
SiFive VIC_E24 User Guide

© SiFive, Inc.



SiFive VIC_E24 User Guide

Proprietary Notice

Copyright © 2019, SiFive Inc. All rights reserved.

Information in this document is provided “as is,” with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.



Contents

1 Introduction .............................................................................................................. 3

1.1 About this Document ...................................................................................................3

1.2 About this Release......................................................................................................3

2 Deliverables .............................................................................................................. 4

2.1 Folder Structure ..........................................................................................................4

3 Memories.................................................................................................................... 6

3.1 RAM Instances ...........................................................................................................6

4 VIC_E24 Interfaces ................................................................................................8

4.1 Clock & Reset............................................................................................................. 8

4.1.1 Real Time Clock (rtc_toggle) ..........................................................................8

4.2 Ports.......................................................................................................................... 9

4.2.1 System Port .......................................................................................................9

4.3 VIC_E24 Interrupt Interfaces ........................................................................................9

4.3.1 Machine External Interrupts.................................................................................9

4.3.2 Local External Interrupts .....................................................................................9

4.4 Debug Output Signals ...............................................................................................10

4.5 JTAG Debug Interface Pinout.....................................................................................10

5 VIC_E24 Error Handling ...................................................................................11

5.1 2 Series Error Handling .............................................................................................11

6 TileLink to AHB Bridge (TL2AHB) ...............................................................12

6.1 Introduction .............................................................................................................. 12

6.2 Compliance .............................................................................................................. 12

6.3 Block Diagram ..........................................................................................................13

6.4 TL2AHB Interface .....................................................................................................14

1



6.5 Functional Description ...............................................................................................14

6.5.1 Atomic Memory Operations (AMO) ....................................................................14

6.5.2 Bursts ............................................................................................................. 14

6.5.3 TL2AHB System Integration ..............................................................................15

7 Debug Interface.....................................................................................................18

7.1 JTAG TAPC State Machine ........................................................................................19

7.2 Resetting JTAG Logic................................................................................................19

7.3 JTAG Clocking..........................................................................................................20

7.4 JTAG Standard Instructions .......................................................................................20

7.5 JTAG Debug Commands ...........................................................................................20

7.6 Using Debug Outputs ................................................................................................20

8 Implementation .....................................................................................................21

8.1 Top Level ................................................................................................................. 21

8.2 Clocking................................................................................................................... 21

8.2.1 Clocking Guidelines..........................................................................................22

8.3 Retiming .................................................................................................................. 22

8.4 Gate Level Simulation ...............................................................................................22

9 Simulation Testbench ........................................................................................24

9.1 Included Test Bench..................................................................................................24

9.1.1 Executing the Testbench ...................................................................................24

9.2 Testbench Output......................................................................................................25

9.2.1 Testbench Output - Trace ..................................................................................25

9.2.2 Testbench Output - Waves ................................................................................25

9.2.3 Adding Tests To The Included Testbench ............................................................26

9.3 SiFive Insight............................................................................................................26

9.3.1 Viewing SiFive Insight Signals ...........................................................................27

9.3.2 Enabling SiFive Insight Outside of the SiFive Testbench ......................................27

2



Chapter 1

Introduction

1.1 About this Document

This document describes the VIC_E24 production deliverables. To learn more about the func-

tionality of the VIC_E24 please read the VIC_E24 Manual.

1.2 About this Release

This is the Production release of the VIC_E24.

3



Chapter 2

Deliverables

This chapter describes the contents of the deliverables for the VIC_E24 .

