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Chapter 1

Introduction

SiFive’s Vic_U7_Core is a high performance implementation of the RISC‑V RV64IMAFC archi-

tecture. The SiFive Vic_U7_Core is guaranteed to be compatible with all applicable RISC‑V

standards, and this document should be read together with the official RISC‑V user-level, privi-

leged, and external debug architecture specifications.

A summary of features in the Vic_U7_Core can be found in Table 1.

Vic_U7_Core Feature Set

Feature Description

Number of Harts 2 Harts.

U7 Core 2× U7 RISC‑V cores.

Level-2 Cache 2 MiB, 16-way L2 Cache.

PLIC Interrupts 127 Interrupt signals which can be connected to off core

complex devices.

PLIC Priority Levels The PLIC supports 7 priority levels.

Hardware Breakpoints 2 hardware breakpoints.

Physical Memory Protection

Unit

PMP with 8 x regions and a minimum granularity of 4096

bytes.

Table 1: Vic_U7_Core Feature Set

1.1 Vic_U7_Core Overview

An overview of the SiFive Vic_U7_Core is shown in Figure 1. This RISC-V Core IP includes 2 x

64-bit RISC‑V cores, including local and global interrupt support, and physical memory protec-

tion. The memory system consists of Data Cache and Instruction Cache. The Vic_U7_Core also

includes a debug unit, two incoming Ports, and three outgoing Ports.
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Figure 1: Vic_U7_Core Block Diagram

The Vic_U7_Core memory map is detailed in Chapter 4, and the interfaces are described in full

in the Vic_U7_Core User Guide.

1.2 Debug Support

The Vic_U7_Core provides external debugger support over an industry-standard JTAG port,

including 2 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 10, and the debug interface is described in the

Vic_U7_Core User Guide.

1.3 Memory System

The Vic_U7_Core memory system has a Level 1 memory system optimized for high perfor-

mance. The instruction subsystem consists of a 32 KiB 8-way instruction cache. The data sub-

system is comprised of a high performance 32 KiB 8-way data cache.

The memory system is described in more detail in Chapter 3.

Copyright © 2019, SiFive Inc. All rights reserved. 6



1.4 Interrupts

This Core Complex includes a RISC-V standard platform-level interrupt controller (PLIC), which

supports 133 global interrupts with 7 priority levels pre-integrated with the on core complex

peripherals.

This Core Complex also provides the standard RISC‑V machine-mode timer and software inter-

rupts via the Core-Local Interruptor (CLINT).

Interrupts are described in Chapter 5. The CLINT is described in Chapter 6. The PLIC is

described in Chapter 8.

Copyright © 2019, SiFive Inc. All rights reserved. 7



Chapter 2

List of Abbreviations and Terms
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Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT Core-Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core

local interrupts.

hart HARdware Thread

DTIM Data Tightly Integrated Memory

IJTP Indirect-Jump Target Predictor

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

WO Used to describe a Write Only registers field.

WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

Copyright © 2019, SiFive Inc. All rights reserved. 9



Chapter 3

U7 RISC-V Core

This chapter describes the 64-bit U7 RISC-V processor cores.

3.1 Instruction Memory System

The instruction memory system consists of a dedicated 32 KiB 8-way set-associative instruction

cache. The access latency of all blocks in the instruction memory system is one clock cycle. The

instruction cache is not kept coherent with the rest of the platform memory system. Writes to

instruction memory must be synchronized with the instruction fetch stream by executing a

FENCE.I instruction.

The instruction cache has a line size of 64 bytes, and a cache line fill triggers a burst access

outside of the Vic_U7_Core. The core caches instructions from executable addresses. See the

Vic_U7_Core Memory Map in Chapter 4 for a description of executable address regions that are

denoted by the attribute X.

Trying to execute an instruction from a non-executable address results in a synchronous trap.

3.2 Instruction-Fetch Unit

The U7 instruction-fetch unit (IFU) delivers up to 4 bytes of instructions per clock cycle to sup-

port superscalar instruction execution. The IFU contains sophisticated predictive hardware to

mitigate the performance impact of control hazards within the instruction stream. The IFU is

decoupled from the execution unit, so that correctly predicted control-flow events usually do not

result in execution stalls.

• A 16-entry branch target buffer (BTB), which predicts the target of taken branches and direct

jumps;

• A 8-entry indirect-jump target predictor (IJTP);

• A 6-entry return-address stack (RAS), which predicts the target of procedure returns;
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• A 3.6 KiB branch history table (BHT), which predicts the direction of conditional branches.

The BHT is a correlating predictor that supports long branch histories.

The BTB has one-cycle latency, so that correctly predicted branches and direct jumps result in

in no penalty, provided the target is 4-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result

in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-

agree with the BTB’s prediction, a one-cycle fetch bubble results. (Similar to direct jumps that

miss in the BTB, the fetch bubble might not result in an execution stall.)

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves

later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps

incur a six-cycle penalty.

The U7 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions.

3.3 Execution Pipeline

Figure 2: Vic_U7_Core Block Diagram

The U7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:

two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),

address generation (AG), two stages of data memory access (M1 and M2), and register write-

back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is

fully bypassed so that most instructions have a one-cycle result latency:

• Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.

If such an instruction’s operands are available when the instruction enters the AG stage,

then it executes in AG; otherwise, it executes in M2.

Copyright © 2019, SiFive Inc. All rights reserved. 11



• Loads produce their result in the M2 stage. There is no load-use delay for most integer

instructions. However, effective addresses for memory accesses are always computed in the

AG stage. Hence, loads, stores, and indirect jumps require their address operands to be

ready when the instruction enters AG. If an address-generation operation depends upon a

load from memory, then the load-use delay is two cycles.

• Integer multiplication instructions consume their operands in the AG stage and produce their

results in the M2 stage. The integer multiplier is fully pipelined.

• Integer division instructions consume their operands in the AG stage. These instructions

have between a 3-cycle and 64-cycle result latency, depending on the operand values.

• CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer

instructions with no delay. Most CSR writes flush the pipeline (a seven-cycle penalty).

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data

hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-

vided the following constraints are met:

• At most one instruction accesses data memory;

• At most one instruction is a branch or jump;

• At most one instruction is a floating-point arithmetic operation;

• At most one instruction is an integer multiplication or division operation;

• Neither instruction explicitly accesses a CSR.

