It also provides, if available, additional information if the image is invalid. @retval EFI_SUCCESS The image was successfully checked. @retval EFI_INVALID_PARAMETER The Image was NULL. **/ EFI_STATUS EFIAPI FmpDeviceCheckImage( IN CONST VOID *Image, IN UINTN ImageSize, OUT UINT32 *ImageUpdateable ) { EFI_STATUS status = EFI_SUCCESS; if (ImageUpdateable == NULL) { DEBUG((DEBUG_ERROR, "CheckImage - ImageUpdateable Pointer Parameter is NULL.\n")); status = EFI_INVALID_PARAMETER; goto cleanup; } // //Set to valid and then if any tests fail it will update this flag. // *ImageUpdateable = IMAGE_UPDATABLE_VALID; if (Image == NULL) { DEBUG((DEBUG_ERROR, "CheckImage - Image Pointer Parameter is NULL.\n")); *ImageUpdateable = IMAGE_UPDATABLE_INVALID; //not sure if this is needed return EFI_INVALID_PARAMETER; } cleanup: return status; }// CheckImage() /** Device firmware should trigger lock mechanism so that device fw can not be updated or tampered with. This lock mechanism is generally only cleared by a full system reset (not just sleep state/low power mode) @retval EFI_SUCCESS The device was successfully locked. @retval EFI_UNSUPPORTED The hardware device/firmware doesn't support locking **/ EFI_STATUS EFIAPI FmpDeviceLock( ) { return EFI_SUCCESS; }