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Chapter 1

Introduction

SiFive’s VIC_E24 is an efficient implementation of the RISC‑V RV32IMAFC architecture. The

SiFive VIC_E24 is guaranteed to be compatible with all applicable RISC‑V standards, and this

document should be read together with the official RISC‑V user-level, privileged, and external

debug architecture specifications.

A summary of features in the VIC_E24 can be found in Table 1.

VIC_E24 Feature Set

Feature Description

Number of Harts 1 Hart.

E2 Core 1× E2 RISC‑V core.

Hardware Breakpoints 4 hardware breakpoints.

Physical Memory Protection

Unit

PMP with 4 x regions and a minimum granularity of 4 bytes.

Table 1: VIC_E24 Feature Set

1.1 VIC_E24 Overview

An overview of the SiFive VIC_E24 is shown in Figure 1. This RISC-V Core IP includes 1 x

32-bit RISC‑V core, including local and global interrupt support, and physical memory protec-

tion. The memory system consists of Tightly-Integrated Memory. The VIC_E24 also includes a

debug unit, and one outgoing Port.
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Figure 1: VIC_E24 Block Diagram

The VIC_E24 memory map is detailed in Chapter 4, and the interfaces are described in full in

the VIC_E24 User Guide.

1.2 Debug Support

The VIC_E24 provides external debugger support over an industry-standard JTAG port, includ-

ing 4 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 7, and the debug interface is described in the

VIC_E24 User Guide.

1.3 Interrupts

The VIC_E24 supports 127 core local interrupts in addition to the RISC‑V architectually defined

software, timer, and external interrupts. The core local interrupt controller (CLIC) is used to set

interrupt levels and priorities and can support up to 16 interrupt levels.

Interrupts are described in Chapter 5. The CLIC is described in Chapter 6.

Copyright © 2019, SiFive Inc. All rights reserved. 5



1.4 Tightly-Integrated Memory

The VIC_E24 has 64 KiB of Tightly-Integrated Memory (TIM) split evenly over two contiguous

banks (TIM 1 and TIM 0). Having split TIMs allows for simultaneous access to both banks.

When executing code solely from TIM address space, for maximum performance, it is recom-

mended to place code in one TIM and data in the other. If executing code from an off core com-

plex memory device, such as a(n) AHB flash controller, the TIMs can be treated as a single con-

tiguous address space.

The address of the Tightly-Integrated Memory is defined in the Memory Map in Chapter 4.

Copyright © 2019, SiFive Inc. All rights reserved. 6



Chapter 2

List of Abbreviations and Terms

7



Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT Core-Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core

local interrupts.

hart HARdware Thread

DTIM Data Tightly Integrated Memory

IJTP Indirect-Jump Target Predictor

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

WO Used to describe a Write Only registers field.

WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

Copyright © 2019, SiFive Inc. All rights reserved. 8



Chapter 3

E2 RISC-V Core

This chapter describes the 32-bit E2 RISC-V processor core. The processor core comprises a

decoupled instruction-fetch unit and a latency-optimized instruction-execution pipeline.

3.1 Instruction-Fetch Unit

The E2 instruction-fetch unit issues TileLink bus requests to supply instructions to the execution

pipeline. When executing straight-line code from an instruction source with single-cycle latency,

the instruction-fetch unit can supply instructions at a sustained rate of one per cycle, regardless

of instruction alignment.

The instruction-fetch unit issues only aligned 32-bit TileLink requests. If the execution pipeline

consumes only part of the 32-bit instruction-fetch parcel, the instruction-fetch unit queues the

remainder. Hence, when executing programs comprised mostly of compressed 16-bit instruc-

tions, the instruction-fetch unit is often idle, thereby reducing bus occupancy and power con-

sumption.

The instruction-fetch unit always accesses memory sequentially. Conditional branches are pre-

dicted not-taken, and not-taken branches incur no penalty. Taken branches and unconditional

jumps incur a one-cycle penalty, provided the target is naturally aligned (i.e., if the target is any

16-bit instruction, or is a 32-bit instruction whose address is divisible by 4). Taken branches and

unconditional jumps to misaligned targets incur an additional one-cycle penalty.