2.1 Folder Structure

The folder structure of the delivery is as follows:

arty_a7_100t-sifive

Contains the designs FPGA bitstream.

freedom-e-sdk

Software SDK for the design including Freedom Metal BSP and applications.

bsp

Freedom Metal BSP for the RTL testbench and, where applicable, the FPGA bit-

stream. Note that Freedom Metal BSPs also include a design’s Device Tree file (DTS).

freedom-devicetree-tools

Tools used to generate Freedom Metal BSPs from DTS files. Can be used to re-gener-

ate BSPs in the case of a hand-edited DTS file.

freedom-metal

Source code for the Freedom Metal library.

scripts

Helper scripts used by the main makefile.

software

One folder for each included Freedom Metal application. Each application includes a

pre-built hex file in its release directory which can be run directly on the testbench with-

out needed to re-compile from source. Note: In some cases there will not be a pre-built

hex file for every application. This will be the case when a particular application is not

expected to run correctly on the selected core configuration. Possible reasons for this

are:

4



• Executable image does not fit in configured boot memory

• Application data does not fit in configured data memory

• Multicore application excluded for single-core configuration

Makefile

Top-level SDK makefile which can be used to re-build all included examples from

source. Readme.md; Readme file describing how to use the SDK’s top-level makefile.

info

Files which describe the design.

mems.conf

Configuration file which describes the memory instances of the design.

modules_to_be_retimed.txt

Contains the list of modules which need to be retimed.

sifive_insight.yml

Contains a .yml description of the SiFive Insight signals included in the design. See

Section 9.3 for more details on SiFive Insight.

rtl

The VIC_E24 RTL.

memories

A single verilog file containing all memories in the design.

testbench

Includes all the modules in the synthesizable testbench, the test driver, and extracted

simulation constructs (assertions) that are bound to locations in the DUT.

design

The VIC_E24 itself. Includes the top-level module E2_CoreIPSubsystem and all sub-

modules.

sifive_insight

Contains all the System Verilog files defining and binding the SiFive Insight signals to

modules in the design.

.F files

Manifest files for the associated folder. A complete list of files to be synthesized as part

of the design can be found in design.F.

Makefile

Used to execute the test bench described in Chapter 9.

Copyright © 2019, SiFive Inc. All rights reserved. 5



Chapter 3

Memories

This chapter describes the memories used in the VIC_E24 design.

3.1 RAM Instances

The Core Complex RAM instances consist of synchronous single-ported SRAMs. These are

contained within wrapper modules that expose a standardized generic interface for the

VIC_E24. For each of the modules specified in Table 1, the implementer is required to provide a

module definition that instantiates the SRAM macros and connects the macro-specific pins to

the interface described in Table 2.

Behavioral models of the RAMS are provided as part of the deliverable in the file: verilog/

memories/CoreIPSubsystem*.

The VIC_E24 RAM instances are delivered as is and are not configurable. It is, however, possi-

ble to possible construct the memory instances from multiple smaller instances.

Module Name Depth Address

Width ( )

Data Width

( )

Write Mask Granu-

larity ( )

Description

instr_mem_ext 4096 12 32 32 ICache

Data Array

syssram0_ext 8192 13 32 8 sys-sram-0

syssram0_ext 8192 13 32 8 sys-sram-1

tag_mem_ext 512 9 18 18 ICache Tag

Array

Table 1: SRAM Modules and Configuration

6



Name Direction Width Description

RW0_clk Input 1 Memory clock

RW0_en Input 1 Active-high signal indicating that the memory is

being access. This may be used for clock gating.

RW0_addr Input Address of access.

RW0_rdata Output Read data

RW0_wmode Input 1 Active-high signal indicating that the access is a

write operation.

RW0_wdata Input Write data.

RW0_wmask Input Active-high write mask. Each bit controls whether

or not the corresponding -bit subword is writ-

ten. This is present only in memories that require

mask write functionality.

Table 2: SRAM Signals

Copyright © 2019, SiFive Inc. All rights reserved. 7



Chapter 4

VIC_E24 Interfaces

This chapter describes the primary interfaces to the VIC_E24.

4.1 Clock & Reset

The clock, rtc_toggle, reset, and reset_vector_0 inputs are described in Table 3.

