relative_orientation_euler_angles_fusion_algorithm_using_accelerometer_unittest.cc 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. // Copyright 2017 The Chromium Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file.
  4. #include <cmath>
  5. #include "base/memory/raw_ptr.h"
  6. #include "base/memory/ref_counted.h"
  7. #include "base/numerics/math_constants.h"
  8. #include "base/test/task_environment.h"
  9. #include "services/device/generic_sensor/fake_platform_sensor_fusion.h"
  10. #include "services/device/generic_sensor/relative_orientation_euler_angles_fusion_algorithm_using_accelerometer.h"
  11. #include "testing/gtest/include/gtest/gtest.h"
  12. namespace device {
  13. namespace {
  14. class RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest
  15. : public testing::Test {
  16. public:
  17. RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest() {
  18. auto fusion_algorithm = std::make_unique<
  19. RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometer>();
  20. fusion_algorithm_ = fusion_algorithm.get();
  21. fake_fusion_sensor_ = base::MakeRefCounted<FakePlatformSensorFusion>(
  22. std::move(fusion_algorithm));
  23. fusion_algorithm_->set_fusion_sensor(fake_fusion_sensor_.get());
  24. EXPECT_EQ(1UL, fusion_algorithm_->source_types().size());
  25. }
  26. void VerifyRelativeOrientationEulerAngles(double acceleration_x,
  27. double acceleration_y,
  28. double acceleration_z,
  29. double expected_beta_in_degrees,
  30. double expected_gamma_in_degrees) {
  31. SensorReading reading;
  32. reading.accel.x = acceleration_x;
  33. reading.accel.y = acceleration_y;
  34. reading.accel.z = acceleration_z;
  35. fake_fusion_sensor_->SetSensorReading(mojom::SensorType::ACCELEROMETER,
  36. reading,
  37. true /* sensor_reading_success */);
  38. SensorReading fused_reading;
  39. EXPECT_TRUE(fusion_algorithm_->GetFusedData(
  40. mojom::SensorType::ACCELEROMETER, &fused_reading));
  41. EXPECT_TRUE(
  42. std::isnan(fused_reading.orientation_euler.z.value() /* alpha */));
  43. EXPECT_DOUBLE_EQ(expected_beta_in_degrees,
  44. fused_reading.orientation_euler.x /* beta */);
  45. EXPECT_DOUBLE_EQ(expected_gamma_in_degrees,
  46. fused_reading.orientation_euler.y /* gamma */);
  47. }
  48. protected:
  49. base::test::TaskEnvironment task_environment_;
  50. scoped_refptr<FakePlatformSensorFusion> fake_fusion_sensor_;
  51. raw_ptr<RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometer>
  52. fusion_algorithm_;
  53. };
  54. } // namespace
  55. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  56. NoAccelerometerReading) {
  57. SensorReading reading;
  58. fake_fusion_sensor_->SetSensorReading(mojom::SensorType::ACCELEROMETER,
  59. reading,
  60. false /* sensor_reading_success */);
  61. SensorReading fused_reading;
  62. EXPECT_FALSE(fusion_algorithm_->GetFusedData(mojom::SensorType::ACCELEROMETER,
  63. &fused_reading));
  64. }
  65. // Tests a device resting flat.
  66. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  67. NeutralOrientation) {
  68. double acceleration_x = 0.0;
  69. double acceleration_y = 0.0;
  70. double acceleration_z = base::kMeanGravityDouble;
  71. double expected_beta_in_degrees = 0.0;
  72. double expected_gamma_in_degrees = 0.0;
  73. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  74. acceleration_z, expected_beta_in_degrees,
  75. expected_gamma_in_degrees);
  76. }
  77. // Tests an upside-down device, such that the W3C boundary [-180, 180) causes
  78. // the beta value to become negative.
  79. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  80. UpsideDown) {
  81. double acceleration_x = 0.0;
  82. double acceleration_y = 0.0;
  83. double acceleration_z = -base::kMeanGravityDouble;
  84. double expected_beta_in_degrees = -180.0;
  85. double expected_gamma_in_degrees = 0.0;
  86. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  87. acceleration_z, expected_beta_in_degrees,
  88. expected_gamma_in_degrees);
  89. }
  90. // Tests for positive beta value before the device is completely upside-down.
  91. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  92. BeforeUpsideDownBoundary) {
  93. double acceleration_x = 0.0;
  94. double acceleration_y = -base::kMeanGravityDouble / 2.0;
  95. double acceleration_z = -base::kMeanGravityDouble / 2.0;
  96. double expected_beta_in_degrees = 135.0;
  97. double expected_gamma_in_degrees = 0.0;
  98. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  99. acceleration_z, expected_beta_in_degrees,
  100. expected_gamma_in_degrees);
  101. }
  102. // Tests a device lying on its top-edge.