3.2 uInstruction Cache

The E2 includes a(n) 16 KiB uInstruction Cache caching the instructions that are not stored in

Tightly-Integrated Memory. This uInstruction Cache can supply the core with 32 bits per cycle in

the hit case.

The uInstruction Cache stores 32 bytes per cache line and is configured to be a direct-mapped

cache. The 32 bytes per cache line also implies that the uInstruction Cache will issue load

requests to the TileLink interface that are 32-byte aligned. If the uInstruction Cache tries to
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access memory ranges outside the allowed address space, e.g. a range that is not allowed by

any of the downstream peripherals, the result will depend on the response from the downstream

TileLink interfaces and whether they return a TL Denied response.

In order to increase the utilization of the available memories, the cache will avoid caching the

address ranges that are configured for the Tightly-Integrated Memories since the latencies to

those are the same as as to the uInstruction Cache. Hence, not caching them in the uInstruction

Cache increases the number of instructions that can be accessed by the core with low latency

without affecting the overall performance.

3.3 Execution Pipeline

The E2 execution unit is a single-issue, in-order pipeline. The pipeline comprises three stages:

Instruction Fetch, described in the previous section; Execute; and Writeback.

The pipeline has a peak execution rate of one instruction per clock cycle. Bypass paths are

included so that most instructions have a one-cycle result latency. There are some exceptions:

• The number of stall cycles between a load instruction and the use of its result is equal to the

number of cycles between the bus request and bus response. In particular, if a load is satis-

fied the cycle after it is demanded, then there is one stall cycle between the load and its use.

In this special case, the stall can be obviated by scheduling an independent instruction

between the load and its use.

• Integer division instructions have variable latency of at most 32 cycles. Note that in-flight

division operations can be interrupted, so they have no effect on worst-case interrupt

latency.

The E2 pipeline operates as follows. In the Execute stage, instructions are decoded and

checked for exceptions, and their operands are read from the integer register file. Arithmetic

instructions compute their results in this stage, whereas memory-access instructions compute

their effective addresses and send their requests to the TileLink bus. Exceptions and interrupts

are also detected in this stage: exceptional instructions do not proceed.

In the Writeback stage, instructions write their results to the integer register file. Instructions that

reach the Writeback stage but have not yet produced their results will interlock the pipeline. In

particular, load and division instructions with result latency greater than one cycle will interlock

the pipeline.

3.4 Data Memory System

The E2 processor has a TileLink bus interface used by all loads, stores, and AMOs. Two data

memory accesses can be in flight at once.

Store instructions incur no stalls if acknowledged by the TileLink bus on the cycle after they are

sent. Otherwise, the pipeline will interlock on the next memory-access instruction until the store

is acknowledged.

Copyright © 2019, SiFive Inc. All rights reserved. 10



3.5 Floating-Point Unit (FPU)

The E2 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for

32-bit single-precision arithmetic. The FPU includes a fully pipelined fused-multiply-add unit and

an iterative divide and square-root unit, magnitude comparators, and float-to-integer conversion

units, all with full hardware support for subnormals and all IEEE default values.

3.6 Supported Modes

The E2 supports RISC‑V user mode, providing two levels of privilege: machine (M) and user

(U). U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.

See The RISC?V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.7 Physical Memory Protection (PMP)

The E2 includes a Physical Memory Protection (PMP) unit compliant with The RISC?V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Version 1.10. PMP can be used to set mem-

ory access privileges (read, write, execute) for specified memory regions. The E2 PMP supports

4 regions with a minimum region size of 4 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the E2. The

definitive resource for information about the RISC‑V PMP is The RISC?V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

3.7.1 Functional Description

The E2 includes a PMP unit, which can be used to restrict access to memory and isolate

processes from each other.

The E2 PMP unit has 4 regions and a minimum granularity of 4 bytes. Overlapping regions are

permitted. The E2 PMP unit implements the architecturally defined pmpcfgX CSR pmpcfg0 sup-

porting 4 regions. pmpcfg1, pmpcfg2, and pmpcfg3 are implemented but hardwired to zero.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on U-mode accesses. However, locked regions (see Section 3.7.2) additionally

enforce their permissions on M-mode.