The relationship between the clock input frequencies are as follows:

clock > (2 * rtc_toggle)

Name Direction Width Description

clock Input 1 The core pipeline and peripheral clock.

rtc_toggle Input 1 The Real Time Clock input. Must run at

strictly less than half the rate of clock.

reset Input 1 Synchronous reset signal. Active high. Must

be asserted for 16 cycles of clock and syn-

chronously de-asserted.

reset_vector_0 Input 32 Reset Vector Address. Implementations

MUST set this signal to a valid address.

Table 3: Clock and Reset Interfaces

4.1.1 Real Time Clock (rtc_toggle)

As defined in the RISC‑V privileged specification, RISC‑V implementations must expose a real-

time counter via the mtime register. In the VIC_E24 the rtc_toggle input is used as the real-

time counter. rtc_toggle must run at strictly less than half the frequency of clock. Further-

more, for RISC‑V compliance, the frequency of rtc_toggle must remain constant, and soft-

ware must be made aware of this frequency.

8



4.2 Ports

This section will describe all of the Ports in the VIC_E24.

Name Base

Address

Top Protocol Description

sys_port_ahb_0 0x8000_0000 0xFFFF_FFFF AHB 32-bit data width. Synchro-

nous to clock

Table 4: VIC_E24 Platform Bus Interfaces

4.2.1 System Port

The VIC_E24 has one System Port, which is typically used to access higher-bandwidth periph-

eral devices in off-core-complex address space. Errors that propogate to the processor via the

Peripheral Port have the effects described in Chapter 5. The System Port is described in Table

4.

The VIC_E24 System Port pass through a TileLink to AHB Bridge (TL2AHB) which is described

in Chapter 6.

4.3 VIC_E24 Interrupt Interfaces

This chapter describes all of the interrupt signals in the VIC_E24.

4.3.1 Machine External Interrupts

Name Direction Width Description

meip_X Input 1 Machine external interrupt signal exposed at

the top level which can be used to integrate

the VIC_E24 with an external Interrupt Con-

troller.

Table 5: Machine External Interrupt Interface

4.3.2 Local External Interrupts

Local interrupts are interrupts which can be connected to peripheral sources and connect to the

CLIC to signal directly to an individual hart. Please see the VIC_E24 Manual for a detailed

description of local interrupts.

Copyright © 2019, SiFive Inc. All rights reserved. 9



Name Direction Width Description

local_interrupts_0 Input 127 Interrupts from peripheral sources des-

tined to core 0. These are level-based

interrupt signals connected to the CLIC

and must be synchronous with clock

Table 6: Local External Interrupt Interface

4.4 Debug Output Signals

Signals which are outputs from the debug module are shown in Table 7.

Name Direction Width Description

debug_ndreset Output 1 This signal is a reset signal driven by the

debug logic of the chip. It can be used to

reset parts of the SoC or the entire chip. It

should NOT be wired into logic which feeds

back into the debug_systemjtag_reset sig-

nal for this block. This signal may be left

unconnected.

debug_dmactive Output 1 This signal, 0 at reset, indicates that debug

logic is active. This may be used to prevent

power gating of debug logic, etc. It may be

left unconnected.

Table 7: External Debug Logic Control Pins

4.5 JTAG Debug Interface Pinout

SiFive uses the industry-standard JTAG interface which includes the four standard signals,

TCK, TMS, TDI, and TDO. A test logic reset signal must also be driven on the

debug_systemjtag_reset input. This reset is synchronized internally to the design. The test

logic reset must be pulsed before the core reset is deasserted.

Name Direction Width Description

debug_systemjtag_TCK Input 1 JTAG Test Clock

debug_systemjtag_TMS Input 1 JTAG Test Mode Select

debug_systemjtag_TDI Input 1 JTAG Test Data Input

debug_systemjtag_TDO_data Output 1 JTAG Test Data Output

debug_systemjtag_TDO_driven Output 1 JTAG Test Data Output Enable

debug_systemjtag_reset Input 1 Active-high Reset

debug_systemjtag_mfr_id Input 11 The SoC Manufacturer ID

which will be reported by the

JTAG IDCODE instruction.