3.4 Data Memory System

The U7 data memory system has a 8-way set-associative 32 KiB write-back data cache that

supports 64-byte cache lines. The access latency is two clock cycles for words and double-

words, and three clock cycles for smaller quantities. Misaligned accesses are not supported in

hardware and result in a trap to support software emulation. The data caches are kept coherent

with a directory-based cache coherence manager, which resides in the outer L2 cache.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 Floating-Point Unit (FPU)

The U7 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for

32-bit single-precision arithmetic. The FPU includes a fully pipelined fused-multiply-add unit and

an iterative divide and square-root unit, magnitude comparators, and float-to-integer conversion

units, all with full hardware support for subnormals and all IEEE default values.

Copyright © 2019, SiFive Inc. All rights reserved. 12



3.6 Supported Modes

The U7 supports RISC‑V supervisor and user modes, providing three levels of privilege:

machine (M), supervisor (S) and user (U). U-mode provides a mechanism to isolate application

processes from each other and from trusted code running in M-mode. S-mode adds a number

of additional CSRs and capabilities.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.7 Physical Memory Protection (PMP)

The U7 includes a Physical Memory Protection (PMP) unit compliant with The RISC‑V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10. PMP can be used to set mem-

ory access privileges (read, write, execute) for specified memory regions. The U7 PMP supports

8 regions with a minimum region size of 4096 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the U7. The

definitive resource for information about the RISC‑V PMP is The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

3.7.1 Functional Description

The U7 includes a PMP unit, which can be used to restrict access to memory and isolate

processes from each other.

The U7 PMP unit has 8 regions and a minimum granularity of 4096 bytes. Overlapping regions

are permitted. The U7 PMP unit implements the architecturally defined pmpcfgX CSR pmpcfg0

supporting 8 regions. pmpcfg1, pmpcfg2, and pmpcfg3 are implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on S-mode and U-mode accesses. However, locked regions (see Section 3.7.2) addi-

tionally enforce their permissions on M-mode.

3.7.2 Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpicfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on M-Mode accesses. When the L bit is clear, the R/W/X permissions apply to S-mode

and U-mode.

Copyright © 2019, SiFive Inc. All rights reserved. 13



3.8 Hardware Performance Monitor

The Vic_U7_Core supports a basic hardware performance monitoring facility compliant with The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The mcycle

CSR holds a count of the number of clock cycles the hart has executed since some arbitrary

time in the past. The minstret CSR holds a count of the number of instructions the hart has

retired since some arbitrary time in the past. Both are 64-bit counters.

The hardware performance monitor includes two additional event counters, mhpmcounter3 and

mhpmcounter4. The event selector CSRs mhpmevent3 and mhpmevent4 are registers that con-

trol which event causes the corresponding counter to increment. The mhpmcounters are 40-bit

counters.

The event selectors are partitioned into two fields, as shown in Table 2: the lower 8 bits select

an event class, and the upper bits form a mask of events in that class. The counter increments if

the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to

0x4200, then mhpmcounter3 will increment when either a load instruction or a conditional

branch instruction retires. An event selector of 0 means "count nothing."

Note that in-flight and recently retired instructions may or may not be reflected when reading or

writing the performance counters or writing the event selectors.

Copyright © 2019, SiFive Inc. All rights reserved. 14



Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events , mhpeventX[7:0] = 1

Bits Meaning

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

18 Floating-point interlock

Memory System Events, mhpeventX[7:0] = 2

Bits Meaning

8 Instruction cache miss

9 Data cache miss or memory-mapped I/O access

10 Data cache writeback

11 Instruction TLB miss

12 Data TLB miss

Table 2: mhpmevent Register Description

Copyright © 2019, SiFive Inc. All rights reserved. 15



Chapter 4

Memory Map

The memory map of the Vic_U7_Core is shown in Table 3.

Base Top Attr. Description

0x00_0000_0000 0x00_0000_0FFF RWX A Debug

0x00_0000_1000 0x00_01FF_FFFF Reserved

0x00_0200_0000 0x00_0200_FFFF RW A CLINT

0x00_0201_0000 0x00_0201_0FFF RW A Cache Controller

0x00_0201_1000 0x00_07FF_FFFF Reserved

0x00_0800_0000 0x00_081F_FFFF RWX A L2 LIM

0x00_0820_0000 0x00_0BFF_FFFF Reserved

0x00_0C00_0000 0x00_0FFF_FFFF RW A PLIC

0x00_1000_0000 0x00_17FF_FFFF RWX A Peripheral Port (128 MiB)

0x00_1800_0000 0x00_5FFF_FFFF RWX System Port (1.1 GiB)

0x00_6000_0000 0x08_7FFF_FFFF RWXCA Memory Port (32.5 GiB)

0x08_8000_0000 0x0F_FFFF_FFFF Reserved

0x10_0000_0000 0x17_FFFF_FFFF RWX System Port (32 GiB)

0x18_0000_0000 0x1F_FFFF_FFFF Reserved

0x20_0000_0000 0x2F_FFFF_FFFF RWX System Port (64 GiB)

0x30_0000_0000 0x3F_FFFF_FFFF RWXCA Memory Port (64 GiB)

0x40_0000_0000 0xFF_FFFF_FFFF Reserved

Table 3: Vic_U7_Core Memory Map. Memory Attributes: R - Read, W -

Write, X - Execute, C - Cacheable, A - Atomics
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Chapter 5

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the

Vic_U7_Core.

The definitive resource for information about the RISC‑V interrupt architecture is The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

5.1 Interrupt Concepts

The Vic_U7_Core supports Machine Mode and Supervisor Mode interrupts. It also has support

for the following types of RISC‑V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt.

Software and timer interrupts are local interrupts generated by the Core-Local Interruptor

(CLINT). The Vic_U7_Core contains no other local interrupt sources.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

By default, all interrupts are handled in machine mode. For harts that support supervisor mode,

it is possible to selectively delegate interrupts to supervisor mode.

This chapter describes the Vic_U7_Core interrupt architecture.

Chapter 6 describes the Core-Local Interruptor.
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Chapter 8 describes the global interrupt architecture and the PLIC design.

The Vic_U7_Core interrupt architecture is depicted in Figure 3.