  103. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  104. TopEdge) {
  105. double acceleration_x = 0.0;
  106. double acceleration_y = base::kMeanGravityDouble;
  107. double acceleration_z = 0.0;
  108. double expected_beta_in_degrees = -90.0;
  109. double expected_gamma_in_degrees = 0.0;
  110. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  111. acceleration_z, expected_beta_in_degrees,
  112. expected_gamma_in_degrees);
  113. }
  114. // Tests before a device is completely on its top-edge.
  115. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  116. BeforeTopEdgeBoundary) {
  117. double acceleration_x = 0.0;
  118. double acceleration_y = base::kMeanGravityDouble / 2.0;
  119. double acceleration_z = base::kMeanGravityDouble / 2.0;
  120. double expected_beta_in_degrees = -45.0;
  121. double expected_gamma_in_degrees = 0.0;
  122. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  123. acceleration_z, expected_beta_in_degrees,
  124. expected_gamma_in_degrees);
  125. }
  126. // Tests a device lying on its bottom-edge.
  127. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  128. BottomEdge) {
  129. double acceleration_x = 0.0;
  130. double acceleration_y = -base::kMeanGravityDouble;
  131. double acceleration_z = 0.0;
  132. double expected_beta_in_degrees = 90.0;
  133. double expected_gamma_in_degrees = 0.0;
  134. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  135. acceleration_z, expected_beta_in_degrees,
  136. expected_gamma_in_degrees);
  137. }
  138. // Tests before a device is completely on its bottom-edge.
  139. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  140. BeforeBottomEdgeBoundary) {
  141. double acceleration_x = 0.0;
  142. double acceleration_y = -base::kMeanGravityDouble / 2.0;
  143. double acceleration_z = base::kMeanGravityDouble / 2.0;
  144. double expected_beta_in_degrees = 45.0;
  145. double expected_gamma_in_degrees = 0.0;
  146. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  147. acceleration_z, expected_beta_in_degrees,
  148. expected_gamma_in_degrees);
  149. }
  150. // Tests a device lying on its left-edge.
  151. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  152. LeftEdge) {
  153. double acceleration_x = -base::kMeanGravityDouble;
  154. double acceleration_y = 0.0;
  155. double acceleration_z = 0.0;
  156. double expected_beta_in_degrees = 0.0;
  157. double expected_gamma_in_degrees = -90.0;
  158. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  159. acceleration_z, expected_beta_in_degrees,
  160. expected_gamma_in_degrees);
  161. }
  162. // Tests for negative gamma value before the device is completely on its left
  163. // side.
  164. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  165. BeforeLeftEdgeBoundary) {
  166. double acceleration_x = -base::kMeanGravityDouble / std::sqrt(2.0);
  167. double acceleration_y = 0.0;
  168. double acceleration_z = base::kMeanGravityDouble / std::sqrt(2.0);
  169. double expected_beta_in_degrees = 0.0;
  170. double expected_gamma_in_degrees = -45.0;
  171. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  172. acceleration_z, expected_beta_in_degrees,
  173. expected_gamma_in_degrees);
  174. }
  175. // Tests a device lying on its right-edge, such that the W3C boundary [-90, 90)
  176. // causes the gamma value to become negative.
  177. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  178. RightEdge) {
  179. double acceleration_x = base::kMeanGravityDouble;
  180. double acceleration_y = 0.0;
  181. double acceleration_z = 0.0;
  182. double expected_beta_in_degrees = 0.0;
  183. double expected_gamma_in_degrees = -90.0;
  184. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  185. acceleration_z, expected_beta_in_degrees,
  186. expected_gamma_in_degrees);
  187. }
  188. // Tests for positive gamma value before the device is completely on its right
  189. // side.
  190. TEST_F(RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometerTest,
  191. BeforeRightEdgeBoundary) {
  192. double acceleration_x = base::kMeanGravityDouble / std::sqrt(2.0);
  193. double acceleration_y = 0.0;
  194. double acceleration_z = base::kMeanGravityDouble / std::sqrt(2.0);
  195. double expected_beta_in_degrees = 0.0;
  196. double expected_gamma_in_degrees = 45.0;
  197. VerifyRelativeOrientationEulerAngles(acceleration_x, acceleration_y,
  198. acceleration_z, expected_beta_in_degrees,
  199. expected_gamma_in_degrees);
  200. }
  201. } // namespace device