Table 8: SiFive standard JTAG interface for off-chip external TAPC

Copyright © 2019, SiFive Inc. All rights reserved. 10



Chapter 5

VIC_E24 Error Handling

This chapter describes how the VIC_E24 handles errors from its memories and interfaces.

Errors can be introduced to the core via ECC errors or error responses returned on the various

port interfaces. For port interfaces that are not natively TileLink, their error responses are trans-

lated into TileLink errors as described in the respective bridge chapters. The core’s behavior is

purely determined by the type of TileLink or ECC error that it receives. The behavior is also

dependent on the type of core.

5.1 2 Series Error Handling

For 2-series cores, on the various interfaces to the VIC_E24:

• TileLink denied/corrupt on instruction fetch causes a precise exception

• TileLink denied/corrupt on data access is ignored by the core.

Note that 2-series TIMs are TileLink devices within the Core Complex boundary, so errors in

those structures present TileLink errors to the core the same as devices outside the boundary.

11



Chapter 6

TileLink to AHB Bridge (TL2AHB)

6.1 Introduction

SiFive’s TileLink to AHB Bridge (TL2AHB) can be used to connect SiFive Core Complex IP to

AMBA 3 AHB Protocol v1.0 based systems. SiFive Core Complex IP natively uses TileLink for

all system communication external to the Core Complex. The TL2AHB bridge translates TileLink

transactions to AMBA 3 AHB Protocol v1.0.

6.2 Compliance

• The SiFive TL2AHB is fully compliant with AMBA 3 AHB Protocol v1.0 and this document

should be read in conjunction with the AMBA 3 AHB Protocol v1.0 Protocol Specification.

• The SiFive TL2AHB is fully compatible with SiFive Core Complex IP. Some properties of the

TL2AHB are specific to a given Core Complex implementation. This document should be

read in conjunction with the Core Complex IP Manual.

12



6.3 Block Diagram

Figure 1: TL2AHB Block Diagram

Copyright © 2019, SiFive Inc. All rights reserved. 13



6.4 TL2AHB Interface

Name Direction Width Description

HADDR Out [M:0] Transfer address where M is the minimum width nec-

essary for the address range assigned to TL2AHB in a

given Core Complex implementation.

HWRITE Out 1 When HIGH this signal indicates a write transfer. When

LOW this signal indicates a read transfer.

HWDATA Out [N:0] Write transfer data where N is dependent on a given

Core Complex implementation.

HSIZE Out [2:0] The size of the transfer.

HBURST Out [2:0] Burst type indicator.

HPROT Out [3:0] Protection control signals.

HTRANS Out [1:0] Transfer type of current transfer.

HRDATA In [N:0] Read transfer data where N is dependent on a given

Core Complex implementation.

HREADYOUT In 1 Used by a slave to indicate when its transfer has fin-

ished. See Section 6.5.3 for more details.

HREADY Out 1 Used to indicate to the master and all slaves that the

previous transfer has finished. See Section 6.5.3 for

more details.

HRESP In 1 Response signal used to indicate transfer status:

OKAY or ERROR.

HSEL Out 1 Indicates that the current transfer is intended for the

selected slave. See Section 6.5.3 for more details.

Table 9: AHB Interface

6.5 Functional Description

This section will describe the functional behavior of the TL2AHB in more detail.

6.5.1 Atomic Memory Operations (AMO)

• TileLink AMOs are translated to Read-Modify-Write operations and therefore no longer

atomic.

• Because AMOs issued through the TL2AHB can not guarantee atomicity, they should not be

issued through the TL2AHB in a multi-master system.

6.5.2 Bursts

• The TL2AHB will fragment a TileLink burst transaction to the largest supported AHB burst

size

• Request are always aligned to the burst size.

Copyright © 2019, SiFive Inc. All rights reserved. 14



• Only fixed size incrementing or single beat burst are issued, specifically:

◦ SINGLE

◦ INCR4

◦ INCR8

◦ INCR16

• Multi-beat narrow burst are never issued.