Figure 3: Vic_U7_Core Interrupt Architecture Block Diagram.

5.2 Interrupt Operation

Within a privilege mode m, if the associated global interrupt-enable {ie} is clear, then no inter-

rupts will be taken in that privilege mode, but a pending-enabled interrupt in a higher privilege

mode will preempt current execution. If {ie} is set, then pending-enabled interrupts at a higher

interrupt level in the same privilege mode will preempt current execution and run the interrupt

handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect

the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.

5.2.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

Copyright © 2019, SiFive Inc. All rights reserved. 18



• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 6.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 5.3.

5.3 Interrupt Control Status Registers

The Vic_U7_Core specific implementation of interrupt CSRs is described below. For a complete

description of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

5.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the Vic_U7_Core is provided in Table 4. Note that this is not a complete description of mstatus

as it contains fields unrelated to interrupts. For the full description of mstatus, please consult

the The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Copyright © 2019, SiFive Inc. All rights reserved. 19



Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable

2 Reserved WPRI

3 MIE RW Machine Interrupt Enable

4 Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

6 Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

8 SPP RW Supervisor Previous Privilege Mode

[10:9] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 4: Vic_U7_Core mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 5.3.3.

5.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the Vic_U7_Core will process interrupts. The interrupt processing

mode is defined in the lower two bits of the mtvec register as described in Table 6.

Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the Vic_U7_Core sup-

ported modes is described in Table 6.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Requires

64-byte alignment.

Table 5: mtvec Register

MODE Field Encoding mtvec.MODE

Value Name Description

0x0 Direct All exceptions set pc to BASE

0x1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

mcause.EXCCODE.

≥ 2 Reserved

Table 6: Encoding of mtvec.MODE
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See Table 5 for a description of the mtvec register. See Table 6 for a description of the

mtvec.MODE field. See Table 10 for the Vic_U7_Core interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to

the mtvec.BASE address. Inside the trap handler, software must read the mcause register to

determine what triggered the trap.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 × exception code

(mcause.EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to

mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 64-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,

when interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global

interrupt.

5.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 7.

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

2 Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

4 Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

6 Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

8 Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

10 Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[63:12] Reserved WPRI

Table 7: mie Register
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5.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 8.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RW Supervisor Software Interrupt Pending

2 Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

4 Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

6 Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

8 Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

10 Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[63:12] Reserved WIRI

Table 8: mip Register

5.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous

exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 9 for more details about the mcause register. Refer to Table 10 for a list of synchro-

nous exception codes.

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[62:10] Reserved WLRL

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 9: mcause Register
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Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 Reserved

1 3 Machine software interrupt

1 4 Reserved

1 5 Supervisor timer interrupt

1 6 Reserved

1 7 Machine timer interrupt

1 8 Reserved

1 9 Supervisor external interrupt

1 8 Reserved

1 11 Machine external interrupt

1 ≥ 12 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 Environment call from S-mode

0 10 Reserved

0 11 Environment call from M-mode

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO page fault

0 ≥ 16 Reserved

Table 10: mcause Exception Codes

5.4 Supervisor Mode Interrupts

The Vic_U7_Core supports the ability to selectively direct interrupts and exceptions to supervi-

sor mode, resulting in improved performance by eliminating the need for additional mode

changes.

This capability is enabled by the interrupt and exception delegation CSRs; mideleg and

medeleg, respectively. Supervisor interrupts and exceptions can be managed via supervisor ver-

sions of the interrupt CSRs, specifically: stvec, sip, sie, and scause.
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Machine mode software can also directly write to the sip register, which effectively sends an

interrupt to supervisor mode. This is especially useful for timer and software interrupts as it may

be desired to handle these interrupts in both machine mode and supervisor mode.

The delegation and supervisor CSRs are described in the sections below. The definitive

resource for information about RISC‑V supervisor interrupts is The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

5.4.1 Delegation Registers (m*deleg)

By default, all traps are handled in machine mode. Machine mode software can selectively dele-

gate interrupts and exceptions to supervisor mode by setting the corresponding bits in mideleg

and medeleg CSRs. The exact mapping is provided in Table 11 and Table 12 and matches the

mcause interrupt and exception codes defined in Table 10.

Note that local interrupts may be delegated to supervisor mode.

Machine Interrupt Delegation Register

CSR mideleg

Bits Field Name Attr. Description

0 Reserved WARL

1 SSIP RW Delegate Supervisor Software Interrupt

[4:2] Reserved WARL

5 STIP RW Delegate Supervisor Timer Interrupt

[8:6] Reserved WARL

9 SEIP RW Delegate Supervisor External Interrupt

[63:10] Reserved WARL

Table 11: mideleg Register
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Machine Exception Delegation Register

CSR medeleg

Bits Field Name Attr. Description

0 RW Delegate Instruction Access Misaligned

Exception

1 RW Delegate Instruction Access Fault Exception

2 RW Delegate Illegal Instruction Exception

3 RW Delegate Breakpoint Exception

4 RW Delegate Load Access Misaligned Exception

5 RW Delegate Load Access Fault Exception

6 RW Delegate Store/AMO Address Misaligned

Exception

7 RW Delegate Store/AMO Access Fault Exception

8 RW Delegate Environment Call from U-Mode

9 RW Delegate Environment Call from S-Mode

[11:0] Reserved WARL

12 RW Delegate Instruction Page Fault

13 RW Delegate Load Page Fault

14 Reserved WARL

15 RW Delegate Store/AMO Page Fault Exception

[63:16] Reserved WARL

Table 12: medeleg Register

5.4.2 Supervisor Status Register (sstatus)

Similar to machine mode, supervisor mode has a register dedicated to keeping track of the

hart’s current state called sstatus. sstatus is effectively a restricted view of mstatus,

described in Section 5.3.1, in that changes made to sstatus are reflected in mstatus and vice-

versa, with the exception of the machine mode fields, which are not visible in sstatus.

A summary of the sstatus fields related to interrupts in the Vic_U7_Core is provided in Table

13. Note that this is not a complete description of sstatus as it also contains fields unrelated to

interrupts. For the full description of sstatus, consult the The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.
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Supervisor Status Register

CSR sstatus

Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable

[4:2] Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

[7:6] Reserved WPRI

8 SPP RW Supervisor Previous Privilege Mode

[12:9] Reserved WPRI

Table 13: Vic_U7_Core sstatus Register (partial)

Interrupts are enabled by setting the SIE bit in sstatus and by enabling the desired individual

interrupt in the sie register, described in Section 5.4.3.