3.7.2 Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpicfg register.

Copyright © 2019, SiFive Inc. All rights reserved. 11



In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on M-Mode accesses. When the L bit is clear, the R/W/X permissions apply only to U-

mode.

3.8 Hardware Performance Monitor

The E2 processor supports a basic hardware performance monitoring facility compliant with The

RISC?V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The mcycle

CSR holds a count of the number of clock cycles the hart has executed since some arbitrary

time in the past. The minstret CSR holds a count of the number of instructions the hart has

retired since some arbitrary time in the past. Both are 64-bit counters. The mcycle and

minstret CSRs hold the 32 least-significant bits of the corresponding counter, and the mcycleh

and minstreth CSRs hold the most-significant 32 bits.

The hardware performance monitor includes two additional event counters, mhpmcounter3 and

mhpmcounter4. The event selector CSRs mhpmevent3 and mhpmevent4 are registers that con-

trol which event causes the corresponding counter to increment. The mhpmcounters are 40-bit

counters. The mhpmcounter_i CSR holds the 32 least-significant bits of the corresponding

counter, and the mhpmcounter_ih CSR holds the 8 most-significant bits.

The event selectors are partitioned into two fields, as shown in Table 2: the lower 8 bits select

an event class, and the upper bits form a mask of events in that class. The counter increments if

the event corresponding to any set mask bit occurs. For example, if mhpmevent3 is set to

0x4200, then mhpmcounter3 will increment when either a load instruction or a conditional

branch instruction retires. An event selector of 0 means "count nothing."

Note that in-flight and recently retired instructions may or may not be reflected when reading or

writing the performance counters or writing the event selectors.

Copyright © 2019, SiFive Inc. All rights reserved. 12



Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpeventX[7:0] = 0

Bits Meaning

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events , mhpeventX[7:0] = 1

Bits Meaning

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

18 Floating-point interlock

Memory System Events, mhpeventX[7:0] = 2

Bits Meaning

8 Instruction cache miss

9 Memory-mapped I/O access

Table 2: mhpmevent Register Description

Copyright © 2019, SiFive Inc. All rights reserved. 13



Chapter 4

Memory Map

The memory map of the VIC_E24 is shown in Table 3.

Base Top Attr. Description

0x0000_0000 0x0000_0FFF RWX A Debug

0x0000_1000 0x01FF_FFFF Reserved

0x0200_0000 0x02FF_FFFF RW A CLIC

0x0300_0000 0x1FFF_FFFF Reserved

0x2000_0000 0x2000_7FFF RWX A TIM 0 (32 KiB)

0x2000_8000 0x2000_FFFF RWX A TIM 1 (32 KiB)

0x2001_0000 0x7FFF_FFFF Reserved

0x8000_0000 0xFFFF_FFFF RWX System Port (2 GiB)

Table 3: VIC_E24 Memory Map. Memory Attributes: R - Read,

W - Write, X - Execute, C - Cacheable, A - Atomics
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Chapter 5

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the VIC_E24.

Specifically the VIC_E24 implements the RISC?V Core-Local Interrupt Controller (CLIC) specifi-

cation, Version 20180831. The CLIC represents a new RISC‑V interrupt specification which dif-

fers from the The RISC?V Instruction Set Manual, Volume II: Privileged Architecture, Version

1.10. As of June 2018, the CLIC is currently a RISC‑V draft proposal of the RISC‑V foundation’s

Fast Interrupts Task Group. Future versions of this core may implement later versions of the

CLIC specification.

5.1 Interrupt Concepts

The VIC_E24 supports Machine Mode interrupts. It also has support for the following types of

RISC‑V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt.

The VIC_E24 has 127 interrupts which are delivered to the core via the Core-Local Interrupt

Controller (CLIC) along with the software and timer interrupts.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

This chapter describes the VIC_E24 interrupt architecture.

Chapter 6 describes the Core-Local Interrupt Controller (CLIC).
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The VIC_E24 does not implement a PLIC. Instead a Machine External Interrupt input signal is

exposed at the boundary of the Core Complex which can be connected to a PLIC in a larger

design.