HADDR

• For a given Core Complex implementation, the width of HADDR is the minimum width nec-

essary for the the address range of the TileLink bus it is connected to.

HMASTLOCK

• HMASTLOCK is always tied to 0.

HPROT

• HPROT is tied to 0x3: Non-cacheable, Non-bufferable, privileged, data access.

HSEL

• A single HSEL bit is implemented and used to indicate when the port is active.

• An external arbiter and decoder is required to select more than one slave device. See Sec-

tion 6.5.3.

HRESP

• When HRESP indicates a transfer error, the signal is translated into the TileLink response

d_error. OKAY = LOW.

6.5.3 TL2AHB System Integration

The TL2AHB is implemented in a way which allows for some flexibility when integrating into a

larger system. It is possible to:

• Directly connect a single slave to the TL2AHB described in Section 6.5.3.1.

• Connect to a Decoder/Multiplexor which allows for multiple slave connections described in

Section 6.5.3.2.

Copyright © 2019, SiFive Inc. All rights reserved. 15



TL2AHB Direct Slave Connection

• In this use case, the TL2AHB signals map directly onto the Slave’s interface. This is

depicted in Figure 2.

Figure 2: TL2AHB connected directly to a slave

TL2AHB Decoder/Multiplexor Connection

• The HREADY signal from the decoder should be connected to the TL2AHB’s HREADYOUT

signal.

• HSEL and HREADY on the TL2AHB should be left floating.

Copyright © 2019, SiFive Inc. All rights reserved. 16



Figure 3: TL2AHB connected directly to a slave

Copyright © 2019, SiFive Inc. All rights reserved. 17



Chapter 7

Debug Interface

Figure 4: Debug Transport Module and Debug Module for HW Debug.

The SiFive VIC_E24 includes the JTAG debug transport module (DTM) described in The

RISC‑V Debug Specification, Version 0.13. This enables a single external industry-standard

1149.1 JTAG interface to test and debug the system. The JTAG interface can be directly con-

18



nected off-chip in a single-chip microcontroller or can be an embedded JTAG controller for a

RISC-V Core IP designed to be included in a larger SoC.

The DTM and debug module are depicted in Figure 4.

On-chip JTAG connections must be driven (no pullups), with a normal 2-state driver for TDO

under the expectation that on-chip mux logic will be used to select between alternate on-chip

JTAG controllers' TDO outputs. TDO logic changes on the falling edge of TCK.

7.1 JTAG TAPC State Machine

The JTAG controller includes the standard TAPC state machine shown in Figure 5. The state

machine is clocked with TCK. All transitions are labelled with the value on TMS, except for the

arc showing asynchronous reset when TRST=0.

Figure 5: JTAG TAPC state machine.

7.2 Resetting JTAG Logic

The JTAG logic must be asynchronously reset by asserting jtag_reset before coreReset is

deasserted.

Copyright © 2019, SiFive Inc. All rights reserved. 19



Asserting jtag_reset resets both the JTAG DTM and debug module test logic. Because parts

of the debug logic require synchronous reset, the jtag_reset signal is synchronized inside the

VIC_E24.

During operation, the JTAG DTM logic can also be reset without jtag_reset by issuing 5

jtag_TCK clock ticks with jtag_TMS asserted. This action resets only the JTAG DTM, not the

debug module.

7.3 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by jtag_TCK. The JTAG logic

is fully static and has no minimum clock frequency. The maximum jtag_TCK frequency is part-

specific.

7.4 JTAG Standard Instructions

The JTAG DTM implements the BYPASS and IDCODE instructions.

The Manufacturer ID field of IDCODE is provided by the RISC-V Core IP integrator, on the

jtag_mfr_id input.

7.5 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the

debug scan register between jtag_TDI and jtag_TDO.

The debug scan register includes a 2-bit opcode field, a 7-bit debug module address field, and a

32-bit data field.

to allow various memory-mapped read/write operations to be specified with a single scan of the

debug scan register.