5.4.3 Supervisor Interrupt Enable Register (sie)

Supervisor interrupts are enabled by setting the appropriate bit in the sie register. The

Vic_U7_Core sie register is described in Table 14.

Supervisor Interrupt Enable Register

CSR sie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

[4:2] Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

[8:6] Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

[63:10] Reserved WPRI

Table 14: sie Register

5.4.4 Supervisor Interrupt Pending (sip)

The supervisor interrupt pending (sip) register indicates which interrupts are currently pending.

The Vic_U7_Core sip register is described in Table 15.

Copyright © 2019, SiFive Inc. All rights reserved. 26



Supervisor Interrupt Pending Register

CSR sip

Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RW Supervisor Software Interrupt Pending

[4:2] Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

[8:6] Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

[63:10] Reserved WIRI

Table 15: sip Register

5.4.5 Supervisor Cause Register (scause)

When a trap is taken in supervisor mode, scause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

scause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in sip. For example, a Supervisor Timer Interrupt causes scause

to be set to 0x8000_0000_0000_0005.

scause is also used to indicate the cause of synchronous exceptions, in which case the most-

significant bit of scause is set to 0. Refer to Table 17 for a list of synchronous exception codes.

Supervisor Cause Register

CSR scause

Bits Field Name Attr. Description

[62:0] Exception Code

(EXCCODE)

WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 16: scause Register
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Supervisor Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 – 4 Reserved

1 5 Supervisor timer interrupt

1 6 – 8 Reserved

1 9 Supervisor external interrupt

1 ≥ 10 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Reserved

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 – 11 Reserved

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO Page Fault

0 ≥ 16 Reserved

Table 17: scause Exception Codes

5.4.6 Supervisor Trap Vector (stvec)

By default, all interrupts trap to a single address defined in the stvec register. It is up to the

interrupt handler to read scause and react accordingly. RISC‑V and the Vic_U7_Core also sup-

port the ability to optionally enable interrupt vectors. When vectoring is enabled, each interrupt

defined in sie will trap to its own specific interrupt handler.

Vectored interrupts are enabled when the MODE field of the stvec register is set to 1.
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Supervisor Trap Vector Register

CSR stvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE determines whether or not interrupt

vectoring is enabled. The encoding for the

MODE field is described in Table 19.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be

aligned on a 128-byte boundary when

MODE=1. Note, BASE[1:0] is not present in

this register and is implicitly 0.

Table 18: stvec Register

MODE Field Encoding stvec.MODE

Value Name Description

0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

scause.EXCCODE

≥ 2 Reserved

Table 19: Encoding of stvec.MODE

If vectored interrupts are disabled (stvec.MODE=0), all interrupts trap to the stvec.BASE

address. If vectored interrupts are enabled (stvec.MODE=1), interrupts set the pc to stvec.BASE

+ 4 × exception code (scause.EXCCODE). For example, if a supervisor timer interrupt is taken,

the pc is set to stvec.BASE + 0x14. Typically, the trap vector table is populated with jump

instructions to transfer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All supervisor external interrupts (global interrupts) are mapped to exception code of 9. Thus,

when interrupt vectoring is enabled, the pc is set to address stvec.BASE + 0x24 for any global

interrupt.

See Table 18 for a description of the stvec register. See Table 19 for a description of the

stvec.MODE field. See Table 17 for the Vic_U7_Core supervisor mode interrupt exception code

values.

5.4.7 Delegated Interrupt Handling

Upon taking a delegated trap, the following occurs:

• The value of sstatus.SIE is copied into sstatus.SPIE, then sstatus.SIE is cleared,

effectively disabling interrupts.
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• The current pc is copied into the sepc register, and then pc is set to the value of stvec. In

the case where vectored interrupts are enabled, pc is set to stvec.BASE + 4 × exception

code (scause.EXCCODE).

• The privilege mode prior to the interrupt is encoded in sstatus.SPP.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting sstatus.SIE or by executing an SRET instruc-

tion to exit the handler. When an SRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in sstatus.SPP.

• The value of sstatus.SPIE is copied into sstatus.SIE.

• The pc is set to the value of sepc.

At this point, control is handed over to software.

5.5 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 8.

Vic_U7_Core interrupts are prioritized as follows, in decreasing order of priority:

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

• Supervisor external interrupts

• Supervisor software interrupts

• Supervisor timer interrupts

5.6 Interrupt Latency

Interrupt latency for the Vic_U7_Core is 4 cycles, as counted by the numbers of cycles it takes

from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is

clocked by clock. This means that the total latency, in cycles, for a global interrupt is: 4 + 3

(core_clock_0 Hz clock Hz). This is a best case cycle count and assumes the handler is

cached or located in ITIM. It does not take into account additional latency from a peripheral

source.
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Chapter 6

Core-Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software

and timer interrupts. The Vic_U7_Core CLINT complies with The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

6.1 CLINT Memory Map

Table 20 shows the memory map for CLINT on SiFive Vic_U7_Core.

Address Width Attr. Description Notes

0x0200_0000 4B RW msip for hart 0 MSIP Registers (1 bit wide)

0x0200_0004 4B RW msip for hart 1

0x0200_4010 Reserved

…

0x0200_BFF7

0x0200_4000 8B RW mtimecmp for hart 0 MTIMECMP Registers

0x0200_4008 8B RW mtimecmp for hart 1

0x0200_4010 Reserved

…

0x0200_BFF7

0x0200_BFF8 8B RW mtime Timer Register

0x0200_C000 Reserved

Table 20: CLINT Register Map

6.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to

0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

isters are hardwired to zero. On reset, each msip register is cleared to zero.
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Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.

6.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the

rtc_toggle signal described in the Vic_U7_Core User Guide. A timer interrupt is pending

whenever mtime is greater than or equal to the value in the mtimecmp register. The timer inter-

rupt is reflected in the mtip bit of the mip register described in Chapter 5.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

6.4 Supervisor Mode Delegation

By default, all interrupts trap to machine mode, including timer and software interrupts. In order

for supervisor timer and software interrupts to trap directly to supervisor mode, supervisor timer

and software interrupts must first be delegated to supervisor mode.