The VIC_E24 interrupt architecture is depicted in Figure 2.

Figure 2: VIC_E24 Interrupt Architecture Block Diagram.

5.2 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If

mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-

rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode and interrupt level are

modified to reflect the new privilege mode and interrupt level. The global interrupt-enable bit of

the handler’s privilege mode is cleared.

5.2.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• When in CLIC mode, the interrupted interrupt level is copied into mcause.MPIL, and the

interrupt level is set to that of the incoming interrupt as defined in its clicintcfg register.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 6.

Copyright © 2019, SiFive Inc. All rights reserved. 16



At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

• When in CLIC mode, the interrupt level is set to the value encoded in mcause.MPIL.

• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 5.3.

5.2.2 Interrupt Levels and Priorities

At any time, a hart is running in some privilege mode with some interrupt level. The hart’s cur-

rent interrupt level is made visible in the mintstatus register (Section 5.3.8 ), however, the cur-

rent privilege mode is not visible to software running on a hart.

The CLIC architecture supports pre-emption of up to 256 interrupt levels for each privilege

mode, where higher-numbered interrupt levels can preempt lower-numbered interrupt levels.

Interrupt level 0 corresponds to regular execution outside of an interrupt handler. The CLIC also

supports programmable priorities within a given level which are used to prioritize among inter-

rupts pending-and-enabled at the same interrupt level. The highest-priority interrupt at a given

interrupt level is taken first. In case there are multiple pending-and-enabled interrupts at the

same highest priority, the highest-numbered interrupt ID is taken first.

The number of available pre-emption levels, and priorities within each level, is determined by

the number of configuration bits in the CLIC’s clicintcfg register and the value of the CLIC’s

cliccfg.nlbits register.

See Section 6.3.3 and Section 6.3.4 for details of the VIC_E24 clicintcfg implementation and

cliccfg registers respectively.

5.2.3 Critical Sections in Interrupt Handlers

To implement a critical section between interrupt handlers at different levels, an interrupt handler

at any interrupt level can clear global interrupt-enable bit, mstatus.MIE, to prevent interrupts

from being taken.

Copyright © 2019, SiFive Inc. All rights reserved. 17



5.3 Interrupt Control Status Registers

The VIC_E24 specific implementation of interrupt CSRs is described below. For a complete

description of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC?V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 and the RISC?V Core-

Local Interrupt Controller (CLIC) specification, Version 20180831 .

5.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the VIC_E24 is provided in Table 4. Note that this is not a complete description of mstatus as it

contains fields unrelated to interrupts. For the full description of mstatus, please consult the

The RISC?V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MIE RW Machine Interrupt Enable

[6:4] Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

[10:8] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 4: VIC_E24 mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 5.3.3.

Note that when operating in CLIC mode, mstatus.MPP and mstatus.MPIE are accessible in the

mcause register described in Section 5.3.5.

5.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the VIC_E24 will process interrupts. The interrupt processing mode is

defined in the lower two bits of the mtvec register as described in Table 6.

Copyright © 2019, SiFive Inc. All rights reserved. 18



Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the VIC_E24 supported

modes is described in Table 6.

[31:2] BASE[31:2] WARL Interrupt Vector Base Address. Requires

64-byte alignment.

Table 5: mtvec Register

MODE Field Encoding mtvec.MODE

Value Name Description

0x0 Direct All exceptions set pc to BASE

0x1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

mcause.EXCCODE.

0x2 CLIC Direct All exceptions set pc to BASE.

0x3 CLIC Vectored Asynchronous interrupts set pc to the address in the

vector table located at mtvt + 4 × mcause.EXCCODE

Table 6: Encoding of mtvec.MODE

Note that when in either of the non-CLIC modes, the only interrupts that can be serviced are the

architecturally defined software, timer, and external interrupts.

See Table 5 for a description of the mtvec register. See Table 6 for a description of the

mtvec.MODE field. See Table 10 for the VIC_E24 interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to

the mtvec.BASE address. Inside the trap handler, software must read the mcause register to

determine what triggered the trap.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 × exception code

(mcause.EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to

mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 64-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,

when interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global

interrupt.

