// Copyright 2020 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_RANGES_ALGORITHM_H_ #define BASE_RANGES_ALGORITHM_H_ #include #include #include #include #include #include "base/check.h" #include "base/compiler_specific.h" #include "base/functional/identity.h" #include "base/functional/invoke.h" #include "base/ranges/functional.h" #include "base/ranges/ranges.h" #include "base/template_util.h" namespace base { namespace internal { // Returns a transformed version of the unary predicate `pred` applying `proj` // to its argument before invoking `pred` on it. // Ensures that the return type of `invoke(pred, ...)` is convertible to bool. template constexpr auto ProjectedUnaryPredicate(Pred& pred, Proj& proj) noexcept { return [&pred, &proj](auto&& arg) -> bool { return base::invoke(pred, base::invoke(proj, std::forward(arg))); }; } // Returns a transformed version of the binary predicate `pred` applying `proj1` // and `proj2` to its arguments before invoking `pred` on them. // // Provides an opt-in to considers all four permutations of projections and // argument types. This is sometimes necessary to allow usage with legacy // non-ranges std:: algorithms that don't support projections. // // These permutations are assigned different priorities to break ambiguities in // case several permutations are possible, e.g. when Proj1 and Proj2 are the // same type. // // Note that even when opting in to using all permutations of projections, // calling code should still ensure that the canonical mapping of {Proj1, Proj2} // to {LHS, RHS} compiles for all members of the range. This can be done by // adding the following constraint: // // typename = indirect_result_t, Proj1>, // projected, Proj2>> // // Ensures that the return type of `invoke(pred, ...)` is convertible to bool. template class BinaryPredicateProjector { public: constexpr BinaryPredicateProjector(Pred& pred, Proj1& proj1, Proj2& proj2) : pred_(pred), proj1_(proj1), proj2_(proj2) {} private: template using InvokeResult = std::invoke_result_t, std::invoke_result_t>; template > constexpr std::pair GetProjs(priority_tag<3>) const { return {proj1_, proj2_}; } template , typename = InvokeResult> constexpr std::pair GetProjs(priority_tag<2>) const { return {proj2_, proj1_}; } template , typename = InvokeResult> constexpr std::pair GetProjs(priority_tag<1>) const { return {proj1_, proj1_}; } template , typename = InvokeResult> constexpr std::pair GetProjs(priority_tag<0>) const { return {proj2_, proj2_}; } public: template constexpr bool operator()(T&& lhs, U&& rhs) const { auto projs = GetProjs(priority_tag<3>()); return base::invoke(pred_, base::invoke(projs.first, std::forward(lhs)), base::invoke(projs.second, std::forward(rhs))); } private: Pred& pred_; Proj1& proj1_; Proj2& proj2_; }; // Small wrappers around BinaryPredicateProjector to make the calling side more // readable. template constexpr auto ProjectedBinaryPredicate(Pred& pred, Proj1& proj1, Proj2& proj2) noexcept { return BinaryPredicateProjector(pred, proj1, proj2); } template constexpr auto PermutedProjectedBinaryPredicate(Pred& pred, Proj1& proj1, Proj2& proj2) noexcept { return BinaryPredicateProjector(pred, proj1, proj2); } // This alias is used below to restrict iterator based APIs to types for which // `iterator_category` and the pre-increment and post-increment operators are // defined. This is required in situations where otherwise an undesired overload // would be chosen, e.g. copy_if. In spirit this is similar to C++20's // std::input_or_output_iterator, a concept that each iterator should satisfy. template ()), typename = decltype(std::declval()++)> using iterator_category_t = typename std::iterator_traits::iterator_category; // This alias is used below to restrict range based APIs to types for which // `iterator_category_t` is defined for the underlying iterator. This is // required in situations where otherwise an undesired overload would be chosen, // e.g. transform. In spirit this is similar to C++20's std::ranges::range, a // concept that each range should satisfy. template using range_category_t = iterator_category_t>; } // namespace internal namespace ranges { // C++14 implementation of std::ranges::in_fun_result. // // Reference: https://wg21.link/algorithms.results#:~:text=in_fun_result template struct in_fun_result { NO_UNIQUE_ADDRESS I in; NO_UNIQUE_ADDRESS F fun; template {} && std::is_convertible{}>> constexpr operator in_fun_result() const& { return {in, fun}; } template {} && std::is_convertible{}>> constexpr operator in_fun_result() && { return {std::move(in), std::move(fun)}; } }; // TODO(crbug.com/1071094): Implement the other result types. // [alg.nonmodifying] Non-modifying sequence operations // Reference: https://wg21.link/alg.nonmodifying // [alg.all.of] All of // Reference: https://wg21.link/alg.all.of // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `false` if `E(i)` is `false` for some iterator `i` in the range // `[first, last)`, and `true` otherwise. // // Complexity: At most `last - first` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.all.of#:~:text=ranges::all_of(I template > constexpr bool all_of(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { for (; first != last; ++first) { if (!base::invoke(pred, base::invoke(proj, *first))) return false; } return true; } // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `false` if `E(i)` is `false` for some iterator `i` in `range`, and // `true` otherwise. // // Complexity: At most `size(range)` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.all.of#:~:text=ranges::all_of(R template > constexpr bool all_of(Range&& range, Pred pred, Proj proj = {}) { return ranges::all_of(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.any.of] Any of // Reference: https://wg21.link/alg.any.of // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `true` if `E(i)` is `true` for some iterator `i` in the range // `[first, last)`, and `false` otherwise. // // Complexity: At most `last - first` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.any.of#:~:text=ranges::any_of(I template > constexpr bool any_of(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { for (; first != last; ++first) { if (base::invoke(pred, base::invoke(proj, *first))) return true; } return false; } // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `true` if `E(i)` is `true` for some iterator `i` in `range`, and // `false` otherwise. // // Complexity: At most `size(range)` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.any.of#:~:text=ranges::any_of(R template > constexpr bool any_of(Range&& range, Pred pred, Proj proj = {}) { return ranges::any_of(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.none.of] None of // Reference: https://wg21.link/alg.none.of // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `false` if `E(i)` is `true` for some iterator `i` in the range // `[first, last)`, and `true` otherwise. // // Complexity: At most `last - first` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.none.of#:~:text=ranges::none_of(I template > constexpr bool none_of(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { for (; first != last; ++first) { if (base::invoke(pred, base::invoke(proj, *first))) return false; } return true; } // Let `E(i)` be `invoke(pred, invoke(proj, *i))`. // // Returns: `false` if `E(i)` is `true` for some iterator `i` in `range`, and // `true` otherwise. // // Complexity: At most `size(range)` applications of the predicate and any // projection. // // Reference: https://wg21.link/alg.none.of#:~:text=ranges::none_of(R template > constexpr bool none_of(Range&& range, Pred pred, Proj proj = {}) { return ranges::none_of(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.foreach] For each // Reference: https://wg21.link/alg.foreach // Reference: https://wg21.link/algorithm.syn#:~:text=for_each_result template using for_each_result = in_fun_result; // Effects: Calls `invoke(f, invoke(proj, *i))` for every iterator `i` in the // range `[first, last)`, starting from `first` and proceeding to `last - 1`. // // Returns: `{last, std::move(f)}`. // // Complexity: Applies `f` and `proj` exactly `last - first` times. // // Remarks: If `f` returns a result, the result is ignored. // // Reference: https://wg21.link/alg.foreach#:~:text=ranges::for_each(I template > constexpr auto for_each(InputIterator first, InputIterator last, Fun f, Proj proj = {}) { for (; first != last; ++first) base::invoke(f, base::invoke(proj, *first)); return for_each_result{first, std::move(f)}; } // Effects: Calls `invoke(f, invoke(proj, *i))` for every iterator `i` in the // range `range`, starting from `begin(range)` and proceeding to `end(range) - // 1`. // // Returns: `{last, std::move(f)}`. // // Complexity: Applies `f` and `proj` exactly `size(range)` times. // // Remarks: If `f` returns a result, the result is ignored. // // Reference: https://wg21.link/alg.foreach#:~:text=ranges::for_each(R template > constexpr auto for_each(Range&& range, Fun f, Proj proj = {}) { return ranges::for_each(ranges::begin(range), ranges::end(range), std::move(f), std::move(proj)); } // Reference: https://wg21.link/algorithm.syn#:~:text=for_each_n_result template using for_each_n_result = in_fun_result; // Preconditions: `n >= 0` is `true`. // // Effects: Calls `invoke(f, invoke(proj, *i))` for every iterator `i` in the // range `[first, first + n)` in order. // // Returns: `{first + n, std::move(f)}`. // // Remarks: If `f` returns a result, the result is ignored. // // Reference: https://wg21.link/alg.foreach#:~:text=ranges::for_each_n template > constexpr auto for_each_n(InputIterator first, Size n, Fun f, Proj proj = {}) { while (n > 0) { base::invoke(f, base::invoke(proj, *first)); ++first; --n; } return for_each_n_result{first, std::move(f)}; } // [alg.find] Find // Reference: https://wg21.link/alg.find // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Returns: The first iterator `i` in the range `[first, last)` for which `E(i)` // is `true`. Returns `last` if no such iterator is found. // // Complexity: At most `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find(I template > constexpr auto find(InputIterator first, InputIterator last, const T& value, Proj proj = {}) { for (; first != last; ++first) { if (base::invoke(proj, *first) == value) break; } return first; } // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Returns: The first iterator `i` in `range` for which `E(i)` is `true`. // Returns `end(range)` if no such iterator is found. // // Complexity: At most `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find(R template > constexpr auto find(Range&& range, const T& value, Proj proj = {}) { return ranges::find(ranges::begin(range), ranges::end(range), value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Returns: The first iterator `i` in the range `[first, last)` for which `E(i)` // is `true`. Returns `last` if no such iterator is found. // // Complexity: At most `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find_if(I template > constexpr auto find_if(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { return std::find_if(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Returns: The first iterator `i` in `range` for which `E(i)` is `true`. // Returns `end(range)` if no such iterator is found. // // Complexity: At most `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find_if(R template > constexpr auto find_if(Range&& range, Pred pred, Proj proj = {}) { return ranges::find_if(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // Let `E(i)` be `bool(!invoke(pred, invoke(proj, *i)))`. // // Returns: The first iterator `i` in the range `[first, last)` for which `E(i)` // is `true`. Returns `last` if no such iterator is found. // // Complexity: At most `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find_if_not(I template > constexpr auto find_if_not(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { return std::find_if_not(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(!invoke(pred, invoke(proj, *i)))`. // // Returns: The first iterator `i` in `range` for which `E(i)` is `true`. // Returns `end(range)` if no such iterator is found. // // Complexity: At most `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.find#:~:text=ranges::find_if_not(R template > constexpr auto find_if_not(Range&& range, Pred pred, Proj proj = {}) { return ranges::find_if_not(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.find.end] Find end // Reference: https://wg21.link/alg.find.end // Let: // - `E(i,n)` be `invoke(pred, invoke(proj1, *(i + n)), // invoke(proj2, *(first2 + n)))` // // - `i` be `last1` if `[first2, last2)` is empty, or if // `(last2 - first2) > (last1 - first1)` is `true`, or if there is no iterator // in the range `[first1, last1 - (last2 - first2))` such that for every // non-negative integer `n < (last2 - first2)`, `E(i,n)` is `true`. Otherwise // `i` is the last such iterator in `[first1, last1 - (last2 - first2))`. // // Returns: `i` // Note: std::ranges::find_end(I1 first1,...) returns a range, rather than an // iterator. For simplicitly we match std::find_end's return type instead. // // Complexity: // At most `(last2 - first2) * (last1 - first1 - (last2 - first2) + 1)` // applications of the corresponding predicate and any projections. // // Reference: https://wg21.link/alg.find.end#:~:text=ranges::find_end(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr auto find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return std::find_end(first1, last1, first2, last2, internal::ProjectedBinaryPredicate(pred, proj1, proj2)); } // Let: // - `E(i,n)` be `invoke(pred, invoke(proj1, *(i + n)), // invoke(proj2, *(first2 + n)))` // // - `i` be `end(range1)` if `range2` is empty, or if // `size(range2) > size(range1)` is `true`, or if there is no iterator in the // range `[begin(range1), end(range1) - size(range2))` such that for every // non-negative integer `n < size(range2)`, `E(i,n)` is `true`. Otherwise `i` // is the last such iterator in `[begin(range1), end(range1) - size(range2))`. // // Returns: `i` // Note: std::ranges::find_end(R1&& r1,...) returns a range, rather than an // iterator. For simplicitly we match std::find_end's return type instead. // // Complexity: At most `size(range2) * (size(range1) - size(range2) + 1)` // applications of the corresponding predicate and any projections. // // Reference: https://wg21.link/alg.find.end#:~:text=ranges::find_end(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr auto find_end(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::find_end(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // [alg.find.first.of] Find first // Reference: https://wg21.link/alg.find.first.of // Let `E(i,j)` be `bool(invoke(pred, invoke(proj1, *i), invoke(proj2, *j)))`. // // Effects: Finds an element that matches one of a set of values. // // Returns: The first iterator `i` in the range `[first1, last1)` such that for // some iterator `j` in the range `[first2, last2)` `E(i,j)` holds. Returns // `last1` if `[first2, last2)` is empty or if no such iterator is found. // // Complexity: At most `(last1 - first1) * (last2 - first2)` applications of the // corresponding predicate and any projections. // // Reference: // https://wg21.link/alg.find.first.of#:~:text=ranges::find_first_of(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr auto find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return std::find_first_of( first1, last1, first2, last2, internal::ProjectedBinaryPredicate(pred, proj1, proj2)); } // Let `E(i,j)` be `bool(invoke(pred, invoke(proj1, *i), invoke(proj2, *j)))`. // // Effects: Finds an element that matches one of a set of values. // // Returns: The first iterator `i` in `range1` such that for some iterator `j` // in `range2` `E(i,j)` holds. Returns `end(range1)` if `range2` is empty or if // no such iterator is found. // // Complexity: At most `size(range1) * size(range2)` applications of the // corresponding predicate and any projections. // // Reference: // https://wg21.link/alg.find.first.of#:~:text=ranges::find_first_of(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr auto find_first_of(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::find_first_of( ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // [alg.adjacent.find] Adjacent find // Reference: https://wg21.link/alg.adjacent.find // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i), invoke(proj, *(i + 1))))`. // // Returns: The first iterator `i` such that both `i` and `i + 1` are in the // range `[first, last)` for which `E(i)` holds. Returns `last` if no such // iterator is found. // // Complexity: Exactly `min((i - first) + 1, (last - first) - 1)` applications // of the corresponding predicate, where `i` is `adjacent_find`'s return value. // // Reference: // https://wg21.link/alg.adjacent.find#:~:text=ranges::adjacent_find(I template > constexpr auto adjacent_find(ForwardIterator first, ForwardIterator last, Pred pred = {}, Proj proj = {}) { // Implementation inspired by cppreference.com: // https://en.cppreference.com/w/cpp/algorithm/adjacent_find // // A reimplementation is required, because std::adjacent_find is not constexpr // prior to C++20. Once we have C++20, we should switch to standard library // implementation. if (first == last) return last; for (ForwardIterator next = first; ++next != last; ++first) { if (base::invoke(pred, base::invoke(proj, *first), base::invoke(proj, *next))) { return first; } } return last; } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i), invoke(proj, *(i + 1))))`. // // Returns: The first iterator `i` such that both `i` and `i + 1` are in the // range `range` for which `E(i)` holds. Returns `end(range)` if no such // iterator is found. // // Complexity: Exactly `min((i - begin(range)) + 1, size(range) - 1)` // applications of the corresponding predicate, where `i` is `adjacent_find`'s // return value. // // Reference: // https://wg21.link/alg.adjacent.find#:~:text=ranges::adjacent_find(R template > constexpr auto adjacent_find(Range&& range, Pred pred = {}, Proj proj = {}) { return ranges::adjacent_find(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.count] Count // Reference: https://wg21.link/alg.count // Let `E(i)` be `invoke(proj, *i) == value`. // // Effects: Returns the number of iterators `i` in the range `[first, last)` for // which `E(i)` holds. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.count#:~:text=ranges::count(I template > constexpr auto count(InputIterator first, InputIterator last, const T& value, Proj proj = {}) { // Note: In order to be able to apply `proj` to each element in [first, last) // we are dispatching to std::count_if instead of std::count. return std::count_if(first, last, [&proj, &value](auto&& lhs) { return base::invoke(proj, std::forward(lhs)) == value; }); } // Let `E(i)` be `invoke(proj, *i) == value`. // // Effects: Returns the number of iterators `i` in `range` for which `E(i)` // holds. // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.count#:~:text=ranges::count(R template > constexpr auto count(Range&& range, const T& value, Proj proj = {}) { return ranges::count(ranges::begin(range), ranges::end(range), value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Effects: Returns the number of iterators `i` in the range `[first, last)` for // which `E(i)` holds. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.count#:~:text=ranges::count_if(I template > constexpr auto count_if(InputIterator first, InputIterator last, Pred pred, Proj proj = {}) { return std::count_if(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Effects: Returns the number of iterators `i` in `range` for which `E(i)` // holds. // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.count#:~:text=ranges::count_if(R template > constexpr auto count_if(Range&& range, Pred pred, Proj proj = {}) { return ranges::count_if(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [mismatch] Mismatch // Reference: https://wg21.link/mismatch // Let `E(n)` be `!invoke(pred, invoke(proj1, *(first1 + n)), // invoke(proj2, *(first2 + n)))`. // // Let `N` be `min(last1 - first1, last2 - first2)`. // // Returns: `{ first1 + n, first2 + n }`, where `n` is the smallest integer in // `[0, N)` such that `E(n)` holds, or `N` if no such integer exists. // // Complexity: At most `N` applications of the corresponding predicate and any // projections. // // Reference: https://wg21.link/mismatch#:~:text=ranges::mismatch(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr auto mismatch(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return std::mismatch(first1, last1, first2, last2, internal::ProjectedBinaryPredicate(pred, proj1, proj2)); } // Let `E(n)` be `!invoke(pred, invoke(proj1, *(begin(range1) + n)), // invoke(proj2, *(begin(range2) + n)))`. // // Let `N` be `min(size(range1), size(range2))`. // // Returns: `{ begin(range1) + n, begin(range2) + n }`, where `n` is the // smallest integer in `[0, N)` such that `E(n)` holds, or `N` if no such // integer exists. // // Complexity: At most `N` applications of the corresponding predicate and any // projections. // // Reference: https://wg21.link/mismatch#:~:text=ranges::mismatch(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr auto mismatch(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::mismatch(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // [alg.equal] Equal // Reference: https://wg21.link/alg.equal // Let `E(i)` be // `invoke(pred, invoke(proj1, *i), invoke(proj2, *(first2 + (i - first1))))`. // // Returns: If `last1 - first1 != last2 - first2`, return `false.` Otherwise // return `true` if `E(i)` holds for every iterator `i` in the range `[first1, // last1)`. Otherwise, returns `false`. // // Complexity: If the types of `first1`, `last1`, `first2`, and `last2` meet the // `RandomAccessIterator` requirements and `last1 - first1 != last2 - first2`, // then no applications of the corresponding predicate and each projection; // otherwise, at most `min(last1 - first1, last2 - first2)` applications of the // corresponding predicate and any projections. // // Reference: https://wg21.link/alg.equal#:~:text=ranges::equal(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr bool equal(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { if (base::is_constant_evaluated()) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) { if (!base::invoke(pred, base::invoke(proj1, *first1), base::invoke(proj2, *first2))) { return false; } } return first1 == last1 && first2 == last2; } return std::equal(first1, last1, first2, last2, internal::ProjectedBinaryPredicate(pred, proj1, proj2)); } // Let `E(i)` be // `invoke(pred, invoke(proj1, *i), // invoke(proj2, *(begin(range2) + (i - begin(range1)))))`. // // Returns: If `size(range1) != size(range2)`, return `false.` Otherwise return // `true` if `E(i)` holds for every iterator `i` in `range1`. Otherwise, returns // `false`. // // Complexity: If the types of `begin(range1)`, `end(range1)`, `begin(range2)`, // and `end(range2)` meet the `RandomAccessIterator` requirements and // `size(range1) != size(range2)`, then no applications of the corresponding // predicate and each projection; // otherwise, at most `min(size(range1), size(range2))` applications of the // corresponding predicate and any projections. // // Reference: https://wg21.link/alg.equal#:~:text=ranges::equal(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr bool equal(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::equal(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // [alg.is.permutation] Is permutation // Reference: https://wg21.link/alg.is.permutation // Returns: If `last1 - first1 != last2 - first2`, return `false`. Otherwise // return `true` if there exists a permutation of the elements in the range // `[first2, last2)`, bounded by `[pfirst, plast)`, such that // `ranges::equal(first1, last1, pfirst, plast, pred, proj, proj)` returns // `true`; otherwise, returns `false`. // // Complexity: No applications of the corresponding predicate if // ForwardIterator1 and ForwardIterator2 meet the requirements of random access // iterators and `last1 - first1 != last2 - first2`. Otherwise, exactly // `last1 - first1` applications of the corresponding predicate and projections // if `ranges::equal(first1, last1, first2, last2, pred, proj, proj)` would // return true; // otherwise, at worst `O(N^2)`, where `N` has the value `last1 - first1`. // // Reference: // https://wg21.link/alg.is.permutation#:~:text=ranges::is_permutation(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::is_permutation expects // pred(proj1(lhs), proj1(rhs)) to compile. return std::is_permutation( first1, last1, first2, last2, internal::PermutedProjectedBinaryPredicate(pred, proj1, proj2)); } // Returns: If `size(range1) != size(range2)`, return `false`. Otherwise return // `true` if there exists a permutation of the elements in `range2`, bounded by // `[pbegin, pend)`, such that // `ranges::equal(range1, [pbegin, pend), pred, proj, proj)` returns `true`; // otherwise, returns `false`. // // Complexity: No applications of the corresponding predicate if Range1 and // Range2 meet the requirements of random access ranges and // `size(range1) != size(range2)`. Otherwise, exactly `size(range1)` // applications of the corresponding predicate and projections if // `ranges::equal(range1, range2, pred, proj, proj)` would return true; // otherwise, at worst `O(N^2)`, where `N` has the value `size(range1)`. // // Reference: // https://wg21.link/alg.is.permutation#:~:text=ranges::is_permutation(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr bool is_permutation(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::is_permutation( ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // [alg.search] Search // Reference: https://wg21.link/alg.search // Returns: `i`, where `i` is the first iterator in the range // `[first1, last1 - (last2 - first2))` such that for every non-negative integer // `n` less than `last2 - first2` the condition // `bool(invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))))` // is `true`. // Returns `last1` if no such iterator exists. // Note: std::ranges::search(I1 first1,...) returns a range, rather than an // iterator. For simplicitly we match std::search's return type instead. // // Complexity: At most `(last1 - first1) * (last2 - first2)` applications of the // corresponding predicate and projections. // // Reference: https://wg21.link/alg.search#:~:text=ranges::search(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr auto search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return std::search(first1, last1, first2, last2, internal::ProjectedBinaryPredicate(pred, proj1, proj2)); } // Returns: `i`, where `i` is the first iterator in the range // `[begin(range1), end(range1) - size(range2))` such that for every // non-negative integer `n` less than `size(range2)` the condition // `bool(invoke(pred, invoke(proj1, *(i + n)), // invoke(proj2, *(begin(range2) + n))))` is `true`. // Returns `end(range1)` if no such iterator exists. // Note: std::ranges::search(R1&& r1,...) returns a range, rather than an // iterator. For simplicitly we match std::search's return type instead. // // Complexity: At most `size(range1) * size(range2)` applications of the // corresponding predicate and projections. // // Reference: https://wg21.link/alg.search#:~:text=ranges::search(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr auto search(Range1&& range1, Range2&& range2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::search(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(pred), std::move(proj1), std::move(proj2)); } // Mandates: The type `Size` is convertible to an integral type. // // Returns: `i` where `i` is the first iterator in the range // `[first, last - count)` such that for every non-negative integer `n` less // than `count`, the following condition holds: // `invoke(pred, invoke(proj, *(i + n)), value)`. // Returns `last` if no such iterator is found. // Note: std::ranges::search_n(I1 first1,...) returns a range, rather than an // iterator. For simplicitly we match std::search_n's return type instead. // // Complexity: At most `last - first` applications of the corresponding // predicate and projection. // // Reference: https://wg21.link/alg.search#:~:text=ranges::search_n(I template > constexpr auto search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value, Pred pred = {}, Proj proj = {}) { // The second arg is guaranteed to be `value`, so we'll simply apply the // identity projection. identity value_proj; return std::search_n( first, last, count, value, internal::ProjectedBinaryPredicate(pred, proj, value_proj)); } // Mandates: The type `Size` is convertible to an integral type. // // Returns: `i` where `i` is the first iterator in the range // `[begin(range), end(range) - count)` such that for every non-negative integer // `n` less than `count`, the following condition holds: // `invoke(pred, invoke(proj, *(i + n)), value)`. // Returns `end(arnge)` if no such iterator is found. // Note: std::ranges::search_n(R1&& r1,...) returns a range, rather than an // iterator. For simplicitly we match std::search_n's return type instead. // // Complexity: At most `size(range)` applications of the corresponding predicate // and projection. // // Reference: https://wg21.link/alg.search#:~:text=ranges::search_n(R template > constexpr auto search_n(Range&& range, Size count, const T& value, Pred pred = {}, Proj proj = {}) { return ranges::search_n(ranges::begin(range), ranges::end(range), count, value, std::move(pred), std::move(proj)); } // [alg.modifying.operations] Mutating sequence operations // Reference: https://wg21.link/alg.modifying.operations // [alg.copy] Copy // Reference: https://wg21.link/alg.copy // Let N be `last - first`. // // Preconditions: `result` is not in the range `[first, last)`. // // Effects: Copies elements in the range `[first, last)` into the range // `[result, result + N)` starting from `first` and proceeding to `last`. For // each non-negative integer `n < N` , performs `*(result + n) = *(first + n)`. // // Returns: `result + N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy(I template , typename = internal::iterator_category_t> constexpr auto copy(InputIterator first, InputIterator last, OutputIterator result) { return std::copy(first, last, result); } // Let N be `size(range)`. // // Preconditions: `result` is not in `range`. // // Effects: Copies elements in `range` into the range `[result, result + N)` // starting from `begin(range)` and proceeding to `end(range)`. For each // non-negative integer `n < N` , performs // *(result + n) = *(begin(range) + n)`. // // Returns: `result + N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy(R template , typename = internal::iterator_category_t> constexpr auto copy(Range&& range, OutputIterator result) { return ranges::copy(ranges::begin(range), ranges::end(range), result); } // Let `N` be `max(0, n)`. // // Mandates: The type `Size` is convertible to an integral type. // // Effects: For each non-negative integer `i < N`, performs // `*(result + i) = *(first + i)`. // // Returns: `result + N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy_n template , typename = internal::iterator_category_t> constexpr auto copy_n(InputIterator first, Size n, OutputIterator result) { return std::copy_n(first, n, result); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`, and `N` be the number // of iterators `i` in the range `[first, last)` for which the condition `E(i)` // holds. // // Preconditions: The ranges `[first, last)` and // `[result, result + (last - first))` do not overlap. // // Effects: Copies all of the elements referred to by the iterator `i` in the // range `[first, last)` for which `E(i)` is true. // // Returns: `result + N` // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy_if(I template , typename = internal::iterator_category_t> constexpr auto copy_if(InputIterator first, InputIterator last, OutputIterator result, Pred pred, Proj proj = {}) { return std::copy_if(first, last, result, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`, and `N` be the number // of iterators `i` in `range` for which the condition `E(i)` holds. // // Preconditions: `range` and `[result, result + size(range))` do not overlap. // // Effects: Copies all of the elements referred to by the iterator `i` in // `range` for which `E(i)` is true. // // Returns: `result + N` // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy_if(R template , typename = internal::iterator_category_t> constexpr