Please see Section 5.4 for more details on supervisor mode interrupts.
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Chapter 7

Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the

Vic_U7_Core.

7.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for

masters in a Core Complex. The Level 2 Cache Controller also acts as directory-based

coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility as it allows for several features in

addition to the Level 2 Cache functionality. These include memory-mapped access to L2 Cache

RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC support

with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 7.2.

7.2 Functional Description

The Vic_U7_Core L2 Cache Controller is configured into 2 banks. Each bank contains 1024

sets of 16 ways and each way contains a 64-byte block. This subdivision into banks helps facili-

tate increased available bandwidth between CPU masters and the L2 Cache as each bank has

its own dedicated 128-bit TL-C inner port. As such, multiple requests to different banks may pro-

ceed in parallel.

The outer port of the L2 Cache Controller is a 256-bit TL-C port shared among all banks and

typically connected to a DDR controller. The outer Memory port(s) of the L2 Cache Controller is

shared among all banks and typically connected to cacheable memory. The overall organization

of the L2 Cache Controller is depicted in Figure 4. See the Vic_U7_Core User Guide for detailed

information regarding the Memory port.
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Figure 4: Organization of the SiFive L2 Cache Controller

7.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)

Similar to the ITIM discussed in Chapter 3, the SiFive Level 2 Cache Controller allows for its

SRAMs to act either as direct addressed memory in the Core Complex address space or as a

cache that is controlled by the L2 Cache Controller and which can contain a copy of any

cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely Integrated Memory

(L2-LIM) address space as described in the Vic_U7_Core memory map in Chapter 4. Fetching

instructions or data from the L2-LIM provides deterministic behavior equivalent to an L2 cache

hit, with no possibility of a cache miss. Accesses to L2-LIM are always given priority over cache

way accesses, which target the same L2 cache bank.

Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to

the WayEnable register described in Section 7.4.2. Once a cache way is enabled, it can not be
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disabled unless the Vic_U7_Core is reset. The highest numbered L2 Cache Way is mapped to

the lowest L2-LIM address space, and way 1 occupies the highest L2-LIM address range. As L2

cache ways are enabled, the size of the L2-LIM address space shrinks. The mapping of L2

cache ways to L2-LIM address space is show in Figure 5.

Figure 5: Mapping of L2 Cache Ways to L2-LIM Addresses

7.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able

to allocate into by using the WayMaskX register described in Section 7.4.12. Note that WayMaskX

registers only affect allocations, and reads can still occur to ways that are masked. As such, it

becomes possible to lock down specific cache ways by masking them in all WayMaskX registers.

In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

7.2.3 L2 Scratchpad

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-

cation into the cache using an address range which is not memory backed. This address region

is denoted as the L2 Zero Device in the Memory Map in Chapter 4. Writes to the scratchpad

region allocate into cache ways that are enabled and not masked. Care must be taken with the

scratchpad, however, as there is no memory backing this address space. Cache evictions from

addresses in the scratchpad result in data loss.

The main advantage of the L2 Scratchpad over the L2-LIM is that it is a cacheable region allow-

ing for data stored to the scratchpad to also be cached in a master’s L1 data cache resulting in

faster access.

The recommended procedure for using the L2 Scratchpad is as follows:

1. Use the WayEnable register to enable the desired cache ways.
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2. Designate a single master that will allocate into the scratchpad. For this procedure,

we designate this master as Master S. All other masters (CPU and non-CPU) are

denoted as Masters X.

3. Masters X: Write to the WayMaskX register to mask the ways that are to be used for

the scratchpad. This prevents Masters X from evicting cache lines in the designated

scratchpad ways.

4. Master S: Write to the WayMaskX register to mask all ways except the ways that are

to be used for the scratchpad. At this point, Master S should only be able to allocate

into the cache ways meant to be used as a scratchpad.

5. Master S: Write scratchpad data into the L2 Scratchpad address range (L2 Zero

Device).

6. Master S: Repeat steps 4 and 5 for each way to be used as scratchpad.

7. Master S: Use the WayMaskX register to mask the scratchpad ways for Master S so

that it is no longer able to evict cache lines from the designated scratchpad ways.

8. At this point, the scratchpad ways should contain the scratchpad data, with all mas-

ters able to read, write, and execute from this address space, and no masters able

to evict the scratchpad contents.

7.2.4 Error Correcting Codes (ECC)

The SiFive Level 2 Cache Controller supports ECC. ECC is applied to both categories of SRAM

used, the data SRAMs and the meta-data SRAMs (index, tag, and directory information). The

data SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED). The meta-data

SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED).

Whenever a correctable error is detected, the cache immediately repairs the corrupted bit and

writes it back to SRAM. This corrective procedure is completely invisible to application software.

However, to support diagnostics, the cache records the address of the most recently corrected

meta-data and data errors. Whenever a new error is corrected, a counter is increased and an

interrupt is raised. There are independent addresses, counters, and interrupts for correctable

meta-data and data errors.

DirFail, DirError, DataError, and DataFail signals are used to indicate that an L2 meta-

data, data, or uncorrectable L2 data error has occurred, respectively. These signals are con-

nected to the PLIC as described in Chapter 8 and are cleared upon reading their respective

count registers.

7.3 Memory Map

The L2 Cache Controller memory map is shown in Table 21.
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Offset Name Description

0x000 Config Information about the Cache Configuration

0x008 WayEnable The index of the largest way which has been enabled. May

only be increased.

0x040 ECCInjectError Inject an ECC Error

0x100 DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x104 DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x108 DirECCFixCount Reports the number of times an ECC error occured

0x120 DirECCFailLow The low 32-bits of the most recent address to fail ECC

0x124 DirECCFailHigh The high 32-bits of the most recent address to fail ECC

0x128 DirECCFailCount Reports the number of times an ECC error occured

0x140 DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x144 DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x148 DatECCFixCount Reports the number of times an ECC error occured

0x160 DatECCFailLow The low 32-bits of the most recent address to fail ECC

0x164 DatECCFailHigh The high 32-bits of the most recent address to fail ECC

0x168 DatECCFailCount Reports the number of times an ECC error occured

0x200 Flush64 Flush the phsyical address equal to the 64-bit written data from

the cache

0x240 Flush32 Flush the physical address equal to the 32-bit written data << 4

from the cache

0x800 WayMask0 Master 0 way mask register

0x808 WayMask1 Master 1 way mask register

0x810 WayMask2 Master 2 way mask register

0x818 WayMask3 Master 3 way mask register

0x820 WayMask4 Master 4 way mask register

0x828 WayMask5 Master 5 way mask register

0x830 WayMask6 Master 6 way mask register

0x838 WayMask7 Master 7 way mask register

0x840 WayMask8 Master 8 way mask register

0x848 WayMask9 Master 9 way mask register

0x850 WayMask10 Master 10 way mask register

0x858 WayMask11 Master 11 way mask register

0x860 WayMask12 Master 12 way mask register

7.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache

Controller.