Copyright © 2019, SiFive Inc. All rights reserved. 19



Mode CLIC Direct

In CLIC Direct mode the processor jumps to the 64-byte-aligned trap handler address held in

the upper XLEN-6 bits of mtvec for all exceptions and interrupts.

In CLIC interrupt mode, BASE must be 64-byte aligned.

Mode CLIC Vectored

In vectored CLIC mode, on an interrupt, the processor switches to the handler’s privilege mode

and sets the hardware vectoring bit mcause.MINHV, then fetches an XLEN-bit handler address

from the in-memory vector table pointed to by mtvt described in Section 5.3.6. The address

fetched is defined in the following formula:

mtvt+4×mcause.EXCCODE.

If the fetch is successful, the processor clears the low bit of the handler address, sets the PC to

this handler address, then clears mcause.MINHV. The hardware vectoring bit minhv is provided

to allow resumable traps on fetches to the trap vector table.

Synchronous exceptions always trap to mtvec.BASE in machine mode.

5.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 7.

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

[6:4] Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

[10:8] Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[31:12] Reserved WPRI

Table 7: mie Register

When in either of the CLIC modes, the mie register is hardwired to zero and individual interrupt

enables are controlled by the clicintie[i] CLIC memory-mapped registers. See Chapter 6

for a detailed description of clicintie.
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5.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 8.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

[2:0] Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

[6:4] Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

[10:8] Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[31:12] Reserved WIRI

Table 8: mip Register

In CLIC mode, the mip register is hardwired to zero and individual interrupt enables are con-

trolled by the clicintip[i] CLIC memory-mapped registers. See Chapter 6 for a detailed

description of clicintip.

5.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0007. mcause is also used to indicate the cause of synchronous exceptions, in

which case the most-significant bit of mcause is set to 0.

When in either of the CLIC modes, mcause is extended to record more information about the

interrupted context which is used to reduce the overhead to save and restore that context for an

mret instruction. CLIC mode mcause also adds state to record progress through the trap han-

dling process.

See Table 9 for more details about the mcause register. Refer to Table 10 for a list of synchro-

nous exception codes.
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Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[22:10] Reserved WLRL

23 mpie WLRL Previous interrupt enable, same as

mstatus.mpie. CLIC mode only.

[27:24] mpil WLRL Previous interrupt level. CLIC mode only.

[29:28] mpp WLRL Previous interrupt privilege mode, same as

mstatus.mpp. CLIC mode only.

30 minhv WIRL Hardware vectoring in progress when set.

CLIC mode only.

31 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 9: mcause Register

Interrupt Exception Codes

Interrupt Exception Code Description

1 0–2 Reserved

1 3 Machine software interrupt

1 4–6 Reserved

1 7 Machine timer interrupt

1 8–10 Reserved

1 11 Machine external interrupt

1 12 CLIC Software Interrupt Pending (CSIP)

1 13–15 Reserved

1 16 CLIC Local Interrupt 0

1 17 CLIC Local Interrupt 1

1 18–126 …

1 143 CLIC Local Interrupt 127

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9–10 Reserved

0 11 Environment call from M-mode

0 ≥ 12 Reserved

Table 10: mcause Exception Codes
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5.3.6 Machine Trap Vector Table (mtvt)

The mtvt register holds the base address of the trap vector table. mtvt must be 64-byte aligned

and values other than 0 in the low 6 bits of mtvt are reserved.

Machine Trap Vector Table Register

CSR mtvt

Bits Field Name Attr. Description

[31:6] Base WARL Base address of the CLIC Vector Table

[5:0] Reserved WARL

Table 11: mtvt Register

# Vector table layout for RV32 (4-byte function pointers)

mtvt ->  0x800000 # Interrupt 0 handler function pointer

0x800004 # Interrupt 1 handler function pointer

0x800008 # Interrupt 2 handler function pointer

0x80000c # Interrupt 3 handler function pointer

5.3.7 Handler Address and Interrupt-Enable (mnxti)

The mnxti CSR can be used by software to service the next horizontal interrupt when it has

greater level than the saved interrupt context (held in mcause.PIL), without incuring the full cost

of an interrupt pipeline flush and context save/restore. The mnxti CSR is designed to be

accessed using CSRRSI/CSRRCI instructions, where the value read is a pointer to an entry in

the trap handler table and the write back updates the interrupt-enable status. In addition,

accesses to the mnxti register have side-effects that update the interrupt context state.

