orientation_quaternion_fusion_algorithm_using_euler_angles_unittest.cc 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. // Copyright 2017 The Chromium Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file.
  4. #include <cmath>
  5. #include "base/memory/raw_ptr.h"
  6. #include "base/memory/ref_counted.h"
  7. #include "base/test/task_environment.h"
  8. #include "services/device/generic_sensor/fake_platform_sensor_fusion.h"
  9. #include "services/device/generic_sensor/generic_sensor_consts.h"
  10. #include "services/device/generic_sensor/orientation_quaternion_fusion_algorithm_using_euler_angles.h"
  11. #include "services/device/generic_sensor/orientation_test_data.h"
  12. #include "testing/gtest/include/gtest/gtest.h"
  13. namespace device {
  14. class OrientationQuaternionFusionAlgorithmUsingEulerAnglesTest
  15. : public testing::Test {
  16. public:
  17. OrientationQuaternionFusionAlgorithmUsingEulerAnglesTest() {
  18. auto fusion_algorithm =
  19. std::make_unique<OrientationQuaternionFusionAlgorithmUsingEulerAngles>(
  20. true /* absolute */);
  21. fusion_algorithm_ = fusion_algorithm.get();
  22. fake_fusion_sensor_ = base::MakeRefCounted<FakePlatformSensorFusion>(
  23. std::move(fusion_algorithm));
  24. fusion_algorithm_->set_fusion_sensor(fake_fusion_sensor_.get());
  25. }
  26. protected:
  27. base::test::TaskEnvironment task_environment_;
  28. scoped_refptr<FakePlatformSensorFusion> fake_fusion_sensor_;
  29. raw_ptr<OrientationQuaternionFusionAlgorithmUsingEulerAngles>
  30. fusion_algorithm_;
  31. };
  32. TEST_F(OrientationQuaternionFusionAlgorithmUsingEulerAnglesTest,
  33. ReadSourceSensorFailed) {
  34. ASSERT_EQ(1UL, fusion_algorithm_->source_types().size());
  35. mojom::SensorType source_type = fusion_algorithm_->source_types()[0];
  36. SensorReading reading;
  37. SensorReading fused_reading;
  38. fake_fusion_sensor_->SetSensorReading(source_type, reading,
  39. false /* sensor_reading_success */);
  40. EXPECT_FALSE(fusion_algorithm_->GetFusedData(source_type, &fused_reading));
  41. }
  42. TEST_F(OrientationQuaternionFusionAlgorithmUsingEulerAnglesTest,
  43. CheckSampleValues) {
  44. ASSERT_EQ(euler_angles_in_degrees_test_values.size(),
  45. quaternions_test_values.size());
  46. ASSERT_EQ(1UL, fusion_algorithm_->source_types().size());
  47. mojom::SensorType source_type = fusion_algorithm_->source_types()[0];
  48. SensorReading reading;
  49. SensorReading fused_reading;
  50. for (size_t i = 0; i < euler_angles_in_degrees_test_values.size(); ++i) {
  51. // alpha
  52. reading.orientation_euler.z = euler_angles_in_degrees_test_values[i][0];
  53. // beta
  54. reading.orientation_euler.x = euler_angles_in_degrees_test_values[i][1];
  55. // gamma
  56. reading.orientation_euler.y = euler_angles_in_degrees_test_values[i][2];
  57. fake_fusion_sensor_->SetSensorReading(source_type, reading,
  58. true /* sensor_reading_success */);
  59. EXPECT_TRUE(fusion_algorithm_->GetFusedData(source_type, &fused_reading));
  60. double x = fused_reading.orientation_quat.x;
  61. double y = fused_reading.orientation_quat.y;
  62. double z = fused_reading.orientation_quat.z;
  63. double w = fused_reading.orientation_quat.w;
  64. EXPECT_NEAR(quaternions_test_values[i][0], x, kEpsilon)
  65. << "on test value " << i;
  66. EXPECT_NEAR(quaternions_test_values[i][1], y, kEpsilon)
  67. << "on test value " << i;
  68. EXPECT_NEAR(quaternions_test_values[i][2], z, kEpsilon)
  69. << "on test value " << i;
  70. EXPECT_NEAR(quaternions_test_values[i][3], w, kEpsilon)
  71. << "on test value " << i;
  72. EXPECT_NEAR(1.0, x * x + y * y + z * z + w * w, kEpsilon)
  73. << "on test value " << i;
  74. }
  75. // Test when alpha is NAN.
  76. for (size_t i = 0; i < euler_angles_in_degrees_test_values.size(); ++i) {
  77. if (euler_angles_in_degrees_test_values[i][0] != 0.0) {
  78. // Here we need to test when alpha is NAN, it is considered the same as
  79. // its value is 0.0 in
  80. // OrientationQuaternionFusionAlgorithmUsingEulerAngles fusion sensor
  81. // algorithm. So we reuse the test data entries in
  82. // |euler_angles_in_degrees_test_values| whose alpha value is 0.0, and
  83. // skip other test data that has non-zero alpha values.
  84. continue;
  85. }
  86. // alpha
  87. reading.orientation_euler.z = NAN;
  88. // beta
  89. reading.orientation_euler.x = euler_angles_in_degrees_test_values[i][1];
  90. // gamma
  91. reading.orientation_euler.y = euler_angles_in_degrees_test_values[i][2];
  92. fake_fusion_sensor_->SetSensorReading(source_type, reading,
  93. true /* sensor_reading_success */);
  94. EXPECT_TRUE(fusion_algorithm_->GetFusedData(source_type, &fused_reading));
  95. double x = fused_reading.orientation_quat.x;
  96. double y = fused_reading.orientation_quat.y;
  97. double z = fused_reading.orientation_quat.z;
  98. double w = fused_reading.orientation_quat.w;
  99. EXPECT_NEAR(quaternions_test_values[i][0], x, kEpsilon)
  100. << "on test value " << i;
  101. EXPECT_NEAR(quaternions_test_values[i][1], y, kEpsilon)
  102. << "on test value " << i;
  103. EXPECT_NEAR(quaternions_test_values[i][2], z, kEpsilon)
  104. << "on test value " << i;
  105. EXPECT_NEAR(quaternions_test_values[i][3], w, kEpsilon)
  106. << "on test value " << i;
  107. EXPECT_NEAR(1.0, x * x + y * y + z * z + w * w, kEpsilon)
  108. << "on test value " << i;
  109. }
  110. }
  111. } // namespace device