Table 21: Register offsets within the L2 Cache Controller Control Memory Map
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7.4.1 Cache Configuration Register (Config)

The Config Register can be used to programmatically determine information regarding the

cache size and organization.

Information about the Cache Configuration: (Config)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] Banks RO 0x2 Number of banks in the cache

[15:8] Ways RO 0x10 Number of ways per bank

[23:16] lgSets RO 0xA Base-2 logarithm of the sets per bank

[31:24] lgBlockBytes RO 0x6 Base-2 logarithm of the bytes per cache block

7.4.2 Way Enable Register (WayEnable)

The WayEnable register determines which ways of the Level 2 Cache Controller are enabled as

cache. Cache ways that are not enabled are mapped into the Vic_U7_Core’s L2-LIM (Loosely

Integrated Memory) as described in the memory map in Chapter 4.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,

only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a

cache way is enabled, the only way to map it back into the L2-LIM address space is by a reset.

The index of the largest way which has been enabled. May only be increased.:

(WayEnable)

Register Offset 0x8

Bits Field

Name

Attr. Rst. Description

[7:0] WayEnable RW 0x0 The index of the largest way which has been enabled.

May only be increased.

7.4.3 ECC Error Injection Register (ECCInjectError)

The ECCInjectError register can be used to insert an ECC error into either the backing data or

meta-data SRAM. This function can be used to test error correction logic, measurement, and

recovery.

Table 22: Information about the Cache Configuration

Table 23: The index of the largest way which has been enabled. May only be increased.
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Inject an ECC Error: (ECCInjectError)

Register Offset 0x40

Bits Field Name Attr. Rst. Description

[7:0] ECCToggleBit RW 0x0 Toggle (corrupt) this bit index on the next cache

operation

[15:8] Reserved

16 ECCToggleType RW 0x0 Toggle (corrupt) a bit in 0=data or 1=directory

[31:17] Reserved

7.4.4 ECC Directory Fix Address (DirECCFix*)

The DirECCFixHi and DirECCFixLow registers are read-only registers that contain the address

of the most recently corrected meta-data error. This field supplies only the portions of the

address that correspond to the affected set and bank, since all ways are corrected together.

7.4.5 ECC Directory Fix Count (DirECCFixCount)

The DirECCFixCount register is a read-only register that contains the number of corrected L2

meta-data errors.

Reading this register clears the DirError interrupt signal described in Section 7.2.4.

7.4.6 ECC Directory Fail Address (DirECCFail*)

The DirECCFailLow and DirECCFailHigh registers are read-only registers that contains the

address of the most recent uncorrected L2 meta-data error.

7.4.7 ECC Data Fix Address (DatECCFix*)

The DatECCFixLow and DatECCFixHigh registers are read-only registers that contain the

address of the most recently corrected L2 data error.

7.4.8 ECC Data Fix Count (DatECCFixCount)

The DataECCFixCount register is a read-only register that contains the number of corrected

data errors.

Reading this register clears the DataError interrupt signal described in Section 7.2.4.

7.4.9 ECC Data Fail Address (DatECCFail*)

The DatECCFailLow and DatECCFailHigh registers are a read-only registers that contain the

address of the most recent uncorrected L2 data error.

Table 24: Inject an ECC Error
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7.4.10 ECC Data Fail Count (DatECCFailCount)

The DatECCFailCount register is a read-only register that contains the number of uncorrected

data errors.

Reading this register clears the DataFail interrupt signal described in Section 7.2.4.

7.4.11 Cache Flush Registers (Flush*)

The Vic_U7_Core L2 Cache Controller provides two registers that can be used for flushing spe-

cific cache blocks.

Flush64 is a 64-bit write-only register that flushes the cache block containing the address writ-

ten. Flush32 is a 32-bit write-only register that flushes a cache block containing the written

address left shifted by 4 bytes. In both registers, all bits must be written in a single access for

the flush to take effect.

7.4.12 Way Mask Registers (WayMask*)

The WayMaskX register allows a master connected to the L2 Cache Controller to specify which

L2 cache ways can be evicted by master X. Masters can still access memory cached in masked

ways. The mapping between masters and their L2 master IDs is shown in Table 26.

At least one cache way must be enabled. It is recommended to set/clear bits in this register

using atomic operations.
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Master 0 way mask register: (WayMask0)

Register Offset 0x800

Bits Field Name Attr. Rst. Description

0 WayMask0[0] RW 0x1 Enable way 0 for Master 0

1 WayMask0[1] RW 0x1 Enable way 1 for Master 0

2 WayMask0[2] RW 0x1 Enable way 2 for Master 0

3 WayMask0[3] RW 0x1 Enable way 3 for Master 0

4 WayMask0[4] RW 0x1 Enable way 4 for Master 0

5 WayMask0[5] RW 0x1 Enable way 5 for Master 0

6 WayMask0[6] RW 0x1 Enable way 6 for Master 0

7 WayMask0[7] RW 0x1 Enable way 7 for Master 0

8 WayMask0[8] RW 0x1 Enable way 8 for Master 0

9 WayMask0[9] RW 0x1 Enable way 9 for Master 0

10 WayMask0[10] RW 0x1 Enable way 10 for Master 0

11 WayMask0[11] RW 0x1 Enable way 11 for Master 0

12 WayMask0[12] RW 0x1 Enable way 12 for Master 0

13 WayMask0[13] RW 0x1 Enable way 13 for Master 0

14 WayMask0[14] RW 0x1 Enable way 14 for Master 0

15 WayMask0[15] RW 0x1 Enable way 15 for Master 0

Master ID Description

0 Core 0 FetchUnit

1 Core 0 DCache

2 Core 1 FetchUnit

3 Core 1 DCache

4 debug

5 axi4_front_port ID#0

6 axi4_front_port ID#1

7 axi4_front_port ID#2

8 axi4_front_port ID#3

9 axi4_front_port ID#0

10 axi4_front_port ID#1

11 axi4_front_port ID#2

12 axi4_front_port ID#3

Table 25: Master 0 way mask register

Table 26: Master IDs in the L2 Cache Controller
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Chapter 8

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the

Vic_U7_Core. The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10 and can support a maximum of 133 external interrupt sources

with 7 priority levels.

