// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "components/zucchini/reloc_win32.h" #include #include #include #include #include #include #include "base/numerics/safe_conversions.h" #include "base/test/gtest_util.h" #include "components/zucchini/address_translator.h" #include "components/zucchini/algorithm.h" #include "components/zucchini/image_utils.h" #include "components/zucchini/test_utils.h" #include "testing/gtest/include/gtest/gtest.h" namespace zucchini { class RelocUtilsWin32Test : public testing::Test { protected: using Units = std::vector; RelocUtilsWin32Test() {} // Resets all tester data, calls RelocRvaReaderWin32::FindRelocBlocks(), and // returns its results. bool Initialize(const std::vector& image_raw, BufferRegion reloc_region) { image_ = BufferSource(image_raw.data(), image_raw.size()); reloc_region_ = reloc_region; return RelocRvaReaderWin32::FindRelocBlocks(image_, reloc_region_, &reloc_block_offsets_); } // Uses RelocRvaReaderWin32 to get all relocs, returned as Units. Units EmitAll(offset_t lo, offset_t hi) { RelocRvaReaderWin32 reader(image_, reloc_region_, reloc_block_offsets_, lo, hi); Units units; for (auto unit = reader.GetNext(); unit.has_value(); unit = reader.GetNext()) { units.push_back(unit.value()); } return units; } ConstBufferView image_; BufferRegion reloc_region_; std::vector reloc_block_offsets_; }; TEST_F(RelocUtilsWin32Test, RvaReaderEmpty) { { std::vector image_raw = ParseHexString(""); EXPECT_TRUE(Initialize(image_raw, {0U, 0U})); EXPECT_EQ(std::vector(), reloc_block_offsets_); // Nothing. EXPECT_EQ(Units(), EmitAll(0U, 0U)); } { std::vector image_raw = ParseHexString("AA BB CC DD EE FF"); EXPECT_TRUE(Initialize(image_raw, {2U, 0U})); EXPECT_EQ(std::vector(), reloc_block_offsets_); // Nothing. EXPECT_EQ(Units(), EmitAll(2U, 2U)); } { std::vector image_raw = ParseHexString("00 C0 00 00 08 00 00 00"); EXPECT_TRUE(Initialize(image_raw, {0U, image_raw.size()})); EXPECT_EQ(std::vector({0U}), reloc_block_offsets_); // Empty block. EXPECT_EQ(Units(), EmitAll(0U, 8U)); } } TEST_F(RelocUtilsWin32Test, RvaReaderBad) { std::string test_cases[] = { "00 C0 00 00 07 00 00", // Header too small. "00 C0 00 00 08 00 00", // Header too small, lies about size. "00 C0 00 00 0A 00 00 00 66 31", // Odd number of units. "00 C0 00 00 0C 00 00 00 66 31 88 31 FF", // Trailing data. }; for (const std::string& test_case : test_cases) { std::vector image_raw = ParseHexString(test_case); EXPECT_FALSE(Initialize(image_raw, {0U, image_raw.size()})); } } TEST_F(RelocUtilsWin32Test, RvaReaderSingle) { // Block 0: All type 0x3: {0xC166, 0xC288, 0xC342, (padding) 0xCFFF}. std::vector image_raw = ParseHexString( "FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF " "00 C0 00 00 10 00 00 00 66 31 88 32 42 33 FF 0F " "FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF"); constexpr offset_t kBlock0 = 16U; Units exp0 = {{3, kBlock0 + 8U, 0xC166U}, {3, kBlock0 + 10U, 0xC288U}, {3, kBlock0 + 12U, 0xC342U}, {0, kBlock0 + 14U, 0xCFFFU}}; EXPECT_TRUE(Initialize(image_raw, {16U, 16U})); EXPECT_EQ(exp0, EmitAll(kBlock0, kBlock0 + 