// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/big_endian.h" #include #include #include "base/strings/string_piece.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { TEST(ReadBigEndianTest, ReadSignedPositive) { uint8_t data[] = {0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x1A, 0x2A}; int8_t s8 = 0; int16_t s16 = 0; int32_t s32 = 0; int64_t s64 = 0; ReadBigEndian(data, &s8); ReadBigEndian(data, &s16); ReadBigEndian(data, &s32); ReadBigEndian(data, &s64); EXPECT_EQ(0x0A, s8); EXPECT_EQ(0x0A0B, s16); EXPECT_EQ(int32_t{0x0A0B0C0D}, s32); EXPECT_EQ(int64_t{0x0A0B0C0D0E0F1A2All}, s64); } TEST(ReadBigEndianTest, ReadSignedNegative) { uint8_t data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; int8_t s8 = 0; int16_t s16 = 0; int32_t s32 = 0; int64_t s64 = 0; ReadBigEndian(data, &s8); ReadBigEndian(data, &s16); ReadBigEndian(data, &s32); ReadBigEndian(data, &s64); EXPECT_EQ(-1, s8); EXPECT_EQ(-1, s16); EXPECT_EQ(-1, s32); EXPECT_EQ(-1, s64); } TEST(ReadBigEndianTest, ReadUnsignedSigned) { uint8_t data[] = {0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, 0xA1, 0xA2}; uint8_t u8 = 0; uint16_t u16 = 0; uint32_t u32 = 0; uint64_t u64 = 0; ReadBigEndian(data, &u8); ReadBigEndian(data, &u16); ReadBigEndian(data, &u32); ReadBigEndian(data, &u64); EXPECT_EQ(0xA0, u8); EXPECT_EQ(0xA0B0, u16); EXPECT_EQ(0xA0B0C0D0, u32); EXPECT_EQ(0xA0B0C0D0E0F0A1A2ull, u64); } TEST(ReadBigEndianTest, TryAll16BitValues) { using signed_type = int16_t; uint8_t data[sizeof(signed_type)]; for (int i = std::numeric_limits::min(); i <= std::numeric_limits::max(); i++) { signed_type expected = i; signed_type actual = 0; WriteBigEndian(reinterpret_cast(data), expected); ReadBigEndian(data, &actual); EXPECT_EQ(expected, actual); } } TEST(BigEndianReaderTest, ReadsValues) { uint8_t data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E}; char buf[2]; uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; base::StringPiece piece; BigEndianReader reader(data, sizeof(data)); EXPECT_TRUE(reader.Skip(2)); EXPECT_EQ(data + 2, reader.ptr()); EXPECT_EQ(reader.remaining(), sizeof(data) - 2); EXPECT_TRUE(reader.ReadBytes(buf, sizeof(buf))); EXPECT_EQ(0x2, buf[0]); EXPECT_EQ(0x3, buf[1]); EXPECT_TRUE(reader.ReadU8(&u8)); EXPECT_EQ(0x4, u8); EXPECT_TRUE(reader.ReadU16(&u16)); EXPECT_EQ(0x0506, u16); EXPECT_TRUE(reader.ReadU32(&u32)); EXPECT_EQ(0x0708090Au, u32); EXPECT_TRUE(reader.ReadU64(&u64)); EXPECT_EQ(0x0B0C0D0E0F1A2B3Cllu, u64); base::StringPiece expected(reinterpret_cast(reader.ptr()), 2); EXPECT_TRUE(reader.ReadPiece(&piece, 2)); EXPECT_EQ(2u, piece.size()); EXPECT_EQ(expected.data(), piece.data()); } TEST(BigEndianReaderTest, ReadsLengthPrefixedValues) { { uint8_t u8_prefixed_data[] = {8, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E}; BigEndianReader reader(u8_prefixed_data, sizeof(u8_prefixed_data)); base::StringPiece piece; ASSERT_TRUE(reader.ReadU8LengthPrefixed(&piece)); // |reader| should skip both a u8 and the length-8 length-prefixed field. EXPECT_EQ(reader.ptr(), u8_prefixed_data + 9); EXPECT_EQ(piece.size(), 8u); EXPECT_EQ(reinterpret_cast(piece.data()), u8_prefixed_data + 1); } { uint8_t u16_prefixed_data[] = {0, 8, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E}; BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data)); base::StringPiece piece; ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece)); // |reader| should skip both a u16 and the length-8 length-prefixed field. EXPECT_EQ(reader.ptr(), u16_prefixed_data + 10); EXPECT_EQ(piece.size(), 8u); EXPECT_EQ(reinterpret_cast(piece.data()), u16_prefixed_data + 2); // With no data left, we shouldn't be able to // read another u8 length prefix (or a u16 length prefix, // for that matter). EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece)); EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece)); } { // Make