The Vic_U7_Core PLIC resides in the clock timing domain, allowing for relaxed timing require-

ments. The latency of global interrupts, as perceived by a hart, increases with the ratio of the

core_clock_0 frequency and the clock frequency.

8.1 Memory Map

The memory map for the Vic_U7_Core PLIC control registers is shown in Table 27. The PLIC

memory map has been designed to only require naturally aligned 32-bit memory accesses.
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PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority
See Section 8.3 for more

information
…

0x0C00_0214 4B RW source 133 priority

0x0C00_0218 Reserved

…

0x0C00_1000 4B RO Start of pending array
See Section 8.4 for more

information
…

0x0C00_1010 4B RO Last word of pending array

0x0C00_1014 Reserved

…

0x0C00_2000 4B RW Start Hart 0 MS-Mode inter-

rupt enables
See Section 8.5 for more

information
…

0x0C00_200C 4B RW End Hart 0 MS-Mode interrupt

enables

0x0C00_2010 Reserved

…

0x0C00_2010 4B RW Start Hart 1 MS-Mode inter-

rupt enables
See Section 8.5 for more

information
…

0x0C00_201C 4B RW End Hart 1 MS-Mode interrupt

enables

0x0C00_2020 Reserved

…

0x0C20_0000 4B RW Hart 0 MS-Mode priority

threshold

See Section 8.6 for more

information

0x0C20_0004 4B RW Hart 0 MS-Mode claim/com-

plete

See Section 8.7 for more

information

0x0C20_0008 Reserved

…

0x0C20_0008 4B RW Hart 1 MS-Mode priority

threshold

See Section 8.6 for more

information

0x0C20_000C 4B RW Hart 1 MS-Mode claim/com-

plete

See Section 8.7 for more

information

0x0C20_0010 Reserved

…

0x1000_0000 End of PLIC Memory Map

Table 27: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.
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8.2 Interrupt Sources

The Vic_U7_Core has 127 interrupt sources. 127 of these are exposed at the top level via the

global_interrupts signals. Any unused global_interrupts inputs should be tied to logic 0.

The remainder are driven by various on-chip devices as listed in Table 28. These signals are

positive-level triggered.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt," hence

global_interrupts[0] corresponds to PLIC Interrupt ID 1.

Source Start Source End Source

1 127 External Global Interrupts

128 131 L2 Cache

Table 28: PLIC Interrupt Source Mapping

8.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The Vic_U7_Core supports 7 levels of priority. A priority value of 0 is

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest

active priority, and priority 7 is the highest. Ties between global interrupts of the same priority

are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.

See Table 29 for the detailed register description.

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Sets the priority for a given global inter-

rupt.

[31:3] Reserved RO 0

Table 29: PLIC Interrupt Priority Registers

8.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 5 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the Vic_U7_Core has 5 interrupt pending registers. Bit

0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 8.7.
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PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 30: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 5 (pending5)

Base Address 0x0C00_1010

Bits Field Name Attr. Rst. Description

0 Interrupt 128

Pending

RO 0 Pending bit for global interrupt 128

…

5 Interrupt 133

Pending

RO 0 Pending bit for global interrupt 133

[31:6] Reserved WIRI X

Table 31: PLIC Interrupt Pending Register 5

8.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.

The enables registers are accessed as a contiguous array of 5 × 32-bit words, packed the

same way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0

and is hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.
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PLIC Interrupt Enable Register 1 (enable1) for Hart 0 MS-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 32: PLIC Interrupt Enable Register 1 for Hart 0 MS-Mode

PLIC Interrupt Enable Register 5 (enable5) for Hart 1 MS-Mode

Base Address 0x0C00_201C

Bits Field Name Attr. Rst. Description

0 Interrupt 128

Enable

RW X Enable bit for global interrupt 128

…

5 Interrupt 133

Enable

RW X Enable bit for global interrupt 133

[31:6] Reserved RO 0

Table 33: PLIC Interrupt Enable Register 5 for Hart 1 MS-Mode

8.6 Priority Thresholds

The Vic_U7_Core supports setting of an interrupt priority threshold via the threshold register.

The threshold is a WARL field, where the Vic_U7_Core supports a maximum threshold of 7.

The Vic_U7_Core masks all PLIC interrupts of a priority less than or equal to threshold. For

example, a threshold value of zero permits all interrupts with non-zero priority, whereas a

value of 7 masks all interrupts.

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

Table 34: PLIC Interrupt Threshold Register

8.7 Interrupt Claim Process

A Vic_U7_Core hart can perform an interrupt claim by reading the claim/complete register

(Table 35), which returns the ID of the highest-priority pending interrupt or zero if there is no
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pending interrupt. A successful claim also atomically clears the corresponding pending bit on

the interrupt source.

A Vic_U7_Core hart can perform a claim at any time, even if the MEIP bit in its mip (Table 8)

register is not set.

The claim operation is not affected by the setting of the priority threshold register.

8.8 Interrupt Completion

A Vic_U7_Core hart signals it has completed executing an interrupt handler by writing the inter-

rupt ID it received from the claim to the claim/complete register (Table 35). The PLIC does not

check whether the completion ID is the same as the last claim ID for that target. If the comple-

tion ID does not match an interrupt source that is currently enabled for the target, the completion

is silently ignored.
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PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0004

[31:0] Interrupt Claim/

Complete for Hart

0 MS-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.

Table 35: PLIC Interrupt Claim/Complete Register for Hart 0 MS-Mode
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Chapter 9

Custom Instructions

These custom instructions use the SYSTEM instruction encoding space, which is the same as

custom CSR encoding space, but with funct3=0.