These are described in The RISC‑V Debug Specification, Version 0.13.

7.6 Using Debug Outputs

The debug module logic in SiFive Systems drives two output signals: ndreset and dmactive.

These signals can be used in integration. It is suggested that the ndreset signal contribute to

the system reset. It must be synchronized before it contributes back to the RISC‑V Core IP’s

overall reset signal. This signal must not contribute to the jtag_reset signal. The dmactive

signal can be used, for example, to prevent clock or power gating of the debug module logic

while debugging is in progress.

Copyright © 2019, SiFive Inc. All rights reserved. 20



Chapter 8

Implementation

This chapter will describe the steps necessary to synthesize VIC_E24.

8.1 Top Level

The top level verilog module is defined in the file:

verilog/design/E2_CoreIPSubsystem.v

All top level interfaces are described in the the VIC_E24 Chapter 4.

8.2 Clocking

The VIC_E24 has the following main clock inputs: clock, rtc_toggle. clock is used to clock

the bus, PLIC and debug interfaces. rtc_toggle is exposed via the architectually defined real

time counter exposed in the mtime CSR.

The relationship between the clock input frequencies are as follows:

21



Figure 6: VIC_E24 Clock Diagram.

8.2.1 Clocking Guidelines

rtc_toggle is used by software for time keeping and therefore not necessary to have a high

frequency. Generally, rtc_toggle is connected to either a Real Time Clock (e.g. 32.768 kHz) or

to the base clock input frequency of the platform. The only restrictions on rtc_toggle are that it

must be strictly less than half the frequency of clock and that it must remain constant. Further-

more, for RISC-V compliance, software must be made aware of this frequency via a header file

or similar.

8.3 Retiming

A list of all modules (if any) which require retiming is included in the design deliverables. The list

can be found in the info/retiming_modules.txt file.

8.4 Gate Level Simulation

To avoid X propagation, all state such as flip-flops and SRAMs must be initialized at the begin-

ning of simulation, as well as after each power-up event if conducting power-aware simulation.

Additionally, ensure that the SRAM models never produce X values by modifying them as nec-

essary.

For Synopsys Design Compiler and IC Compiler, the command all_registers -output_pins

can be used to enumerate all state elements in the design. The UCLI command force

Copyright © 2019, SiFive Inc. All rights reserved. 22



-deposit <inst> <value> can be used in VCS simulation to force the output pins to 0 or 1.

VCS also requires a PLI table file to enable wn capability (debug access) on these instances.

Note that if the standard cell logic library contains flip-flops with inverted outputs (i.e., Q and

QN), those pins must be initialized to opposite values.

Copyright © 2019, SiFive Inc. All rights reserved. 23



Chapter 9

Simulation Testbench

9.1 Included Test Bench

The VIC_E24 includes an example test simulation environment which is designed to work with

Synopsys VCS version K-2015.09-SP2 or higher, Cadence Xcelium version 17.05 or higher, and

Verilator version 4.014 or higher . Several tests are included as part of the testbench to verify

functionality and can be run using the included Makefile. The testbench tests and their sources

are located in the included Freedom E SDK environment, specifically the freedom-e-sdk/

software folder. The Freedom E SDK environment contains all of the necessary source code,

Makefiles, and utilities necessary to recompile the included tests as well as the ability to easily

extend the testbench with additional tests. Freedom E SDK requires a suitable toolchain which

can be downlaoded from: https://www.sifive.com/boards

For more information on the Freedom E SDK environment, please read the readme file located

in the freedom-e-sdk directory.