auto copy_if(Range&& range, OutputIterator result, Pred pred, Proj proj = {}) { return ranges::copy_if(ranges::begin(range), ranges::end(range), result, std::move(pred), std::move(proj)); } // Let `N` be `last - first`. // // Preconditions: `result` is not in the range `(first, last]`. // // Effects: Copies elements in the range `[first, last)` into the range // `[result - N, result)` starting from `last - 1` and proceeding to `first`. // For each positive integer `n ≤ N`, performs `*(result - n) = *(last - n)`. // // Returns: `result - N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy_backward(I1 template , typename = internal::iterator_category_t> constexpr auto copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result) { return std::copy_backward(first, last, result); } // Let `N` be `size(range)`. // // Preconditions: `result` is not in the range `(begin(range), end(range)]`. // // Effects: Copies elements in `range` into the range `[result - N, result)` // starting from `end(range) - 1` and proceeding to `begin(range)`. For each // positive integer `n ≤ N`, performs `*(result - n) = *(end(range) - n)`. // // Returns: `result - N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.copy#:~:text=ranges::copy_backward(R template , typename = internal::iterator_category_t> constexpr auto copy_backward(Range&& range, BidirectionalIterator result) { return ranges::copy_backward(ranges::begin(range), ranges::end(range), result); } // [alg.move] Move // Reference: https://wg21.link/alg.move // Let `E(n)` be `std::move(*(first + n))`. // // Let `N` be `last - first`. // // Preconditions: `result` is not in the range `[first, last)`. // // Effects: Moves elements in the range `[first, last)` into the range `[result, // result + N)` starting from `first` and proceeding to `last`. For each // non-negative integer `n < N`, performs `*(result + n) = E(n)`. // // Returns: `result + N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.move#:~:text=ranges::move(I template , typename = internal::iterator_category_t> constexpr auto move(InputIterator first, InputIterator last, OutputIterator result) { return std::move(first, last, result); } // Let `E(n)` be `std::move(*(begin(range) + n))`. // // Let `N` be `size(range)`. // // Preconditions: `result` is not in `range`. // // Effects: Moves elements in `range` into the range `[result, result + N)` // starting from `begin(range)` and proceeding to `end(range)`. For each // non-negative integer `n < N`, performs `*(result + n) = E(n)`. // // Returns: `result + N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.move#:~:text=ranges::move(R template , typename = internal::iterator_category_t> constexpr auto move(Range&& range, OutputIterator result) { return ranges::move(ranges::begin(range), ranges::end(range), result); } // Let `E(n)` be `std::move(*(last - n))`. // // Let `N` be `last - first`. // // Preconditions: `result` is not in the range `(first, last]`. // // Effects: Moves elements in the range `[first, last)` into the range // `[result - N, result)` starting from `last - 1` and proceeding to `first`. // For each positive integer `n ≤ N`, performs `*(result - n) = E(n)`. // // Returns: `result - N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.move#:~:text=ranges::move_backward(I1 template , typename = internal::iterator_category_t> constexpr auto move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result) { return std::move_backward(first, last, result); } // Let `E(n)` be `std::move(*(end(range) - n))`. // // Let `N` be `size(range)`. // // Preconditions: `result` is not in the range `(begin(range), end(range)]`. // // Effects: Moves elements in `range` into the range `[result - N, result)` // starting from `end(range) - 1` and proceeding to `begin(range)`. For each // positive integer `n ≤ N`, performs `*(result - n) = E(n)`. // // Returns: `result - N` // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.move#:~:text=ranges::move_backward(R template , typename = internal::iterator_category_t> constexpr auto move_backward(Range&& range, BidirectionalIterator result) { return ranges::move_backward(ranges::begin(range), ranges::end(range), result); } // [alg.swap] Swap // Reference: https://wg21.link/alg.swap // Let `M` be `min(last1 - first1, last2 - first2)`. // // Preconditions: The two ranges `[first1, last1)` and `[first2, last2)` do not // overlap. `*(first1 + n)` is swappable with `*(first2 + n)`. // // Effects: For each non-negative integer `n < M` performs // `swap(*(first1 + n), *(first2 + n))` // // Returns: `first2 + M` // // Complexity: Exactly `M` swaps. // // Reference: https://wg21.link/alg.swap#:~:text=ranges::swap_ranges(I1 template , typename = internal::iterator_category_t> constexpr auto swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2) { // std::swap_ranges does not have a `last2` overload. Thus we need to // adjust `last1` to ensure to not read past `last2`. last1 = std::next(first1, std::min(std::distance(first1, last1), std::distance(first2, last2))); return std::swap_ranges(first1, last1, first2); } // Let `M` be `min(size(range1), size(range2))`. // // Preconditions: The two ranges `range1` and `range2` do not overlap. // `*(begin(range1) + n)` is swappable with `*(begin(range2) + n)`. // // Effects: For each non-negative integer `n < M` performs // `swap(*(begin(range1) + n), *(begin(range2) + n))` // // Returns: `begin(range2) + M` // // Complexity: Exactly `M` swaps. // // Reference: https://wg21.link/alg.swap#:~:text=ranges::swap_ranges(R1 template , typename = internal::range_category_t> constexpr auto swap_ranges(Range1&& range1, Range2&& range2) { return ranges::swap_ranges(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2)); } // [alg.transform] Transform // Reference: https://wg21.link/alg.transform // Let `N` be `last1 - first1`, // `E(i)` be `invoke(op, invoke(proj, *(first1 + (i - result))))`. // // Preconditions: `op` does not invalidate iterators or subranges, nor modify // elements in the ranges `[first1, first1 + N]`, and `[result, result + N]`. // // Effects: Assigns through every iterator `i` in the range // `[result, result + N)` a new corresponding value equal to `E(i)`. // // Returns: `result + N` // // Complexity: Exactly `N` applications of `op` and any projections. // // Remarks: result may be equal to `first1`. // // Reference: https://wg21.link/alg.transform#:~:text=ranges::transform(I template , typename = internal::iterator_category_t, typename = indirect_result_t>> constexpr auto transform(InputIterator first1, InputIterator last1, OutputIterator result, UnaryOperation op, Proj proj = {}) { return std::transform(first1, last1, result, [&op, &proj](auto&& arg) { return base::invoke(op, base::invoke(proj, std::forward(arg))); }); } // Let `N` be `size(range)`, // `E(i)` be `invoke(op, invoke(proj, *(begin(range) + (i - result))))`. // // Preconditions: `op` does not invalidate iterators or subranges, nor modify // elements in the ranges `[begin(range), end(range)]`, and // `[result, result + N]`. // // Effects: Assigns through every iterator `i` in the range // `[result, result + N)` a new corresponding value equal to `E(i)`. // // Returns: `result + N` // // Complexity: Exactly `N` applications of `op` and any projections. // // Remarks: result may be equal to `begin(range)`. // // Reference: https://wg21.link/alg.transform#:~:text=ranges::transform(R template , typename = internal::iterator_category_t, typename = indirect_result_t, Proj>>> constexpr auto transform(Range&& range, OutputIterator result, UnaryOperation op, Proj proj = {}) { return ranges::transform(ranges::begin(range), ranges::end(range), result, std::move(op), std::move(proj)); } // Let: // `N` be `min(last1 - first1, last2 - first2)`, // `E(i)` be `invoke(binary_op, invoke(proj1, *(first1 + (i - result))), // invoke(proj2, *(first2 + (i - result))))`. // // Preconditions: `binary_op` does not invalidate iterators or subranges, nor // modify elements in the ranges `[first1, first1 + N]`, `[first2, first2 + N]`, // and `[result, result + N]`. // // Effects: Assigns through every iterator `i` in the range // `[result, result + N)` a new corresponding value equal to `E(i)`. // // Returns: `result + N` // // Complexity: Exactly `N` applications of `binary_op`, and any projections. // // Remarks: `result` may be equal to `first1` or `first2`. // // Reference: https://wg21.link/alg.transform#:~:text=ranges::transform(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>> constexpr auto transform(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, OutputIterator result, BinaryOperation binary_op, Proj1 proj1 = {}, Proj2 proj2 = {}) { // std::transform does not have a `last2` overload. Thus we need to adjust // `last1` to ensure to not read past `last2`. last1 = std::next(first1, std::min(std::distance(first1, last1), std::distance(first2, last2))); return std::transform( first1, last1, first2, result, [&binary_op, &proj1, &proj2](auto&& lhs, auto&& rhs) { return base::invoke( binary_op, base::invoke(proj1, std::forward(lhs)), base::invoke(proj2, std::forward(rhs))); }); } // Let: // `N` be `min(size(range1), size(range2)`, // `E(i)` be `invoke(binary_op, invoke(proj1, *(begin(range1) + (i - result))), // invoke(proj2, *(begin(range2) + (i - result))))` // // Preconditions: `binary_op` does not invalidate iterators or subranges, nor // modify elements in the ranges `[begin(range1), end(range1)]`, // `[begin(range2), end(range2)]`, and `[result, result + N]`. // // Effects: Assigns through every iterator `i` in the range // `[result, result + N)` a new corresponding value equal to `E(i)`. // // Returns: `result + N` // // Complexity: Exactly `N` applications of `binary_op`, and any projections. // // Remarks: `result` may be equal to `begin(range1)` or `begin(range2)`. // // Reference: https://wg21.link/alg.transform#:~:text=ranges::transform(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>> constexpr auto transform(Range1&& range1, Range2&& range2, OutputIterator result, BinaryOperation binary_op, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::transform(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(binary_op), std::move(proj1), std::move(proj2)); } // [alg.replace] Replace // Reference: https://wg21.link/alg.replace // Let `E(i)` be `bool(invoke(proj, *i) == old_value)`. // // Mandates: `new_value` is writable to `first`. // // Effects: Substitutes elements referred by the iterator `i` in the range // `[first, last)` with `new_value`, when `E(i)` is true. // // Returns: `last` // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace(I template > constexpr auto replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value, Proj proj = {}) { // Note: In order to be able to apply `proj` to each element in [first, last) // we are dispatching to std::replace_if instead of std::replace. std::replace_if( first, last, [&proj, &old_value](auto&& lhs) { return base::invoke(proj, std::forward(lhs)) == old_value; }, new_value); return last; } // Let `E(i)` be `bool(invoke(proj, *i) == old_value)`. // // Mandates: `new_value` is writable to `begin(range)`. // // Effects: Substitutes elements referred by the iterator `i` in `range` with // `new_value`, when `E(i)` is true. // // Returns: `end(range)` // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace(R template > constexpr auto replace(Range&& range, const T& old_value, const T& new_value, Proj proj = {}) { return ranges::replace(ranges::begin(range), ranges::end(range), old_value, new_value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Mandates: `new_value` is writable to `first`. // // Effects: Substitutes elements referred by the iterator `i` in the range // `[first, last)` with `new_value`, when `E(i)` is true. // // Returns: `last` // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_if(I template > constexpr auto replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value, Proj proj = {}) { std::replace_if(first, last, internal::ProjectedUnaryPredicate(pred, proj), new_value); return last; } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Mandates: `new_value` is writable to `begin(range)`. // // Effects: Substitutes elements referred by the iterator `i` in `range` with // `new_value`, when `E(i)` is true. // // Returns: `end(range)` // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_if(R template > constexpr auto replace_if(Range&& range, Predicate pred, const T& new_value, Proj proj = {}) { return ranges::replace_if(ranges::begin(range), ranges::end(range), std::move(pred), new_value, std::move(proj)); } // Let `E(i)` be `bool(invoke(proj, *(first + (i - result))) == old_value)`. // // Mandates: The results of the expressions `*first` and `new_value` are // writable to `result`. // // Preconditions: The ranges `[first, last)` and `[result, result + (last - // first))` do not overlap. // // Effects: Assigns through every iterator `i` in the range `[result, result + // (last - first))` a new corresponding value, `new_value` if `E(i)` is true, or // `*(first + (i - result))` otherwise. // // Returns: `result + (last - first)`. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_copy(I template , typename = internal::iterator_category_t> constexpr auto replace_copy(InputIterator first, InputIterator last, OutputIterator result, const T& old_value, const T& new_value, Proj proj = {}) { // Note: In order to be able to apply `proj` to each element in [first, last) // we are dispatching to std::replace_copy_if instead of std::replace_copy. std::replace_copy_if( first, last, result, [&proj, &old_value](auto&& lhs) { return base::invoke(proj, std::forward(lhs)) == old_value; }, new_value); return last; } // Let `E(i)` be // `bool(invoke(proj, *(begin(range) + (i - result))) == old_value)`. // // Mandates: The results of the expressions `*begin(range)` and `new_value` are // writable to `result`. // // Preconditions: The ranges `range` and `[result, result + size(range))` do not // overlap. // // Effects: Assigns through every iterator `i` in the range `[result, result + // size(range))` a new corresponding value, `new_value` if `E(i)` is true, or // `*(begin(range) + (i - result))` otherwise. // // Returns: `result + size(range)`. // // Complexity: Exactly `size(range)` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_copy(R template , typename = internal::iterator_category_t> constexpr auto replace_copy(Range&& range, OutputIterator result, const T& old_value, const T& new_value, Proj proj = {}) { return ranges::replace_copy(ranges::begin(range), ranges::end(range), result, old_value, new_value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *(first + (i - result)))))`. // // Mandates: The results of the expressions `*first` and `new_value` are // writable to `result`. // // Preconditions: The ranges `[first, last)` and `[result, result + (last - // first))` do not overlap. // // Effects: Assigns through every iterator `i` in the range `[result, result + // (last - first))` a new corresponding value, `new_value` if `E(i)` is true, or // `*(first + (i - result))` otherwise. // // Returns: `result + (last - first)`. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_copy_if(I template , typename = internal::iterator_category_t> constexpr auto replace_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred, const T& new_value, Proj proj = {}) { return std::replace_copy_if(first, last, result, internal::ProjectedUnaryPredicate(pred, proj), new_value); } // Let `E(i)` be // `bool(invoke(pred, invoke(proj, *(begin(range) + (i - result)))))`. // // Mandates: The results of the expressions `*begin(range)` and `new_value` are // writable to `result`. // // Preconditions: The ranges `range` and `[result, result + size(range))` do not // overlap. // // Effects: Assigns through every iterator `i` in the range `[result, result + // size(range))` a new corresponding value, `new_value` if `E(i)` is true, or // `*(begin(range) + (i - result))` otherwise. // // Returns: `result + size(range)`. // // Complexity: Exactly `size(range)` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.replace#:~:text=ranges::replace_copy_if(R template , typename = internal::iterator_category_t> constexpr auto replace_copy_if(Range&& range, OutputIterator result, Predicate pred, const T& new_value, Proj proj = {}) { return ranges::replace_copy_if(ranges::begin(range), ranges::end(range), result, pred, new_value, std::move(proj)); } // [alg.fill] Fill // Reference: https://wg21.link/alg.fill // Let `N` be `last - first`. // // Mandates: The expression `value` is writable to the output iterator. // // Effects: Assigns `value` through all the iterators in the range // `[first, last)`. // // Returns: `last`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.fill#:~:text=ranges::fill(O template > constexpr auto fill(OutputIterator first, OutputIterator last, const T& value) { std::fill(first, last, value); return last; } // Let `N` be `size(range)`. // // Mandates: The expression `value` is writable to the output iterator. // // Effects: Assigns `value` through all the iterators in `range`. // // Returns: `end(range)`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.fill#:~:text=ranges::fill(R template > constexpr auto fill(Range&& range, const T& value) { return ranges::fill(ranges::begin(range), ranges::end(range), value); } // Let `N` be `max(0, n)`. // // Mandates: The expression `value` is writable to the output iterator. // The type `Size` is convertible to an integral type. // // Effects: Assigns `value` through all the iterators in `[first, first + N)`. // // Returns: `first + N`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.fill#:~:text=ranges::fill_n(O template > constexpr auto fill_n(OutputIterator first, Size n, const T& value) { return std::fill_n(first, n, value); } // [alg.generate] Generate // Reference: https://wg21.link/alg.generate // Let `N` be `last - first`. // // Effects: Assigns the result of successive evaluations of gen() through each // iterator in the range `[first, last)`. // // Returns: `last`. // // Complexity: Exactly `N` evaluations of `gen()` and assignments. // // Reference: https://wg21.link/alg.generate#:~:text=ranges::generate(O template > constexpr auto generate(OutputIterator first, OutputIterator last, Generator gen) { std::generate(first, last, std::move(gen)); return last; } // Let `N` be `size(range)`. // // Effects: Assigns the result of successive evaluations of gen() through each // iterator in `range`. // // Returns: `end(range)`. // // Complexity: Exactly `N` evaluations of `gen()` and assignments. // // Reference: https://wg21.link/alg.generate#:~:text=ranges::generate(R template > constexpr auto generate(Range&& range, Generator gen) { return ranges::generate(ranges::begin(range), ranges::end(range), std::move(gen)); } // Let `N` be `max(0, n)`. // // Mandates: `Size` is convertible to an integral type. // // Effects: Assigns the result of successive evaluations of gen() through each // iterator in the range `[first, first + N)`. // // Returns: `first + N`. // // Complexity: Exactly `N` evaluations of `gen()` and assignments. // // Reference: https://wg21.link/alg.generate#:~:text=ranges::generate_n(O template > constexpr auto generate_n(OutputIterator first, Size n, Generator gen) { return std::generate_n(first, n, std::move(gen)); } // [alg.remove] Remove // Reference: https://wg21.link/alg.remove // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Effects: Eliminates all the elements referred to by iterator `i` in the range // `[first, last)` for which `E(i)` holds. // // Returns: The end of the resulting range. // // Remarks: Stable. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove(I template > constexpr auto remove(ForwardIterator first, ForwardIterator last, const T& value, Proj proj = {}) { // Note: In order to be able to apply `proj` to each element in [first, last) // we are dispatching to std::remove_if instead of std::remove. return std::remove_if(first, last, [&proj, &value](auto&& lhs) { return base::invoke(proj, std::forward(lhs)) == value; }); } // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Effects: Eliminates all the elements referred to by iterator `i` in `range` // for which `E(i)` holds. // // Returns: The end of the resulting range. // // Remarks: Stable. // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove(R template > constexpr auto remove(Range&& range, const T& value, Proj proj = {}) { return ranges::remove(ranges::begin(range), ranges::end(range), value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Effects: Eliminates all the elements referred to by iterator `i` in the range // `[first, last)` for which `E(i)` holds. // // Returns: The end of the resulting range. // // Remarks: Stable. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_if(I template > constexpr auto remove_if(ForwardIterator first, ForwardIterator last, Predicate pred, Proj proj = {}) { return std::remove_if(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Effects: Eliminates all the elements referred to by iterator `i` in `range`. // // Returns: The end of the resulting range. // // Remarks: Stable. // // Complexity: Exactly `size(range)` applications of the corresponding predicate // and any projection. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_if(R template > constexpr auto remove_if(Range&& range, Predicate pred, Proj proj = {}) { return ranges::remove_if(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Let `N` be the number of elements in `[first, last)` for which `E(i)` is // false. // // Mandates: `*first` is writable to `result`. // // Preconditions: The ranges `[first, last)` and `[result, result + (last - // first))` do not overlap. // // Effects: Copies all the elements referred to by the iterator `i` in the range // `[first, last)` for which `E(i)` is false. // // Returns: `result + N`. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_copy(I template , typename = internal::iterator_category_t> constexpr auto remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value, Proj proj = {}) { // Note: In order to be able to apply `proj` to each element in [first, last) // we are dispatching to std::remove_copy_if instead of std::remove_copy. return std::remove_copy_if(first, last, result, [&proj, &value](auto&& lhs) { return base::invoke(proj, std::forward(lhs)) == value; }); } // Let `E(i)` be `bool(invoke(proj, *i) == value)`. // // Let `N` be the number of elements in `range` for which `E(i)` is false. // // Mandates: `*begin(range)` is writable to `result`. // // Preconditions: The ranges `range` and `[result, result + size(range))` do not // overlap. // // Effects: Copies all the elements referred to by the iterator `i` in `range` // for which `E(i)` is false. // // Returns: `result + N`. // // Complexity: Exactly `size(range)` applications of the corresponding // predicate and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_copy(R template , typename = internal::iterator_category_t> constexpr auto remove_copy(Range&& range, OutputIterator result, const T& value, Proj proj = {}) { return ranges::remove_copy(ranges::begin(range), ranges::end(range), result, value, std::move(proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Let `N` be the number of elements in `[first, last)` for which `E(i)` is // false. // // Mandates: `*first` is writable to `result`. // // Preconditions: The ranges `[first, last)` and `[result, result + (last - // first))` do not overlap. // // Effects: Copies all the elements referred to by the iterator `i` in the range // `[first, last)` for which `E(i)` is false. // // Returns: `result + N`. // // Complexity: Exactly `last - first` applications of the corresponding // predicate and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_copy_if(I template , typename = internal::iterator_category_t> constexpr auto remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Pred pred, Proj proj = {}) { return std::remove_copy_if(first, last, result, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(i)` be `bool(invoke(pred, invoke(proj, *i)))`. // // Let `N` be the number of elements in `range` for which `E(i)` is false. // // Mandates: `*begin(range)` is writable to `result`. // // Preconditions: The ranges `range` and `[result, result + size(range))` do not // overlap. // // Effects: Copies all the elements referred to by the iterator `i` in `range` // for which `E(i)` is false. // // Returns: `result + N`. // // Complexity: Exactly `size(range)` applications of the corresponding // predicate and any projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.remove#:~:text=ranges::remove_copy(R template , typename = internal::iterator_category_t> constexpr auto remove_copy_if(Range&& range, OutputIterator result, Pred pred, Proj proj = {}) { return ranges::remove_copy_if(ranges::begin(range), ranges::end(range), result, std::move(pred), std::move(proj)); } // [alg.unique] Unique // Reference: https://wg21.link/alg.unique // Let `E(i)` be `bool(invoke(comp, invoke(proj, *(i - 1)), invoke(proj, *i)))`. // // Effects: For a nonempty range, eliminates all but the first element from // every consecutive group of equivalent elements referred to by the iterator // `i` in the range `[first + 1, last)` for which `E(i)` is true. // // Returns: The end of the resulting range. // // Complexity: For nonempty ranges, exactly `(last - first) - 1` applications of // the corresponding predicate and no more than twice as many applications of // any projection. // // Reference: https://wg21.link/alg.unique#:~:text=ranges::unique(I template , typename = indirect_result_t, projected>> constexpr auto unique(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { return std::unique(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Let `E(i)` be `bool(invoke(comp, invoke(proj, *(i - 1)), invoke(proj, *i)))`. // // Effects: For a nonempty range, eliminates all but the first element from // every consecutive group of equivalent elements referred to by the iterator // `i` in the range `[begin(range) + 1, end(range))` for which `E(i)` is true. // // Returns: The end of the resulting range. // // Complexity: For nonempty ranges, exactly `size(range) - 1` applications of // the corresponding predicate and no more than twice as many applications of // any projection. // // Reference: https://wg21.link/alg.unique#:~:text=ranges::unique(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto unique(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::unique(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Let `E(i)` be `bool(invoke(comp, invoke(proj, *i), invoke(proj, *(i - 1))))`. // // Mandates: `*first` is writable to `result`. // // Preconditions: The ranges `[first, last)` and // `[result, result + (last - first))` do not overlap. // // Effects: Copies only the first element from every consecutive group of equal // elements referred to by the iterator `i` in the range `[first, last)` for // which `E(i)` holds. // // Returns: `result + N`. // // Complexity: Exactly `last - first - 1` applications of the corresponding // predicate and no more than twice as many applications of any projection. // // Reference: https://wg21.link/alg.unique#:~:text=ranges::unique_copy(I template , typename = internal::iterator_category_t> constexpr auto unique_copy(ForwardIterator first, ForwardIterator last, OutputIterator result, Comp comp = {}, Proj proj = {}) { return std::unique_copy(first, last, result, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Let `E(i)` be `bool(invoke(comp, invoke(proj, *i), invoke(proj, *(i - 1))))`. // // Mandates: `*begin(range)` is writable to `result`. // // Preconditions: The ranges `range` and `[result, result + size(range))` do not // overlap. // // Effects: Copies only the first element from every consecutive group of equal // elements referred to by the iterator `i` in `range` for which `E(i)` holds. // // Returns: `result + N`. // // Complexity: Exactly `size(range) - 1` applications of the corresponding // predicate and no more than twice as many applications of any projection. // // Reference: https://wg21.link/alg.unique#:~:text=ranges::unique_copy(R template , typename = internal::iterator_category_t> constexpr auto unique_copy(Range&& range, OutputIterator result, Comp comp = {}, Proj proj = {}) { return ranges::unique_copy(ranges::begin(range), ranges::end(range), result, std::move(comp), std::move(proj)); } // [alg.reverse] Reverse // Reference: https://wg21.link/alg.reverse // Effects: For each non-negative integer `i < (last - first) / 2`, applies // `std::iter_swap` to all pairs of iterators `first + i, (last - i) - 1`. // // Returns: `last`. // // Complexity: Exactly `(last - first)/2` swaps. // // Reference: https://wg21.link/alg.reverse#:~:text=ranges::reverse(I template > constexpr auto reverse(BidirectionalIterator first, BidirectionalIterator last) { std::reverse(first, last); return last; } // Effects: For each non-negative integer `i < size(range) / 2`, applies // `std::iter_swap` to all pairs of iterators // `begin(range) + i, (end(range) - i) - 1`. // // Returns: `end(range)`. // // Complexity: Exactly `size(range)/2` swaps. // // Reference: https://wg21.link/alg.reverse#:~:text=ranges::reverse(R template > constexpr auto reverse(Range&& range) { return ranges::reverse(ranges::begin(range), ranges::end(range)); } // Let `N` be `last - first`. // // Preconditions: The ranges `[first, last)` and `[result, result + N)` do not // overlap. // // Effects: Copies the range `[first, last)` to the range `[result, result + N)` // such that for every non-negative integer `i < N` the following assignment // takes place: `*(result + N - 1 - i) = *(first + i)`. // // Returns: `result + N`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.reverse#:~:text=ranges::reverse_copy(I template , typename = internal::iterator_category_t> constexpr auto reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result) { return std::reverse_copy(first, last, result); } // Let `N` be `size(range)`. // // Preconditions: The ranges `range` and `[result, result + N)` do not // overlap. // // Effects: Copies `range` to the range `[result, result + N)` such that for // every non-negative integer `i < N` the following assignment takes place: // `*(result + N - 1 - i) = *(begin(range) + i)`. // // Returns: `result + N`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.reverse#:~:text=ranges::reverse_copy(R template , typename = internal::iterator_category_t> constexpr auto reverse_copy(Range&& range, OutputIterator result) { return ranges::reverse_copy(ranges::begin(range), ranges::end(range), result); } // [alg.rotate] Rotate // Reference: https://wg21.link/alg.rotate // Preconditions: `[first, middle)` and `[middle, last)` are valid ranges. // // Effects: For each non-negative integer `i < (last - first)`, places the // element from the position `first + i` into position // `first + (i + (last - middle)) % (last - first)`. // // Returns: `first + (last - middle)`. // // Complexity: At most `last - first` swaps. // // Reference: https://wg21.link/alg.rotate#:~:text=ranges::rotate(I template > constexpr auto rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last) { return std::rotate(first, middle, last); } // Preconditions: `[begin(range), middle)` and `[middle, end(range))` are valid // ranges. // // Effects: For each non-negative integer `i < size(range)`, places the element // from the position `begin(range) + i` into position // `begin(range) + (i + (end(range) - middle)) % size(range)`. // // Returns: `begin(range) + (end(range) - middle)`. // // Complexity: At most `size(range)` swaps. // // Reference: https://wg21.link/alg.rotate#:~:text=ranges::rotate(R template > constexpr auto rotate(Range&& range, iterator_t middle) { return ranges::rotate(ranges::begin(range), middle, ranges::end(range)); } // Let `N` be `last - first`. // // Preconditions: `[first, middle)` and `[middle, last)` are valid ranges. The // ranges `[first, last)` and `[result, result + N)` do not overlap. // // Effects: Copies the range `[first, last)` to the range `[result, result + N)` // such that for each non-negative integer `i < N` the following assignment // takes place: `*(result + i) = *(first + (i + (middle - first)) % N)`. // // Returns: `result + N`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.rotate#:~:text=ranges::rotate_copy(I template , typename = internal::iterator_category_t> constexpr auto rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last, OutputIterator result) { return std::rotate_copy(first, middle, last, result); } // Let `N` be `size(range)`. // // Preconditions: `[begin(range), middle)` and `[middle, end(range))` are valid // ranges. The ranges `range` and `[result, result + N)` do not overlap. // // Effects: Copies `range` to the range `[result, result + N)` such that for // each non-negative integer `i < N` the following assignment takes place: // `*(result + i) = *(begin(range) + (i + (middle - begin(range))) % N)`. // // Returns: `result + N`. // // Complexity: Exactly `N` assignments. // // Reference: https://wg21.link/alg.rotate#:~:text=ranges::rotate_copy(R template , typename = internal::iterator_category_t> constexpr auto rotate_copy(Range&& range, iterator_t middle, OutputIterator result) { return ranges::rotate_copy(ranges::begin(range), middle, ranges::end(range), result); } // [alg.random.sample] Sample // Reference: https://wg21.link/alg.random.sample // Currently not implemented due to lack of std::sample in C++14. // TODO(crbug.com/1071094): Consider implementing a hand-rolled version. // [alg.random.shuffle] Shuffle // Reference: https://wg21.link/alg.random.shuffle // Preconditions: The type `std::remove_reference_t` // meets the uniform random bit generator requirements. // // Effects: Permutes the elements in the range `[first, last)` such that each // possible permutation of those elements has equal probability of appearance. // // Returns: `last`. // // Complexity: Exactly `(last - first) - 1` swaps. // // Remarks: To the extent that the implementation of this function makes use of // random numbers, the object referenced by g shall serve as the // implementation's source of randomness. // // Reference: https://wg21.link/alg.random.shuffle#:~:text=ranges::shuffle(I template > constexpr auto shuffle(RandomAccessIterator first, RandomAccessIterator last, UniformRandomBitGenerator&& g) { std::shuffle(first, last, std::forward(g)); return last; } // Preconditions: The type `std::remove_reference_t` // meets the uniform random bit generator requirements. // // Effects: Permutes the elements in `range` such that each possible permutation // of those elements has equal probability of appearance. // // Returns: `end(range)`. // // Complexity: Exactly `size(range) - 1` swaps. // // Remarks: To the extent that the implementation of this function makes use of // random numbers, the object referenced by g shall serve as the // implementation's source of randomness. // // Reference: https://wg21.link/alg.random.shuffle#:~:text=ranges::shuffle(R template > constexpr auto shuffle(Range&& range, UniformRandomBitGenerator&& g) { return ranges::shuffle(ranges::begin(range), ranges::end(range), std::forward(g)); } // [alg.nonmodifying] Sorting and related operations // Reference: https://wg21.link/alg.sorting // [alg.sort] Sorting // Reference: https://wg21.link/alg.sort // [sort] sort // Reference: https://wg21.link/sort // Effects: Sorts the elements in the range `[first, last)` with respect to // `comp` and `proj`. // // Returns: `last`. // // Complexity: Let `N` be `last - first`. `O(N log N)` comparisons and // projections. // // Reference: https://wg21.link/sort#:~:text=ranges::sort(I template , typename = indirect_result_t, projected>> constexpr auto sort(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::sort(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Effects: Sorts the elements in `range` with respect to `comp` and `proj`. // // Returns: `end(range)`. // // Complexity: Let `N` be `size(range)`. `O(N log N)` comparisons and // projections. // // Reference: https://wg21.link/sort#:~:text=ranges::sort(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto sort(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::sort(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [stable.sort] stable_sort // Reference: https://wg21.link/stable.sort // Effects: Sorts the elements in the range `[first, last)` with respect to // `comp` and `proj`. // // Returns: `last`. // // Complexity: Let `N` be `last - first`. If enough extra memory is available, // `N log (N)` comparisons. Otherwise, at most `N log^2 (N)` comparisons. In // either case, twice as many projections as the number of comparisons. // // Remarks: Stable. // // Reference: https://wg21.link/stable.sort#:~:text=ranges::stable_sort(I template , typename = indirect_result_t, projected>> constexpr auto stable_sort(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::stable_sort(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Effects: Sorts the elements in `range` with respect to `comp` and `proj`. // // Returns: `end(rang)`. // // Complexity: Let `N` be `size(range)`. If enough extra memory is available, // `N log (N)` comparisons. Otherwise, at most `N log^2 (N)` comparisons. In // either case, twice as many projections as the number of comparisons. // // Remarks: Stable. // // Reference: https://wg21.link/stable.sort#:~:text=ranges::stable_sort(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto stable_sort(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::stable_sort(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [partial.sort] partial_sort // Reference: https://wg21.link/partial.sort // Preconditions: `[first, middle)` and `[middle, last)` are valid ranges. // // Effects: Places the first `middle - first` elements from the range // `[first, last)` as sorted with respect to `comp` and `proj` into the range // `[first, middle)`. The rest of the elements in the range `[middle, last)` are // placed in an unspecified order. // // Returns: `last`. // // Complexity: Approximately `(last - first) * log(middle - first)` comparisons, // and twice as many projections. // // Reference: https://wg21.link/partial.sort#:~:text=ranges::partial_sort(I template , typename = indirect_result_t, projected>> constexpr auto partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::partial_sort(first, middle, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: `[begin(range), middle)` and `[middle, end(range))` are valid // ranges. // // Effects: Places the first `middle - begin(range)` elements from `range` as // sorted with respect to `comp` and `proj` into the range // `[begin(range), middle)`. The rest of the elements in the range // `[middle, end(range))` are placed in an unspecified order. // // Returns: `end(range)`. // // Complexity: Approximately `size(range) * log(middle - begin(range))` // comparisons, and twice as many projections. // // Reference: https://wg21.link/partial.sort#:~:text=ranges::partial_sort(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto partial_sort(Range&& range, iterator_t middle, Comp comp = {}, Proj proj = {}) { return ranges::partial_sort(ranges::begin(range), middle, ranges::end(range), std::move(comp), std::move(proj)); } // [partial.sort.copy] partial_sort_copy // Reference: https://wg21.link/partial.sort.copy // Let `N` be `min(last - first, result_last - result_first)`. // // Preconditions: For iterators `a1` and `b1` in `[first, last)`, and iterators // `x2` and `y2` in `[result_first, result_last)`, after evaluating the // assignment `*y2 = *b1`, let `E` be the value of `bool(invoke(comp, // invoke(proj1, *a1), invoke(proj2, *y2)))`. Then, after evaluating the // assignment `*x2 = *a1`, `E` is equal to `bool(invoke(comp, invoke(proj2, // *x2), invoke(proj2, *y2)))`. // // Effects: Places the first `N` elements as sorted with respect to `comp` and // `proj2` into the range `[result_first, result_first + N)`. // // Returns: `result_first + N`. // // Complexity: Approximately `(last - first) * log N` comparisons, and twice as // many projections. // // Reference: // https://wg21.link/partial.sort.copy#:~:text=ranges::partial_sort_copy(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::partial_sort_copy expects // comp(proj2(lhs), proj1(rhs)) to compile. return std::partial_sort_copy( first, last, result_first, result_last, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Let `N` be `min(size(range), size(result_range))`. // // Preconditions: For iterators `a1` and `b1` in `range`, and iterators // `x2` and `y2` in `result_range`, after evaluating the assignment // `*y2 = *b1`, let `E` be the value of // `bool(invoke(comp, invoke(proj1, *a1), invoke(proj2, *y2)))`. Then, after // evaluating the assignment `*x2 = *a1`, `E` is equal to // `bool(invoke(comp, invoke(proj2, *x2), invoke(proj2, *y2)))`. // // Effects: Places the first `N` elements as sorted with respect to `comp` and // `proj2` into the range `[begin(result_range), begin(result_range) + N)`. // // Returns: `begin(result_range) + N`. // // Complexity: Approximately `size(range) * log N` comparisons, and twice as // many projections. // // Reference: // https://wg21.link/partial.sort.copy#:~:text=ranges::partial_sort_copy(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto partial_sort_copy(Range1&& range, Range2&& result_range, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::partial_sort_copy(ranges::begin(range), ranges::end(range), ranges::begin(result_range), ranges::end(result_range), std::move(comp), std::move(proj1), std::move(proj2)); } // [is.sorted] is_sorted // Reference: https://wg21.link/is.sorted // Returns: The last iterator `i` in `[first, last]` for which the range // `[first, i)` is sorted with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.sorted#:~:text=ranges::is_sorted_until(I template , typename = indirect_result_t, projected>> constexpr auto is_sorted_until(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { // Implementation inspired by cppreference.com: // https://en.cppreference.com/w/cpp/algorithm/is_sorted_until // // A reimplementation is required, because std::is_sorted_until is not // constexpr prior to C++20. Once we have C++20, we should switch to standard // library implementation. if (first == last) return last; for (ForwardIterator next = first; ++next != last; ++first) { if (base::invoke(comp, base::invoke(proj, *next), base::invoke(proj, *first))) { return next; } } return last; } // Returns: The last iterator `i` in `[begin(range), end(range)]` for which the // range `[begin(range), i)` is sorted with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.sorted#:~:text=ranges::is_sorted_until(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto is_sorted_until(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::is_sorted_until(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Returns: Whether the range `[first, last)` is sorted with respect to `comp` // and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.sorted#:~:text=ranges::is_sorted(I template , typename = indirect_result_t, projected>> constexpr auto is_sorted(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { return ranges::is_sorted_until(first, last, std::move(comp), std::move(proj)) == last; } // Returns: Whether `range` is sorted with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.sorted#:~:text=ranges::is_sorted(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto is_sorted(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::is_sorted(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [alg.nth.element] Nth element // Reference: https://wg21.link/alg.nth.element // Preconditions: `[first, nth)` and `[nth, last)` are valid ranges. // // Effects: After `nth_element` the element in the position pointed to by `nth` // is the element that would be in that position if the whole range were sorted // with respect to `comp` and `proj`, unless `nth == last`. Also for every // iterator `i` in the range `[first, nth)` and every iterator `j` in the range // `[nth, last)` it holds that: // `bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))` is false. // // Returns: `last`. // // Complexity: Linear on average. // // Reference: https://wg21.link/alg.nth.element#:~:text=ranges::nth_element(I template , typename = indirect_result_t, projected>> constexpr auto nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::nth_element(first, nth, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: `[begin(range), nth)` and `[nth, end(range))` are valid // ranges. // // Effects: After `nth_element` the element in the position pointed to by `nth` // is the element that would be in that position if the whole range were sorted // with respect to `comp` and `proj`, unless `nth == end(range)`. Also for every // iterator `i` in the range `[begin(range), nth)` and every iterator `j` in the // range `[nth, end(range))` it holds that: // `bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))` is false. // // Returns: `end(range)`. // // Complexity: Linear on average. // // Reference: https://wg21.link/alg.nth.element#:~:text=ranges::nth_element(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto nth_element(Range&& range, iterator_t nth, Comp comp = {}, Proj proj = {}) { return ranges::nth_element(ranges::begin(range), nth, ranges::end(range), std::move(comp), std::move(proj)); } // [alg.binary.search] Binary search // Reference: https://wg21.link/alg.binary.search // [lower.bound] lower_bound // Reference: https://wg21.link/lower.bound // Preconditions: The elements `e` of `[first, last)` are partitioned with // respect to the expression `bool(invoke(comp, invoke(proj, e), value))`. // // Returns: The furthermost iterator `i` in the range `[first, last]` such that // for every iterator `j` in the range `[first, i)`, // `bool(invoke(comp, invoke(proj, *j), value))` is true. // // Complexity: At most `log_2(last - first) + O(1)` comparisons and projections. // // Reference: https://wg21.link/lower.bound#:~:text=ranges::lower_bound(I template > constexpr auto lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Comp comp = {}, Proj proj = {}) { // The second arg is guaranteed to be `value`, so we'll simply apply the // identity projection. identity value_proj; return std::lower_bound( first, last, value, internal::ProjectedBinaryPredicate(comp, proj, value_proj)); } // Preconditions: The elements `e` of `range` are partitioned with respect to // the expression `bool(invoke(comp, invoke(proj, e), value))`. // // Returns: The furthermost iterator `i` in the range // `[begin(range), end(range)]` such that for every iterator `j` in the range // `[begin(range), i)`, `bool(invoke(comp, invoke(proj, *j), value))` is true. // // Complexity: At most `log_2(size(range)) + O(1)` comparisons and projections. // // Reference: https://wg21.link/lower.bound#:~:text=ranges::lower_bound(R template > constexpr auto lower_bound(Range&& range, const T& value, Comp comp = {}, Proj proj = {}) { return ranges::lower_bound(ranges::begin(range), ranges::end(range), value, std::move(comp), std::move(proj)); } // [upper.bound] upper_bound // Reference: https://wg21.link/upper.bound // Preconditions: The elements `e` of `[first, last)` are partitioned with // respect to the expression `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: The furthermost iterator `i` in the range `[first, last]` such that // for every iterator `j` in the range `[first, i)`, // `!bool(invoke(comp, value, invoke(proj, *j)))` is true. // // Complexity: At most `log_2(last - first) + O(1)` comparisons and projections. // // Reference: https://wg21.link/upper.bound#:~:text=ranges::upper_bound(I template > constexpr auto upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Comp comp = {}, Proj proj = {}) { // The first arg is guaranteed to be `value`, so we'll simply apply the // identity projection. identity value_proj; return std::upper_bound( first, last, value, internal::ProjectedBinaryPredicate(comp, value_proj, proj)); } // Preconditions: The elements `e` of `range` are partitioned with // respect to the expression `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: The furthermost iterator `i` in the range // `[begin(range), end(range)]` such that for every iterator `j` in the range // `[begin(range), i)`, `!bool(invoke(comp, value, invoke(proj, *j)))` is true. // // Complexity: At most `log_2(size(range)) + O(1)` comparisons and projections. // // Reference: https://wg21.link/upper.bound#:~:text=ranges::upper_bound(R template > constexpr auto upper_bound(Range&& range, const T& value, Comp comp = {}, Proj proj = {}) { return ranges::upper_bound(ranges::begin(range), ranges::end(range), value, std::move(comp), std::move(proj)); } // [equal.range] equal_range // Reference: https://wg21.link/equal.range // Preconditions: The elements `e` of `[first, last)` are partitioned with // respect to the expressions `bool(invoke(comp, invoke(proj, e), value))` and // `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: `{ranges::lower_bound(first, last, value, comp, proj), // ranges::upper_bound(first, last, value, comp, proj)}`. // // Complexity: At most 2 ∗ log_2(last - first) + O(1) comparisons and // projections. // // Reference: https://wg21.link/equal.range#:~:text=ranges::equal_range(I template > constexpr auto equal_range(ForwardIterator first, ForwardIterator last, const T& value, Comp comp = {}, Proj proj = {}) { // Note: This does not dispatch to std::equal_range, as otherwise it would not // be possible to prevent applying `proj` to `value`, which can result in // unintended behavior. return std::make_pair(ranges::lower_bound(first, last, value, comp, proj), ranges::upper_bound(first, last, value, comp, proj)); } // Preconditions: The elements `e` of `range` are partitioned with // respect to the expressions `bool(invoke(comp, invoke(proj, e), value))` and // `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: `{ranges::lower_bound(range, value, comp, proj), // ranges::upper_bound(range, value, comp, proj)}`. // // Complexity: At most 2 ∗ log_2(size(range)) + O(1) comparisons and // projections. // // Reference: https://wg21.link/equal.range#:~:text=ranges::equal_range(R template > constexpr auto equal_range(Range&& range, const T& value, Comp comp = {}, Proj proj = {}) { return ranges::equal_range(ranges::begin(range), ranges::end(range), value, std::move(comp), std::move(proj)); } // [binary.search] binary_search // Reference: https://wg21.link/binary.search // Preconditions: The elements `e` of `[first, last)` are partitioned with // respect to the expressions `bool(invoke(comp, invoke(proj, e), value))` and // `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: `true` if and only if for some iterator `i` in the range // `[first, last)`, `!bool(invoke(comp, invoke(proj, *i), value)) && // !bool(invoke(comp, value, invoke(proj, *i)))` is true. // // Complexity: At most `log_2(last - first) + O(1)` comparisons and projections. // // Reference: https://wg21.link/binary.search#:~:text=ranges::binary_search(I template > constexpr auto binary_search(ForwardIterator first, ForwardIterator last, const T& value, Comp comp = {}, Proj proj = {}) { first = ranges::lower_bound(first, last, value, comp, proj); return first != last && !base::invoke(comp, value, base::invoke(proj, *first)); } // Preconditions: The elements `e` of `range` are partitioned with // respect to the expressions `bool(invoke(comp, invoke(proj, e), value))` and // `!bool(invoke(comp, value, invoke(proj, e)))`. // // Returns: `true` if and only if for some iterator `i` in `range` // `!bool(invoke(comp, invoke(proj, *i), value)) && // !bool(invoke(comp, value, invoke(proj, *i)))` is true. // // Complexity: At most `log_2(size(range)) + O(1)` comparisons and projections. // // Reference: https://wg21.link/binary.search#:~:text=ranges::binary_search(R template > constexpr auto binary_search(Range&& range, const T& value, Comp comp = {}, Proj proj = {}) { return ranges::binary_search(ranges::begin(range), ranges::end(range), value, std::move(comp), std::move(proj)); } // [alg.partitions] Partitions // Reference: https://wg21.link/alg.partitions // Returns: `true` if and only if the elements `e` of `[first, last)` are // partitioned with respect to the expression // `bool(invoke(pred, invoke(proj, e)))`. // // Complexity: Linear. At most `last - first` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::is_partitioned(I template > constexpr auto is_partitioned(ForwardIterator first, ForwardIterator last, Pred pred, Proj proj = {}) { return std::is_partitioned(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Returns: `true` if and only if the elements `e` of `range` are partitioned // with respect to the expression `bool(invoke(pred, invoke(proj, e)))`. // // Complexity: Linear. At most `size(range)` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::is_partitioned(R template > constexpr auto is_partitioned(Range&& range, Pred pred, Proj proj = {}) { return ranges::is_partitioned(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Effects: Places all the elements `e` in `[first, last)` that satisfy `E(e)` // before all the elements that do not. // // Returns: Let `i` be an iterator such that `E(*j)` is `true` for every // iterator `j` in `[first, i)` and `false` for every iterator `j` in // `[i, last)`. Returns: i. // // Complexity: Let `N = last - first`: // Exactly `N` applications of the predicate and projection. At most `N / 2` // swaps if the type of `first` models `bidirectional_iterator`, and at most `N` // swaps otherwise. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition(I template > constexpr auto partition(ForwardIterator first, ForwardIterator last, Pred pred, Proj proj = {}) { return std::partition(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Effects: Places all the elements `e` in `range` that satisfy `E(e)` before // all the elements that do not. // // Returns: Let `i` be an iterator such that `E(*j)` is `true` for every // iterator `j` in `[begin(range), i)` and `false` for every iterator `j` in // `[i, last)`. Returns: i. // // Complexity: Let `N = size(range)`: // Exactly `N` applications of the predicate and projection. At most `N / 2` // swaps if the type of `first` models `bidirectional_iterator`, and at most `N` // swaps otherwise. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition(R template > constexpr auto partition(Range&& range, Pred pred, Proj proj = {}) { return ranges::partition(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Effects: Places all the elements `e` in `[first, last)` that satisfy `E(e)` // before all the elements that do not. The relative order of the elements in // both groups is preserved. // // Returns: Let `i` be an iterator such that for every iterator `j` in // `[first, i)`, `E(*j)` is `true`, and for every iterator `j` in the range // `[i, last)`, `E(*j)` is `false`. Returns: `i`. // // Complexity: Let `N = last - first`: // At most `N log N` swaps, but only `O(N)` swaps if there is enough extra // memory. Exactly `N` applications of the predicate and projection. // // Reference: // https://wg21.link/alg.partitions#:~:text=ranges::stable_partition(I template > constexpr auto stable_partition(BidirectionalIterator first, BidirectionalIterator last, Pred pred, Proj proj = {}) { return std::stable_partition(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Effects: Places all the elements `e` in `range` that satisfy `E(e)` before // all the elements that do not. The relative order of the elements in both // groups is preserved. // // Returns: Let `i` be an iterator such that for every iterator `j` in // `[begin(range), i)`, `E(*j)` is `true`, and for every iterator `j` in the // range `[i, end(range))`, `E(*j)` is `false`. Returns: `i`. // // Complexity: Let `N = size(range)`: // At most `N log N` swaps, but only `O(N)` swaps if there is enough extra // memory. Exactly `N` applications of the predicate and projection. // // Reference: // https://wg21.link/alg.partitions#:~:text=ranges::stable_partition(R template > constexpr auto stable_partition(Range&& range, Pred pred, Proj proj = {}) { return ranges::stable_partition(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Mandates: The expression `*first` is writable to `out_true` and `out_false`. // // Preconditions: The input range and output ranges do not overlap. // // Effects: For each iterator `i` in `[first, last)`, copies `*i` to the output // range beginning with `out_true` if `E(*i)` is `true`, or to the output range // beginning with `out_false` otherwise. // // Returns: Let `o1` be the end of the output range beginning at `out_true`, and // `o2` the end of the output range beginning at `out_false`. // Returns `{o1, o2}`. // // Complexity: Exactly `last - first` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition_copy(I template , typename = internal::iterator_category_t, typename = internal::iterator_category_t> constexpr auto partition_copy(InputIterator first, InputIterator last, OutputIterator1 out_true, OutputIterator2 out_false, Pred pred, Proj proj = {}) { return std::partition_copy(first, last, out_true, out_false, internal::ProjectedUnaryPredicate(pred, proj)); } // Let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Mandates: The expression `*begin(range)` is writable to `out_true` and // `out_false`. // // Preconditions: The input range and output ranges do not overlap. // // Effects: For each iterator `i` in `range`, copies `*i` to the output range // beginning with `out_true` if `E(*i)` is `true`, or to the output range // beginning with `out_false` otherwise. // // Returns: Let `o1` be the end of the output range beginning at `out_true`, and // `o2` the end of the output range beginning at `out_false`. // Returns `{o1, o2}`. // // Complexity: Exactly `size(range)` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition_copy(R template , typename = internal::iterator_category_t, typename = internal::iterator_category_t> constexpr auto partition_copy(Range&& range, OutputIterator1 out_true, OutputIterator2 out_false, Pred pred, Proj proj = {}) { return ranges::partition_copy(ranges::begin(range), ranges::end(range), out_true, out_false, std::move(pred), std::move(proj)); } // let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Preconditions: The elements `e` of `[first, last)` are partitioned with // respect to `E(e)`. // // Returns: An iterator `mid` such that `E(*i)` is `true` for all iterators `i` // in `[first, mid)`, and `false` for all iterators `i` in `[mid, last)`. // // Complexity: `O(log(last - first))` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition_point(I template > constexpr auto partition_point(ForwardIterator first, ForwardIterator last, Pred pred, Proj proj = {}) { return std::partition_point(first, last, internal::ProjectedUnaryPredicate(pred, proj)); } // let `E(x)` be `bool(invoke(pred, invoke(proj, x)))`. // // Preconditions: The elements `e` of `range` are partitioned with respect to // `E(e)`. // // Returns: An iterator `mid` such that `E(*i)` is `true` for all iterators `i` // in `[begin(range), mid)`, and `false` for all iterators `i` in // `[mid, end(range))`. // // Complexity: `O(log(size(range)))` applications of `pred` and `proj`. // // Reference: https://wg21.link/alg.partitions#:~:text=ranges::partition_point(R template > constexpr auto partition_point(Range&& range, Pred pred, Proj proj = {}) { return ranges::partition_point(ranges::begin(range), ranges::end(range), std::move(pred), std::move(proj)); } // [alg.merge] Merge // Reference: https://wg21.link/alg.merge // Let `N` be `(last1 - first1) + (last2 - first2)`. // // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. The resulting // range does not overlap with either of the original ranges. // // Effects: Copies all the elements of the two ranges `[first1, last1)` and // `[first2, last2)` into the range `[result, result_last)`, where `result_last` // is `result + N`. If an element `a` precedes `b` in an input range, `a` is // copied into the output range before `b`. If `e1` is an element of // `[first1, last1)` and `e2` of `[first2, last2)`, `e2` is copied into the // output range before `e1` if and only if // `bool(invoke(comp, invoke(proj2, e2), invoke(proj1, e1)))` is `true`. // // Returns: `result_last`. // // Complexity: At most `N - 1` comparisons and applications of each projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.merge#:~:text=ranges::merge(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::merge expects // comp(proj2(lhs), proj1(rhs)) to compile. return std::merge( first1, last1, first2, last2, result, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Let `N` be `size(range1) + size(range2)`. // // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. The resulting range does not // overlap with either of the original ranges. // // Effects: Copies all the elements of the two ranges `range1` and `range2` into // the range `[result, result_last)`, where `result_last` is `result + N`. If an // element `a` precedes `b` in an input range, `a` is copied into the output // range before `b`. If `e1` is an element of `range1` and `e2` of `range2`, // `e2` is copied into the output range before `e1` if and only if // `bool(invoke(comp, invoke(proj2, e2), invoke(proj1, e1)))` is `true`. // // Returns: `result_last`. // // Complexity: At most `N - 1` comparisons and applications of each projection. // // Remarks: Stable. // // Reference: https://wg21.link/alg.merge#:~:text=ranges::merge(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto merge(Range1&& range1, Range2&& range2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::merge(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(comp), std::move(proj1), std::move(proj2)); } // Preconditions: `[first, middle)` and `[middle, last)` are valid ranges sorted // with respect to `comp` and `proj`. // // Effects: Merges two sorted consecutive ranges `[first, middle)` and // `[middle, last)`, putting the result of the merge into the range // `[first, last)`. The resulting range is sorted with respect to `comp` and // `proj`. // // Returns: `last`. // // Complexity: Let `N = last - first`: If enough additional memory is available, // exactly `N - 1` comparisons. Otherwise, `O(N log N)` comparisons. In either // case, twice as many projections as comparisons. // // Remarks: Stable. // // Reference: https://wg21.link/alg.merge#:~:text=ranges::inplace_merge(I template > constexpr auto inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Comp comp = {}, Proj proj = {}) { std::inplace_merge(first, middle, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: `[begin(range), middle)` and `[middle, end(range))` are valid // ranges sorted with respect to `comp` and `proj`. // // Effects: Merges two sorted consecutive ranges `[begin(range), middle)` and // `[middle, end(range))`, putting the result of the merge into `range`. The // resulting range is sorted with respect to `comp` and `proj`. // // Returns: `end(range)`. // // Complexity: Let `N = size(range)`: If enough additional memory is available, // exactly `N - 1` comparisons. Otherwise, `O(N log N)` comparisons. In either // case, twice as many projections as comparisons. // // Remarks: Stable. // // Reference: https://wg21.link/alg.merge#:~:text=ranges::inplace_merge(R template > constexpr auto inplace_merge(Range&& range, iterator_t middle, Comp comp = {}, Proj proj = {}) { return ranges::inplace_merge(ranges::begin(range), middle, ranges::end(range), std::move(comp), std::move(proj)); } // [alg.set.operations] Set operations on sorted structures // Reference: https://wg21.link/alg.set.operations // [includes] includes // Reference: https://wg21.link/includes // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. // // Returns: `true` if and only if `[first2, last2)` is a subsequence of // `[first1, last1)`. // // Complexity: At most `2 * ((last1 - first1) + (last2 - first2)) - 1` // comparisons and applications of each projection. // // Reference: https://wg21.link/includes#:~:text=ranges::includes(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { DCHECK(ranges::is_sorted(first1, last1, comp, proj1)); DCHECK(ranges::is_sorted(first2, last2, comp, proj2)); // Needs to opt-in to all permutations, since std::includes expects // comp(proj1(lhs), proj2(rhs)) and comp(proj2(lhs), proj1(rhs)) to compile. return std::includes( first1, last1, first2, last2, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. // // Returns: `true` if and only if `range2` is a subsequence of `range1`. // // Complexity: At most `2 * (size(range1) + size(range2)) - 1` comparisons and // applications of each projection. // // Reference: https://wg21.link/includes#:~:text=ranges::includes(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto includes(Range1&& range1, Range2&& range2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::includes(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(comp), std::move(proj1), std::move(proj2)); } // [set.union] set_union // Reference: https://wg21.link/set.union // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. The resulting // range does not overlap with either of the original ranges. // // Effects: Constructs a sorted union of the elements from the two ranges; that // is, the set of elements that are present in one or both of the ranges. // // Returns: The end of the constructed range. // // Complexity: At most `2 * ((last1 - first1) + (last2 - first2)) - 1` // comparisons and applications of each projection. // // Remarks: Stable. If `[first1, last1)` contains `m` elements that are // equivalent to each other and `[first2, last2)` contains `n` elements that are // equivalent to them, then all `m` elements from the first range are copied to // the output range, in order, and then the final `max(n - m , 0)` elements from // the second range are copied to the output range, in order. // // Reference: https://wg21.link/set.union#:~:text=ranges::set_union(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::set_union expects // comp(proj1(lhs), proj2(rhs)) and comp(proj2(lhs), proj1(rhs)) to compile. return std::set_union( first1, last1, first2, last2, result, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. The resulting range does not // overlap with either of the original ranges. // // Effects: Constructs a sorted union of the elements from the two ranges; that // is, the set of elements that are present in one or both of the ranges. // // Returns: The end of the constructed range. // // Complexity: At most `2 * (size(range1) + size(range2)) - 1` comparisons and // applications of each projection. // // Remarks: Stable. If `range1` contains `m` elements that are equivalent to // each other and `range2` contains `n` elements that are equivalent to them, // then all `m` elements from the first range are copied to the output range, in // order, and then the final `max(n - m , 0)` elements from the second range are // copied to the output range, in order. // // Reference: https://wg21.link/set.union#:~:text=ranges::set_union(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto set_union(Range1&& range1, Range2&& range2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::set_union(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(comp), std::move(proj1), std::move(proj2)); } // [set.intersection] set_intersection // Reference: https://wg21.link/set.intersection // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. The resulting // range does not overlap with either of the original ranges. // // Effects: Constructs a sorted intersection of the elements from the two // ranges; that is, the set of elements that are present in both of the ranges. // // Returns: The end of the constructed range. // // Complexity: At most `2 * ((last1 - first1) + (last2 - first2)) - 1` // comparisons and applications of each projection. // // Remarks: Stable. If `[first1, last1)` contains `m` elements that are // equivalent to each other and `[first2, last2)` contains `n` elements that are // equivalent to them, the first `min(m, n)` elements are copied from the first // range to the output range, in order. // // Reference: // https://wg21.link/set.intersection#:~:text=ranges::set_intersection(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::set_intersection expects // comp(proj1(lhs), proj2(rhs)) and comp(proj2(lhs), proj1(rhs)) to compile. return std::set_intersection( first1, last1, first2, last2, result, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. The resulting range does not // overlap with either of the original ranges. // // Effects: Constructs a sorted intersection of the elements from the two // ranges; that is, the set of elements that are present in both of the ranges. // // Returns: The end of the constructed range. // // Complexity: At most `2 * (size(range1) + size(range2)) - 1` comparisons and // applications of each projection. // // Remarks: Stable. If `range1` contains `m` elements that are equivalent to // each other and `range2` contains `n` elements that are equivalent to them, // the first `min(m, n)` elements are copied from the first range to the output // range, in order. // // Reference: // https://wg21.link/set.intersection#:~:text=ranges::set_intersection(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto set_intersection(Range1&& range1, Range2&& range2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::set_intersection(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(comp), std::move(proj1), std::move(proj2)); } // [set.difference] set_difference // Reference: https://wg21.link/set.difference // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. The resulting // range does not overlap with either of the original ranges. // // Effects: Copies the elements of the range `[first1, last1)` which are not // present in the range `[first2, last2)` to the range beginning at `result`. // The elements in the constructed range are sorted. // // Returns: The end of the constructed range. // // Complexity: At most `2 * ((last1 - first1) + (last2 - first2)) - 1` // comparisons and applications of each projection. // // Remarks: If `[first1, last1)` contains `m` elements that are equivalent to // each other and `[first2, last2)` contains `n` elements that are equivalent to // them, the last `max(m - n, 0)` elements from `[first1, last1)` are copied to // the output range, in order. // // Reference: // https://wg21.link/set.difference#:~:text=ranges::set_difference(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::set_difference expects // comp(proj1(lhs), proj2(rhs)) and comp(proj2(lhs), proj1(rhs)) to compile. return std::set_difference( first1, last1, first2, last2, result, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. The resulting range does not // overlap with either of the original ranges. // // Effects: Copies the elements of `range1` which are not present in `range2` // to the range beginning at `result`. The elements in the constructed range are // sorted. // // Returns: The end of the constructed range. // // Complexity: At most `2 * (size(range1) + size(range2)) - 1` comparisons and // applications of each projection. // // Remarks: Stable. If `range1` contains `m` elements that are equivalent to // each other and `range2` contains `n` elements that are equivalent to them, // the last `max(m - n, 0)` elements from `range1` are copied to the output // range, in order. // // Reference: // https://wg21.link/set.difference#:~:text=ranges::set_difference(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto set_difference(Range1&& range1, Range2&& range2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::set_difference(ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(comp), std::move(proj1), std::move(proj2)); } // [set.symmetric.difference] set_symmetric_difference // Reference: https://wg21.link/set.symmetric.difference // Preconditions: The ranges `[first1, last1)` and `[first2, last2)` are sorted // with respect to `comp` and `proj1` or `proj2`, respectively. The resulting // range does not overlap with either of the original ranges. // // Effects: Copies the elements of the range `[first1, last1)` that are not // present in the range `[first2, last2)`, and the elements of the range // `[first2, last2)` that are not present in the range `[first1, last1)` to the // range beginning at `result`. The elements in the constructed range are // sorted. // // Returns: The end of the constructed range. // // Complexity: At most `2 * ((last1 - first1) + (last2 - first2)) - 1` // comparisons and applications of each projection. // // Remarks: Stable. If `[first1, last1)` contains `m` elements that are // equivalent to each other and `[first2, last2)` contains `n` elements that are // equivalent to them, then `|m - n|` of those elements shall be copied to the // output range: the last `m - n` of these elements from `[first1, last1)` if // `m > n`, and the last `n - m` of these elements from `[first2, last2)` if // `m < n`. In either case, the elements are copied in order. // // Reference: // https://wg21.link/set.symmetric.difference#:~:text=set_symmetric_difference(I1 template , typename = internal::iterator_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr auto set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { // Needs to opt-in to all permutations, since std::set_symmetric_difference // expects comp(proj1(lhs), proj2(rhs)) and comp(proj2(lhs), proj1(rhs)) to // compile. return std::set_symmetric_difference( first1, last1, first2, last2, result, internal::PermutedProjectedBinaryPredicate(comp, proj1, proj2)); } // Preconditions: The ranges `range1` and `range2` are sorted with respect to // `comp` and `proj1` or `proj2`, respectively. The resulting range does not // overlap with either of the original ranges. // // Effects: Copies the elements of `range1` that are not present in `range2`, // and the elements of `range2` that are not present in `range1` to the range // beginning at `result`. The elements in the constructed range are sorted. // // Returns: The end of the constructed range. // // Complexity: At most `2 * (size(range1) + size(range2)) - 1` comparisons and // applications of each projection. // // Remarks: Stable. If `range1` contains `m` elements that are equivalent to // each other and `range2` contains `n` elements that are equivalent to them, // then `|m - n|` of those elements shall be copied to the output range: the // last `m - n` of these elements from `range1` if `m > n`, and the last `n - m` // of these elements from `range2` if `m < n`. In either case, the elements are // copied in order. // // Reference: // https://wg21.link/set.symmetric.difference#:~:text=set_symmetric_difference(R1 template , typename = internal::range_category_t, typename = internal::iterator_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr auto set_symmetric_difference(Range1&& range1, Range2&& range2, OutputIterator result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::set_symmetric_difference( ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), result, std::move(comp), std::move(proj1), std::move(proj2)); } // [alg.heap.operations] Heap operations // Reference: https://wg21.link/alg.heap.operations // [push.heap] push_heap // Reference: https://wg21.link/push.heap // Preconditions: The range `[first, last - 1)` is a valid heap with respect to // `comp` and `proj`. // // Effects: Places the value in the location `last - 1` into the resulting heap // `[first, last)`. // // Returns: `last`. // // Complexity: At most `log(last - first)` comparisons and twice as many // projections. // // Reference: https://wg21.link/push.heap#:~:text=ranges::push_heap(I template , typename = indirect_result_t, projected>> constexpr auto push_heap(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::push_heap(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: The range `[begin(range), end(range) - 1)` is a valid heap // with respect to `comp` and `proj`. // // Effects: Places the value in the location `end(range) - 1` into the resulting // heap `range`. // // Returns: `end(range)`. // // Complexity: At most `log(size(range))` comparisons and twice as many // projections. // // Reference: https://wg21.link/push.heap#:~:text=ranges::push_heap(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto push_heap(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::push_heap(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [pop.heap] pop_heap // Reference: https://wg21.link/pop.heap // Preconditions: The range `[first, last)` is a valid non-empty heap with // respect to `comp` and `proj`. // // Effects: Swaps the value in the location `first` with the value in the // location `last - 1` and makes `[first, last - 1)` into a heap with respect to // `comp` and `proj`. // // Returns: `last`. // // Complexity: At most `2 log(last - first)` comparisons and twice as many // projections. // // Reference: https://wg21.link/pop.heap#:~:text=ranges::pop_heap(I template , typename = indirect_result_t, projected>> constexpr auto pop_heap(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::pop_heap(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: `range` is a valid non-empty heap with respect to `comp` and // `proj`. // // Effects: Swaps the value in the location `begin(range)` with the value in the // location `end(range) - 1` and makes `[begin(range), end(range) - 1)` into a // heap with respect to `comp` and `proj`. // // Returns: `end(range)`. // // Complexity: At most `2 log(size(range))` comparisons and twice as many // projections. // // Reference: https://wg21.link/pop.heap#:~:text=ranges::pop_heap(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto pop_heap(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::pop_heap(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [make.heap] make_heap // Reference: https://wg21.link/make.heap // Effects: Constructs a heap with respect to `comp` and `proj` out of the range // `[first, last)`. // // Returns: `last`. // // Complexity: At most `3 * (last - first)` comparisons and twice as many // projections. // // Reference: https://wg21.link/make.heap#:~:text=ranges::make_heap(I template , typename = indirect_result_t, projected>> constexpr auto make_heap(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::make_heap(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Effects: Constructs a heap with respect to `comp` and `proj` out of `range`. // // Returns: `end(range)`. // // Complexity: At most `3 * size(range)` comparisons and twice as many // projections. // // Reference: https://wg21.link/make.heap#:~:text=ranges::make_heap(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto make_heap(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::make_heap(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [sort.heap] sort_heap // Reference: https://wg21.link/sort.heap // Preconditions: The range `[first, last)` is a valid heap with respect to // `comp` and `proj`. // // Effects: Sorts elements in the heap `[first, last)` with respect to `comp` // and `proj`. // // Returns: `last`. // // Complexity: At most `2 N log N` comparisons, where `N = last - first`, and // twice as many projections. // // Reference: https://wg21.link/sort.heap#:~:text=ranges::sort_heap(I template , typename = indirect_result_t, projected>> constexpr auto sort_heap(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { std::sort_heap(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); return last; } // Preconditions: `range` is a valid heap with respect to `comp` and `proj`. // // Effects: Sorts elements in the heap `range` with respect to `comp` and // `proj`. // // Returns: `end(range)`. // // Complexity: At most `2 N log N` comparisons, where `N = size(range)`, and // twice as many projections. // // Reference: https://wg21.link/sort.heap#:~:text=ranges::sort_heap(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto sort_heap(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::sort_heap(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [is.heap] is_heap // Reference: https://wg21.link/is.heap // Returns: Whether the range `[first, last)` is a heap with respect to `comp` // and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.heap#:~:text=ranges::is_heap(I template , typename = indirect_result_t, projected>> constexpr auto is_heap(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { return std::is_heap(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: Whether `range` is a heap with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.heap#:~:text=ranges::is_heap(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto is_heap(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::is_heap(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Returns: The last iterator `i` in `[first, last]` for which the range // `[first, i)` is a heap with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.heap#:~:text=ranges::is_heap_until(I template , typename = indirect_result_t, projected>> constexpr auto is_heap_until(RandomAccessIterator first, RandomAccessIterator last, Comp comp = {}, Proj proj = {}) { return std::is_heap_until( first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: The last iterator `i` in `[begin(range), end(range)]` for which the // range `[begin(range), i)` is a heap with