16U)); EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0)); EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 8U)); EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 9U)); EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0, kBlock0 + 10U)); EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0 + 8U, kBlock0 + 10U)); EXPECT_EQ(Units(), EmitAll(kBlock0 + 9U, kBlock0 + 10U)); EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 15U)); EXPECT_EQ(Sub(exp0, 2, 3), EmitAll(kBlock0 + 11U, kBlock0 + 15U)); } TEST_F(RelocUtilsWin32Test, RvaReaderMulti) { // The sample image encodes 3 reloc blocks: // Block 0: All type 0x3: {0xC166, 0xC288, 0xC344, (padding) 0xCFFF}. // Block 1: All type 0x3: {0x12166, 0x12288}. // Block 2: All type 0xA: {0x24000, 0x24010, 0x24020, 0x24028, 0x24A3C, // 0x24170}. std::vector image_raw = ParseHexString( "FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF " "00 C0 00 00 10 00 00 00 66 31 88 32 42 33 FF 0F " "00 20 01 00 0C 00 00 00 66 31 88 32 " "00 40 02 00 14 00 00 00 00 A0 10 A0 20 A0 28 A0 3C A0 70 A1 " "FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF"); offset_t image_size = base::checked_cast(image_raw.size()); constexpr offset_t kBlock0 = 16U; constexpr offset_t kBlock1 = kBlock0 + 16U; constexpr offset_t kBlock2 = kBlock1 + 12U; constexpr offset_t kBlockEnd = kBlock2 + 20U; Units exp0 = {{3, kBlock0 + 8U, 0xC166U}, {3, kBlock0 + 10U, 0xC288U}, {3, kBlock0 + 12U, 0xC342U}, {0, kBlock0 + 14U, 0xCFFFU}}; Units exp1 = {{3, kBlock0 + 24U, 0x12166U}, {3, kBlock0 + 26U, 0x12288U}}; Units exp2 = {{10, kBlock0 + 36U, 0x24000U}, {10, kBlock0 + 38U, 0x24010U}, {10, kBlock0 + 40U, 0x24020U}, {10, kBlock0 + 42U, 0x24028U}, {10, kBlock0 + 44U, 0x2403CU}, {10, kBlock0 + 46U, 0x24170U}}; EXPECT_TRUE(Initialize(image_raw, {kBlock0, kBlockEnd - kBlock0})); EXPECT_EQ(std::vector({kBlock0, kBlock1, kBlock2}), reloc_block_offsets_); // Everything. EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0, kBlockEnd)); EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(0, image_size)); // Entire blocks. EXPECT_EQ(exp0, EmitAll(kBlock0, kBlock1)); EXPECT_EQ(exp1, EmitAll(kBlock1, kBlock2)); EXPECT_EQ(exp2, EmitAll(kBlock2, kBlockEnd)); EXPECT_EQ(Units(), EmitAll(0, kBlock0)); EXPECT_EQ(Units(), EmitAll(kBlockEnd, image_size)); // Within blocks, clipped at boundaries. EXPECT_EQ(exp0, EmitAll(kBlock0 + 5U, kBlock1)); EXPECT_EQ(exp0, EmitAll(kBlock0 + 8U, kBlock1)); EXPECT_EQ(Sub(exp0, 1, 4), EmitAll(kBlock0 + 9U, kBlock1)); EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 15U)); EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 14U)); EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0 + 8U, kBlock0 + 10U)); EXPECT_EQ(Sub(exp1, 1, 2), EmitAll(kBlock1 + 10U, kBlock1 + 12U)); EXPECT_EQ(Sub(exp2, 2, 4), EmitAll(kBlock2 + 12U, kBlock2 + 16U)); EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0)); EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 8U)); EXPECT_EQ(Units(), EmitAll(kBlock2 + 10U, kBlock2 + 11U)); EXPECT_EQ(Units(), EmitAll(kBlock2 + 11U, kBlock2 + 12U)); // Across blocks. EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0 - 5U, kBlockEnd)); EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0 + 6U, kBlockEnd)); EXPECT_EQ(Cat(Cat(exp0, exp1), Sub(exp2, 0, 5)), EmitAll(kBlock0 + 6U, kBlock2 + 18U)); EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)), EmitAll(kBlock0 + 12U, kBlock1 + 10U)); EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)), EmitAll(kBlock0 + 11U, kBlock1 + 10U)); EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)), EmitAll(kBlock0 + 12U, kBlock1 + 11U)); EXPECT_EQ(Sub(exp1, 1, 2), EmitAll(kBlock1 + 10U, kBlock2 + 5U)); EXPECT_EQ(Cat(Sub(exp1, 1, 2), exp2), EmitAll(kBlock1 + 10U, kBlockEnd + 5)); EXPECT_EQ(Units(), EmitAll(kBlock0 + 15, kBlock1 + 9)); } TEST_F(RelocUtilsWin32Test, ReadWrite) { // Set up mock image: Size = 0x3000, .reloc at 0x600. RVA is 0x40000 + offset. constexpr rva_t kBaseRva = 0x40000; std::vector image_data(0x3000, 0xFF); // 4 x86 relocs (xx 3x), 3 x64 relocs (xx Ax), 1 padding (xx 0X). std::vector reloc_data = ParseHexString( "00 10 04 00 10 00 00 00 C0 32 18 A3 F8 A7 FF 0F " "00 20 04 00 10 00 00 00 80 A0 65 31 F8 37 BC 3A"); reloc_region_ = {0x600, reloc_data.size()}; std::copy(reloc_data.begin(), reloc_data.end(), image_data.begin() + reloc_region_.lo()); image_ = {image_data.data(), image_data.size()}; offset_t image_size = base::checked_cast(image_.size()); AddressTranslator translator; translator.Initialize({{0, image_size, kBaseRva, image_size}}); // Precompute |reloc_block_offsets_|. EXPECT_TRUE(RelocRvaReaderWin32::FindRelocBlocks(image_, reloc_region_, &reloc_block_offsets_)); EXPECT_EQ(std::vector({0x600U, 0x610U}), reloc_block_offsets_); // Focus on x86. constexpr uint16_t kRelocTypeX86 = 3; constexpr offset_t kVAWidthX86 = 4; // Make RelocRvaReaderWin32. RelocRvaReaderWin32 reloc_rva_reader(image_, reloc_region_, reloc_block_offsets_, 0, image_size); offset_t offset_bound = image_size - kVAWidthX86 + 1; // Make RelocReaderWin32 that wraps |reloc_rva_reader|. auto reader = std::make_unique( std::move(reloc_rva_reader), kRelocTypeX86, offset_bound, translator); // Read all references and check. std::vector refs; for (absl::optional ref = reader->GetNext(); ref.has_value(); ref = reader->GetNext()) { refs.push_back(ref.value()); } std::vector exp_refs{ {0x608, 0x12C0}, {0x61A, 0x2165}, {0x61C, 0x27F8}, {0x61E, 0x2ABC}}; EXPECT_EQ(exp_refs, refs); // Write reference, extract bytes and check. MutableBufferView mutable_image(&image_data[0], image_data.size()); auto writer = std::make_unique( kRelocTypeX86, mutable_image, reloc_region_, reloc_block_offsets_, translator); writer->PutNext({0x608, 0x1F83}); std::vector exp_reloc_data1 = ParseHexString( "00 10 04 00 10 00 00 00 83 3F 18 A3 F8 A7 FF 0F " "00 20 04 00 10 00 00 00 80 A0 65 31 F8 37 BC 3A"); EXPECT_EQ(exp_reloc_data1, Sub(image_data, reloc_region_.lo(), reloc_region_.hi())); writer->PutNext({0x61C, 0x2950}); std::vector exp_reloc_data2 = ParseHexString( "00 10 04 00 10 00 00 00 83 3F 18 A3 F8 A7 FF 0F " "00 20 04 00 10 00 00 00 80 A0 65 31 50 39 BC 3A"); EXPECT_EQ(exp_reloc_data2, Sub(image_data, reloc_region_.lo(), reloc_region_.hi())); } } // namespace zucchini