9.1.1 Executing the Testbench

GNU Make is used to build the RTL into a simulator and run the included binary test files. The

Make targets are described below:

• clean - Cleans the build

• all - Runs all tests on all simulators

• all-verilator - Runs all tests using verilator

• all-vcs - Runs all tests using vcs

• all-xrun - Runs all tests using xcelium

• all-waves - Runs all tests while dumping waveforms in VPD format from all simulators

• all-verilator-waves - Runs all tests using verilator while dumping wafeforms in VPD format

• all-vcs-waves - Runs all tests using vcs while dumping wafeforms in VPD format

• all-xrun-waves - Runs all tests using xcelium while dumping wafeforms in VPD format

24

https://www.sifive.com/boards


• test.out - Runs the test called test

• test.vpd - Runs the test called test and produces a waveform in VPD format

Executing the command:

make all-waves

will run all of the tests in the tests folder and produce the resulting <test_name>.out and

<test_name>.vpd files which can then be analyzed for detailed execution information.

9.2 Testbench Output

The testbench is capable of producing two types of output files: .out and .vpd. .out files con-

tain a trace of all instructions executed by the processor. .vpd files contain VPD waveforms of

the design which can be viewed with a waveform viewer such as Synopsys DVE.

9.2.1 Testbench Output - Trace

The test bench will produce output files with the filename <test_name>.out. The output files

contain a cycle-by-cycle dump of a core’s write-back stage. An example output is provided

below:

Format:
core id: cycle [valid] pc=[address] Written[register=value][valid]
Read[register=value] Read[register=value]

Example:
C0: 483 [1] pc=[00000002138] W[r 3=000000007fff7fff][1] R[r 1=000000007fffffff] R[r
2=ffffffffffff8000]
C0: 484 [1] pc=[0000000213c] W[r29=000000007fff8000][1] R[r31=ffffffff80007ffe]
R[r31=0000000000000005]
C0: 485 [0] pc=[00000002140] W[r 0=0000000000000000][0] R[r 0=0000000000000000] R[r
0=0000000000000000]

The first [1] at cycle 483, core 0, shows that there’s a valid instruction at PC 0x2138 in the

writeback stage. The second [1] tells us that the register file is writing r3 with the corresponding

value 0x7fff7fff. When the add instruction was in the decode stage, the pipeline had read r1

and r2 with the corresponding values next to it. Similarly at cycle 484, there’s a valid instruction

at PC 0x213c in the writeback stage. At cycle 485, there isn’t a valid instruction in the writeback

stage, perhaps, because of a instruction cache miss at PC 0x2140.

9.2.2 Testbench Output - Waves

When running the included testbench with the all-waves or <test_name>.vpd targets, the

testbench will create VPD formatted waveforms which can be viewed with a waveform viewer

such as Synopsys DVE. The waveform along with the trace log can be helpful when debugging

tests run on the testbench.

Copyright © 2019, SiFive Inc. All rights reserved. 25



9.2.3 Adding Tests To The Included Testbench

The simplest way to add new tests to the testbench is to start from one of the included tests.

The return-pass test contains an empty main function which returns 0 (pass value) and is suit-

able for starting a new test. The example below demonstrates how to build a new test starting

from return-pass.

• In the freedom-e-sdk/software directory, make a copy of the return-pass folder and name the

copied folder to the name of your test. For this example we will use $TEST.

• In the $TEST directory, edit the makefile variable PROGRAM to match the name $TEST.

• In the $TEST directory, change the filename of return-pass.c to $TEST.c

• Use the Freedom E SDK makefile to build the test targeting the RTL BSP and the release

Configuration. The name of your BSP can be found in the freedom-e-sdk/bsp directory.

make TARGET=deliverable-name-rtl PROGRAM=$TEST CONFIGURATION=release software

• In the base directory of the deliverable, it is now possible to run the new test using the test-

bench makefile.

make $TEST.out

For more information on using Freedom E SDK and its environment, please read the readme

file located in the freedom-e-sdk directory.

9.3 SiFive Insight

VIC_E24 is enabled with SiFive Insight technology which provides deep visibility into the design

while at the same time being easily accessible. SiFive Insight is a verilog module that contains a

curated list of signals chosen by the designers and presented in an intuitive hierarchy with

descriptive names. SiFive Insight is primarily meant to be used during simulation waveform

debugging and allows for a deep understanding of what is happening inside the SiFive deliver-

able without knowing details of the design.