9.1 CFLUSH.D.L1

• Implemented as state machine in L1 D$, for cores with data caches.

• Opcode 0xFC000073: with optional rs1 field in bits 19:15.

• When rs1 = x0, CFLUSH.D.L1 writes back and invalidates all lines in the L1 D$.

• When rs1 != x0, CFLUSH.D.L1 writes back and invalidates the L1 D$ line containing the

virtual address in integer register rs1.

• If the address in rs1 is in an uncacheable region with write permissions, the instruction has

no effect but raises no exceptions.

• Note that if the PMP scheme write-protects only part of a cache line, then using a value for

rs1 in the write-protected region will cause an exception, whereas using a value for rs1 in

the write-permitted region will write back the entire cache line.

9.2 Other Custom Instructions

Other custom instructions may be implmented, but their functionality is not documented further

here and they should not be used in this version of the Vic_U7_Core.

9.3 SiFive Feature Disable CSR

SiFive custom M-mode CSRs are provided to enable and disable some microarchitectural fea-

tures. In the Vic_U7_Core CSR 0x7C1 has been allocated for this purpose.

These CSRs are designed such that a zero value in a field indicates the associated feature is

fully enabled.
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On reset, all dynamic features should be disabled. The boot loader is responsible for turning on

all required features, and can simply write zero to the corresponding CSRs to turn on the maxi-

mal set of features.

If a particular core does not support dynamic disabling of a feature, the corresponding field is

hardwired to zero.
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Chapter 10

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints

are supported.

10.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

Table 36: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

10.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:
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Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 37: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

10.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 38: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 39: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

Table 40: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any
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attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

10.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification, Version 0.13.

10.1.4 Debug PC dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

10.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation, Version 0.13.

10.2 Breakpoints

The Vic_U7_Core supports two hardware breakpoint registers per hart, which can be flexibly

shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 41: TDR CSRs when used as Breakpoints

10.2.1 Breakpoint Match Control Register mcontrol

Each breakpoint control register is a read/write register laid out in Table 42.
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Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[15:12] action WARL 0 Breakpoint action to take.

[17:16] sizelo WARL 0 Size of the breakpoint. Always 0.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 42: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the

address match is successful. The value 0 generates a breakpoint exception. The value 1 enters

debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered
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breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 43: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

10.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

10.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.
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Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

10.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

10.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

10.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The Vic_U7_Core has 16 32-bit words of program buffer for the debugger to direct a hart to exe-

cute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc

instructions and storing the result into the program buffer.

The Vic_U7_Core has two 32-bit words of debug data RAM. Its location can be determined by

reading the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM

space is used to pass data for the Access Register abstract command described in the RISC-V

Debug Specification. The Vic_U7_Core supports only general-purpose register access when

harts are halted. All other commands must be implemented by executing from the debug pro-

gram buffer.

In the Vic_U7_Core, both the program buffer and debug data RAM are general-purpose RAM

and are mapped contiguously in the Core Complex memory space. Therefore, additional data

can be passed in the program buffer, and additional instructions can be stored in the debug data

RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The Vic_U7_Core does not implement the DMSTATUS.anyhavereset or

DMSTATUS.allhavereset bits.

10.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.
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10.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

10.3.4 Safe Zero Address

In the Vic_U7_Core, the debug module contains the address 0x0 in the memory map. Reads to

this address always return 0, and writes to this address have no impact. This property allows a

"safe" location for unprogrammed parts, as the default mtvec location is 0x0.

10.4 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC‑V Debug Specification, Version 0.13. A

debug probe or agent connects to the Debug Module through the Debug Module Interface

(DMI). The following sections describe notable spec options used in the implementation and

should be read in conjunction with the RISC‑V Debug Specification.

10.4.1 DM Registers

dmstatus register

dmstatus holds the DM version number and other implementation information. Most impor-

tantly, it contains status bits that indicate the current state of the selected hart(s).

dmcontrol register

A debugger performs most hart control through the dmcontrol register.

Control Function

dmactive This bit enables the DM and is reflected in the dmactive output signal.

When dmactive=0, the clock to the DM is gated off.

ndmreset This is a read/write bit that drives the ndreset output signal.

resethaltreq Not supported

hartreset Not supported

hartsel This field selects the hart to operate on

hasel When set, additional hart(s) in the hart array mask register are selected in

addition to the one selected by hartsel.

Table 44: Debug Control Register
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hawindow register

This register contains a bitmap where bit 0 corresponds to hart 0, bit 1 to hart 1, etc. Any bits set

in this register select the corresponding hart in addition to the hart selected by hartsel.

10.4.2 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state. Many

aspects of Abstract Commands are optional in the RISC‑V Debug Spec and are implemented

as described below.

Cmdtype Feature Support

Access

Register

GPR registers Access Register command, register number 0x1000 - 0x101f

CSR registers Not supported. CSRs are accessed using the Program Buffer.

FPU registers Not supported. FPU registers are accessed using the Program

Buffer.

Autoexec Both autoexecprogbuf and autoexecdata are supported.

Postincrement Not supported.

Quick

Access

Not supported.

Access

Memory

Not supported. Memory access is accomplished using the Pro-

gram Buffer.

Table 45: Debug Abstract Commands

10.4.3 Multi-core Synchronization

The DM is configured with one Halt Group which may be programmed to synchronize execution

between harts or between hart(s) and external logic such as a cross-trigger matrix. The Halt

Group is configured using the dmcs2 register.

10.4.4 System Bus Access

System Bus Access (SBA) provides an alternative method to access memory. SBA operation

conforms to the RISC-V Debug Spec and the description is not duplicated here. Comparing Pro-

gram Buffer memory access and SBA:

Program Buffer Memory Access SBA Memory Access

Virtual address Physical Address

Subject to Physical Memory Protection (PMP) Not subject to PMP

Cache coherent Cache coherent

Hart must be halted Hart may be halted or running

Table 46: System Bus VS Program Buffer Comparison
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Chapter 11

Error-Correcting Codes (ECC)

Error-correcting codes (ECC) are implemented on various memories within the Vic_U7_Core,

allowing for the detection and potentially correction of memory errors. ECC on memories may

be configured through configuration registers on the Bus Error Unit (BEU). Memories with ECC

enabled must be initialized prior to use.

For more details on operation, see the separate ECC Error Handling Guide.
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