respect to `comp` and `proj`. // // Complexity: Linear. // // Reference: https://wg21.link/is.heap#:~:text=ranges::is_heap_until(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto is_heap_until(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::is_heap_until(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [alg.min.max] Minimum and maximum // Reference: https://wg21.link/alg.min.max // Returns: The smaller value. Returns the first argument when the arguments are // equivalent. // // Complexity: Exactly one comparison and two applications of the projection, if // any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::min template constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {}) { return base::invoke(comp, base::invoke(proj, b), base::invoke(proj, a)) ? b : a; } // Preconditions: `!empty(ilist)`. // // Returns: The smallest value in the input range. Returns a copy of the // leftmost element when several elements are equivalent to the smallest. // // Complexity: Exactly `size(ilist) - 1` comparisons and twice as many // applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::min(initializer_list template constexpr T min(std::initializer_list ilist, Comp comp = {}, Proj proj = {}) { return *std::min_element( ilist.begin(), ilist.end(), internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Preconditions: `!empty(range)`. // // Returns: The smallest value in the input range. Returns a copy of the // leftmost element when several elements are equivalent to the smallest. // // Complexity: Exactly `size(range) - 1` comparisons and twice as many // applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::min(R template > constexpr auto min(Range&& range, Comp comp = {}, Proj proj = {}) { return *std::min_element( ranges::begin(range), ranges::end(range), internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: The larger value. Returns the first argument when the arguments are // equivalent. // // Complexity: Exactly one comparison and two applications of the projection, if // any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::max template constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {}) { return base::invoke(comp, base::invoke(proj, a), base::invoke(proj, b)) ? b : a; } // Preconditions: `!empty(ilist)`. // // Returns: The largest value in the input range. Returns a copy of the leftmost // element when several elements are equivalent to the largest. // // Complexity: Exactly `size(ilist) - 1` comparisons and twice as many // applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::max(initializer_list template constexpr T max(std::initializer_list ilist, Comp comp = {}, Proj proj = {}) { return *std::max_element( ilist.begin(), ilist.end(), internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Preconditions: `!empty(range)`. // // Returns: The largest value in the input range. Returns a copy of the leftmost // element when several elements are equivalent to the smallest. // // Complexity: Exactly `size(range) - 1` comparisons and twice as many // applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::max(R template > constexpr auto max(Range&& range, Comp comp = {}, Proj proj = {}) { return *std::max_element( ranges::begin(range), ranges::end(range), internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: `{b, a}` if `b` is smaller than `a`, and `{a, b}` otherwise. // // Complexity: Exactly one comparison and two applications of the projection, if // any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::minmax template constexpr auto minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {}) { return std::minmax(a, b, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Preconditions: `!empty(ilist)`. // // Returns: Let `X` be the return type. Returns `X{x, y}`, where `x` is a copy // of the leftmost element with the smallest value and `y` a copy of the // rightmost element with the largest value in the input range. // // Complexity: At most `(3/2) size(ilist)` applications of the corresponding // predicate and twice as many applications of the projection, if any. // // Reference: // https://wg21.link/alg.min.max#:~:text=ranges::minmax(initializer_list template constexpr auto minmax(std::initializer_list ilist, Comp comp = {}, Proj proj = {}) { auto it = std::minmax_element(ranges::begin(ilist), ranges::end(ilist), internal::ProjectedBinaryPredicate(comp, proj, proj)); return std::pair{*it.first, *it.second}; } // Preconditions: `!empty(range)`. // // Returns: Let `X` be the return type. Returns `X{x, y}`, where `x` is a copy // of the leftmost element with the smallest value and `y` a copy of the // rightmost element with the largest value in the input range. // // Complexity: At most `(3/2) size(range)` applications of the corresponding // predicate and twice as many applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::minmax(R template > constexpr auto minmax(Range&& range, Comp comp = {}, Proj proj = {}) { using T = range_value_t; auto it = std::minmax_element(ranges::begin(range), ranges::end(range), internal::ProjectedBinaryPredicate(comp, proj, proj)); return std::pair{*it.first, *it.second}; } // Returns: The first iterator i in the range `[first, last)` such that for // every iterator `j` in the range `[first, last)`, // `bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))` is `false`. Returns // `last` if `first == last`. // // Complexity: Exactly `max(last - first - 1, 0)` comparisons and twice as // many projections. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::min_element(I template , typename = indirect_result_t, projected>> constexpr auto min_element(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { return std::min_element(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: The first iterator i in `range` such that for every iterator `j` in // `range`, `bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))` is `false`. // Returns `end(range)` if `empty(range)`. // // Complexity: Exactly `max(size(range) - 1, 0)` comparisons and twice as many // projections. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::min_element(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto min_element(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::min_element(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Returns: The first iterator i in the range `[first, last)` such that for // every iterator `j` in the range `[first, last)`, // `bool(invoke(comp, invoke(proj, *i), invoke(proj, *j)))` is `false`. // Returns `last` if `first == last`. // // Complexity: Exactly `max(last - first - 1, 0)` comparisons and twice as // many projections. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::max_element(I template , typename = indirect_result_t, projected>> constexpr auto max_element(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { return std::max_element(first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: The first iterator i in `range` such that for every iterator `j` // in `range`, `bool(invoke(comp, invoke(proj, *j), invoke(proj, *j)))` is // `false`. Returns `end(range)` if `empty(range)`. // // Complexity: Exactly `max(size(range) - 1, 0)` comparisons and twice as many // projections. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::max_element(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto max_element(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::max_element(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Returns: `{first, first}` if `[first, last)` is empty, otherwise `{m, M}`, // where `m` is the first iterator in `[first, last)` such that no iterator in // the range refers to a smaller element, and where `M` is the last iterator // in // `[first, last)` such that no iterator in the range refers to a larger // element. // // Complexity: Let `N` be `last - first`. At most `max(3/2 (N − 1), 0)` // comparisons and twice as many applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::minmax_element(I template , typename = indirect_result_t, projected>> constexpr auto minmax_element(ForwardIterator first, ForwardIterator last, Comp comp = {}, Proj proj = {}) { return std::minmax_element( first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Returns: `{begin(range), begin(range)}` if `range` is empty, otherwise // `{m, M}`, where `m` is the first iterator in `range` such that no iterator // in the range refers to a smaller element, and where `M` is the last // iterator in `range` such that no iterator in the range refers to a larger // element. // // Complexity: Let `N` be `size(range)`. At most `max(3/2 (N − 1), 0)` // comparisons and twice as many applications of the projection, if any. // // Reference: https://wg21.link/alg.min.max#:~:text=ranges::minmax_element(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto minmax_element(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::minmax_element(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // [alg.clamp] Bounded value // Reference: https://wg21.link/alg.clamp // Preconditions: `bool(invoke(comp, invoke(proj, hi), invoke(proj, lo)))` is // `false`. // // Returns: `lo` if `bool(invoke(comp, invoke(proj, v), invoke(proj, lo)))` is // `true`, `hi` if `bool(invoke(comp, invoke(proj, hi), invoke(proj, v)))` is // `true`, otherwise `v`. // // Complexity: At most two comparisons and three applications of the // projection. // // Reference: https://wg21.link/alg.clamp#:~:text=ranges::clamp template constexpr const T& clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {}) { auto&& projected_v = base::invoke(proj, v); if (base::invoke(comp, projected_v, base::invoke(proj, lo))) return lo; return base::invoke(comp, base::invoke(proj, hi), projected_v) ? hi : v; } // [alg.lex.comparison] Lexicographical comparison // Reference: https://wg21.link/alg.lex.comparison // Returns: `true` if and only if the sequence of elements defined by the range // `[first1, last1)` is lexicographically less than the sequence of elements // defined by the range `[first2, last2)`. // // Complexity: At most `2 min(last1 - first1, last2 - first2)` applications of // the corresponding comparison and each projection, if any. // // Remarks: If two sequences have the same number of elements and their // corresponding elements (if any) are equivalent, then neither sequence is // lexicographically less than the other. If one sequence is a proper prefix of // the other, then the shorter sequence is lexicographically less than the // longer sequence. Otherwise, the lexicographical comparison of the sequences // yields the same result as the comparison of the first corresponding pair of // elements that are not equivalent. // // Reference: // https://wg21.link/alg.lex.comparison#:~:text=lexicographical_compare(I1 template , typename = internal::iterator_category_t, typename = indirect_result_t, projected>, typename = indirect_result_t, projected>> constexpr bool lexicographical_compare(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) { auto&& projected_first1 = base::invoke(proj1, *first1); auto&& projected_first2 = base::invoke(proj2, *first2); if (base::invoke(comp, projected_first1, projected_first2)) return true; if (base::invoke(comp, projected_first2, projected_first1)) return false; } // `first2 != last2` is equivalent to `first1 == last1 && first2 != last2` // here, since we broke out of the loop above. return first2 != last2; } // Returns: `true` if and only if the sequence of elements defined by `range1` // is lexicographically less than the sequence of elements defined by `range2`. // // Complexity: At most `2 min(size(range1), size(range2))` applications of the // corresponding comparison and each projection, if any. // // Remarks: If two sequences have the same number of elements and their // corresponding elements (if any) are equivalent, then neither sequence is // lexicographically less than the other. If one sequence is a proper prefix of // the other, then the shorter sequence is lexicographically less than the // longer sequence. Otherwise, the lexicographical comparison of the sequences // yields the same result as the comparison of the first corresponding pair of // elements that are not equivalent. // // Reference: // https://wg21.link/alg.lex.comparison#:~:text=lexicographical_compare(R1 template , typename = internal::range_category_t, typename = indirect_result_t, Proj1>, projected, Proj2>>, typename = indirect_result_t, Proj2>, projected, Proj1>>> constexpr bool lexicographical_compare(Range1&& range1, Range2&& range2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) { return ranges::lexicographical_compare( ranges::begin(range1), ranges::end(range1), ranges::begin(range2), ranges::end(range2), std::move(comp), std::move(proj1), std::move(proj2)); } // [alg.permutation.generators] Permutation generators // Reference: https://wg21.link/alg.permutation.generators // Effects: Takes a sequence defined by the range `[first, last)` and transforms // it into the next permutation. The next permutation is found by assuming that // the set of all permutations is lexicographically sorted with respect to // `comp` and `proj`. If no such permutation exists, transforms the sequence // into the first permutation; that is, the ascendingly-sorted one. // // Returns: `true` if a next permutation was found and otherwise `false`. // // Complexity: At most `(last - first) / 2` swaps. // // Reference: // https://wg21.link/alg.permutation.generators#:~:text=next_permutation(I template , typename = indirect_result_t, projected>> constexpr auto next_permutation(BidirectionalIterator first, BidirectionalIterator last, Comp comp = {}, Proj proj = {}) { return std::next_permutation( first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Effects: Takes a sequence defined by `range` and transforms it into the next // permutation. The next permutation is found by assuming that the set of all // permutations is lexicographically sorted with respect to `comp` and `proj`. // If no such permutation exists, transforms the sequence into the first // permutation; that is, the ascendingly-sorted one. // // Returns: `true` if a next permutation was found and otherwise `false`. // // Complexity: At most `size(range) / 2` swaps. // // Reference: // https://wg21.link/alg.permutation.generators#:~:text=next_permutation(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto next_permutation(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::next_permutation(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } // Effects: Takes a sequence defined by the range `[first, last)` and transforms // it into the previous permutation. The previous permutation is found by // assuming that the set of all permutations is lexicographically sorted with // respect to `comp` and `proj`. If no such permutation exists, transforms the // sequence into the last permutation; that is, the decreasingly-sorted one. // // Returns: `true` if a next permutation was found and otherwise `false`. // // Complexity: At most `(last - first) / 2` swaps. // // Reference: // https://wg21.link/alg.permutation.generators#:~:text=prev_permutation(I template , typename = indirect_result_t, projected>> constexpr auto prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Comp comp = {}, Proj proj = {}) { return std::prev_permutation( first, last, internal::ProjectedBinaryPredicate(comp, proj, proj)); } // Effects: Takes a sequence defined by `range` and transforms it into the // previous permutation. The previous permutation is found by assuming that the // set of all permutations is lexicographically sorted with respect to `comp` // and `proj`. If no such permutation exists, transforms the sequence into the // last permutation; that is, the decreasingly-sorted one. // // Returns: `true` if a previous permutation was found and otherwise `false`. // // Complexity: At most `size(range) / 2` swaps. // // Reference: // https://wg21.link/alg.permutation.generators#:~:text=prev_permutation(R template , typename = indirect_result_t, Proj>, projected, Proj>>> constexpr auto prev_permutation(Range&& range, Comp comp = {}, Proj proj = {}) { return ranges::prev_permutation(ranges::begin(range), ranges::end(range), std::move(comp), std::move(proj)); } } // namespace ranges } // namespace base #endif // BASE_RANGES_ALGORITHM_H_