sure there's no issue reading a zero-value length prefix. uint8_t u16_prefixed_data[3] = {}; BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data)); base::StringPiece piece; ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece)); EXPECT_EQ(reader.ptr(), u16_prefixed_data + 2); EXPECT_EQ(reinterpret_cast(piece.data()), u16_prefixed_data + 2); EXPECT_EQ(piece.size(), 0u); } } TEST(BigEndianReaderTest, LengthPrefixedReadsFailGracefully) { // We can't read 0xF (or, for that matter, 0xF8) bytes after the length // prefix: there isn't enough data. uint8_t data[] = {0xF, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E}; BigEndianReader reader(data, sizeof(data)); base::StringPiece piece; EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece)); EXPECT_EQ(data, reader.ptr()); EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece)); EXPECT_EQ(data, reader.ptr()); } TEST(BigEndianReaderTest, RespectsLength) { uint8_t data[8]; char buf[2]; uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; base::StringPiece piece; BigEndianReader reader(data, sizeof(data)); // 8 left EXPECT_FALSE(reader.Skip(9)); EXPECT_TRUE(reader.Skip(1)); // 7 left EXPECT_FALSE(reader.ReadU64(&u64)); EXPECT_TRUE(reader.Skip(4)); // 3 left EXPECT_FALSE(reader.ReadU32(&u32)); EXPECT_FALSE(reader.ReadPiece(&piece, 4)); EXPECT_TRUE(reader.Skip(2)); // 1 left EXPECT_FALSE(reader.ReadU16(&u16)); EXPECT_FALSE(reader.ReadBytes(buf, 2)); EXPECT_TRUE(reader.Skip(1)); // 0 left EXPECT_FALSE(reader.ReadU8(&u8)); EXPECT_EQ(0u, reader.remaining()); } TEST(BigEndianReaderTest, SafePointerMath) { uint8_t data[] = "foo"; BigEndianReader reader(data, sizeof(data)); // The test should fail without ever dereferencing the |dummy_buf| pointer. char* dummy_buf = reinterpret_cast(0xdeadbeef); // Craft an extreme length value that would cause |reader.data() + len| to // overflow. size_t extreme_length = std::numeric_limits::max() - 1; base::StringPiece piece; EXPECT_FALSE(reader.Skip(extreme_length)); EXPECT_FALSE(reader.ReadBytes(dummy_buf, extreme_length)); EXPECT_FALSE(reader.ReadPiece(&piece, extreme_length)); } TEST(BigEndianWriterTest, WritesValues) { char expected[] = { 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C }; char data[sizeof(expected)]; char buf[] = { 0x2, 0x3 }; memset(data, 0, sizeof(data)); BigEndianWriter writer(data, sizeof(data)); EXPECT_TRUE(writer.Skip(2)); EXPECT_TRUE(writer.WriteBytes(buf, sizeof(buf))); EXPECT_TRUE(writer.WriteU8(0x4)); EXPECT_TRUE(writer.WriteU16(0x0506)); EXPECT_TRUE(writer.WriteU32(0x0708090A)); EXPECT_TRUE(writer.WriteU64(0x0B0C0D0E0F1A2B3Cllu)); EXPECT_EQ(0, memcmp(expected, data, sizeof(expected))); } TEST(BigEndianWriterTest, RespectsLength) { char data[8]; char buf[2]; uint8_t u8 = 0; uint16_t u16 = 0; uint32_t u32 = 0; uint64_t u64 = 0; BigEndianWriter writer(data, sizeof(data)); // 8 left EXPECT_FALSE(writer.Skip(9)); EXPECT_TRUE(writer.Skip(1)); // 7 left EXPECT_FALSE(writer.WriteU64(u64)); EXPECT_TRUE(writer.Skip(4)); // 3 left EXPECT_FALSE(writer.WriteU32(u32)); EXPECT_TRUE(writer.Skip(2)); // 1 left EXPECT_FALSE(writer.WriteU16(u16)); EXPECT_FALSE(writer.WriteBytes(buf, 2)); EXPECT_TRUE(writer.Skip(1)); // 0 left EXPECT_FALSE(writer.WriteU8(u8)); EXPECT_EQ(0u, writer.remaining()); } TEST(BigEndianWriterTest, SafePointerMath) { char data[3]; BigEndianWriter writer(data, sizeof(data)); // The test should fail without ever dereferencing the |dummy_buf| pointer. const char* dummy_buf = reinterpret_cast(0xdeadbeef); // Craft an extreme length value that would cause |reader.data() + len| to // overflow. size_t extreme_length = std::numeric_limits::max() - 1; EXPECT_FALSE(writer.Skip(extreme_length)); EXPECT_FALSE(writer.WriteBytes(dummy_buf, extreme_length)); } } // namespace base