Note that some signals in SiFive Insight are pseudo-signals which represent several signals with

logic applied to them in order to present a more useful higher-level function. For example, the

Instruction Commit signal in a design may be the logical combination of several signals.

SiFive Insight also manages the grouping of signals to improve readability. An example of this

would be how SiFive Insight presents the mstatus CSR. SiFive Insight presents mstatus such

that each field in the CSR is grouped together, improving readability directly from the waveform

viewer.

A complete list of SiFive Insight signals, along with descriptions, can be found in the info/

sifive_insight.yml file located in the deliverables.

Copyright © 2019, SiFive Inc. All rights reserved. 26



9.3.1 Viewing SiFive Insight Signals

Follow the instructions in Section 9.1.1 to execute the testbench and generate the resulting VPD

wave files. This can be done with either the make all-waves or make <test_name>.vpd Make

targets.

Once the test completes, open the VPD wave file with a waveform viewer such as Synopsys

DVE. The SiFive Insight module can be found under the Verilog module hierarchy TestDriver/

testHarness/system/SiFive_Insight or by simply searching for SiFive_Insight.

From here it is possible to add the SiFive Insight signals to the waveform viewer.

9.3.2 Enabling SiFive Insight Outside of the SiFive Testbench

To enable SiFive Insight in testbenches other than the one provided with the SiFive deliverables,

simply include the SiFive Insight Verilog files with the testbench and design under test during

the compilation of the simulator. The SiFive Insight Verilog files are located in the verilog/

sifive_insight/ directory. Waveform dumps will automatically include the SiFive Insight sig-

nals.

Copyright © 2019, SiFive Inc. All rights reserved. 27


	SiFive VIC_E24 User Guide
	SiFive VIC_E24 User Guide
	Proprietary Notice

	Chapter 1 Introduction
	1.1 About this Document
	1.2 About this Release

	Chapter 2 Deliverables
	2.1 Folder Structure

	Chapter 3 Memories
	3.1 RAM Instances

	Chapter 4 VIC_E24 Interfaces
	4.1 Clock & Reset
	4.1.1 Real Time Clock (rtc_toggle)

	4.2 Ports
	4.2.1 System Port

	4.3 VIC_E24 Interrupt Interfaces
	4.3.1 Machine External Interrupts
	4.3.2 Local External Interrupts

	4.4 Debug Output Signals
	4.5 JTAG Debug Interface Pinout

	Chapter 5 VIC_E24 Error Handling
	5.1 2 Series Error Handling

	Chapter 6 TileLink to AHB Bridge (TL2AHB)
	6.1 Introduction
	6.2 Compliance
	6.3 Block Diagram
	6.4 TL2AHB Interface
	6.5 Functional Description
	6.5.1 Atomic Memory Operations (AMO)
	6.5.2 Bursts
	HADDR
	HMASTLOCK
	HPROT
	HSEL
	HRESP

	6.5.3 TL2AHB System Integration
	TL2AHB Direct Slave Connection
	TL2AHB Decoder/Multiplexor Connection



	Chapter 7 Debug Interface
	7.1 JTAG TAPC State Machine
	7.2 Resetting JTAG Logic
	7.3 JTAG Clocking
	7.4 JTAG Standard Instructions
	7.5 JTAG Debug Commands
	7.6 Using Debug Outputs

	Chapter 8 Implementation
	8.1 Top Level
	8.2 Clocking
	8.2.1 Clocking Guidelines

	8.3 Retiming
	8.4 Gate Level Simulation

	Chapter 9 Simulation Testbench
	9.1 Included Test Bench
	9.1.1 Executing the Testbench

	9.2 Testbench Output
	9.2.1 Testbench Output - Trace
	9.2.2 Testbench Output - Waves
	9.2.3 Adding Tests To The Included Testbench

	9.3 SiFive Insight
	9.3.1 Viewing SiFive Insight Signals
	9.3.2 Enabling SiFive Insight Outside of the SiFive Testbench