Note that this is different than a regular CSR instruction as the value returned is different from

the value used in the read-modify-write operation.

A read of the mnxti CSR returns either zero, indicating there is no suitable interrupt to service,

or the address of the entry in the trap handler table for software trap vectoring.

If the CSR instruction that acccesses mnxti includes a write, the mstatus CSR is the one used

for the read-modify-write portion of the operation, while the exception code in mcause and the

mintstatus register’s mil field can also be updated with the new interrupt level. If the CSR

instruction does not include write side effects (e.g., csrr t0, mnxti), then no state update on

any CSR occurs.

The mnxti CSR is intended to be used inside an interrupt handler after an initial interrupt has

been taken and mcause and mepc registers updated with the interrupted context and the id of

the interrupt.
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5.3.8 Machine Interrupt Status (mintstatus)

A new M-mode CSR, mintstatus, holds the active interrupt level for each supported privilege

mode. These fields are read-only. The primary reason to expose these fields is to support

debug.

Machine Interrupt Status Register

CSR mintstatus

Bits Field Name Attr. Description

[23:0] Reserved WIRI

[31:24] mil WIRL Active Machine Mode Interrupt Level

[32:13] Reserved WIRI

Table 12: VIC_E24 mintstatus Register

5.4 Interrupt Latency

Interrupt latency for the VIC_E24 is 6 cycles, as counted by the numbers of cycles it takes from

signaling of the interrupt to the hart to the first instruction fetch of the handler.
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Chapter 6

Core-Local Interrupt Controller (CLIC)

This chapter describes the operation of the Core-Local Interrupt Controller (CLIC). The VIC_E24

implements RISC?V Core-Local Interrupt Controller (CLIC) specification, Version 20180831

6.1 Interrupt Sources

The VIC_E24 has 127 interrupt sources which can be connected to peripheral devices in addi-

tion to the standard RISC-V software and timer interrupts. These interrupt inputs are exposed at

the top level via the local_interrupts signals. Any unused local_interrupts inputs should

be tied to logic 0. These signals are positive-level triggered.

The VIC_E24 does not include a PLIC which is used to signal External Interrupts. A

machine_external_interrupt signal is exposed at the top level which can be used to inte-

grate the VIC_E24 with an external PLIC.

CLIC Interrupt IDs are provided in the in Table 13.

VIC_E24 Interrupt IDs

ID Interrupt Notes

2 - 0 Reserved

3 msip Machine Software Interrupt

6 - 4 Reserved

7 mtip Machine Timer Interrupt

10 - 8 Reserved

11 meip Machine External Interrupt

12 csip CLIC Software Interrupt

15 - 13 Reserved

16 lint0 Local Interrupt 0

17 lint1 Local Interrupt 1

… lintX Local Interrupt X

143 lint127 Local Interrupt 127

Table 13: VIC_E24 Interrupt IDs
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6.2 CLIC Memory Map

The CLIC memory map is separated into multiple regions depending on the number of harts

which implement a CLIC; one shared region, and hart specific regions. This allows for back-

wards compatibility with the Core Local Interruptor (CLINT) and its msip, mtimecmp, and mtime

memory-mapped registers as well as compatibility between CLIC and non-CLIC harts. The base

address for all regions are provided below in Table 14.

Base Address for CLIC regions

Address Region Notes

0x0200_0000 Shared RISC-V Standard CLINT Base. The specific imple-

mentation of this region is described in detail in

Table 15.

0x0280_0000 Hart 0 Hart 0 CLIC Base. The specific implementation of

this region is described in detail in Table 16.

Table 14: CLIC Base Address

CLIC Shared Region

Offset Width Attr. Description Notes

0x0 4B RW msip for hart 0 MSIP Registers (1 bit wide)

0x4008

…

0xbff7

Reserved

0x4000 8B RW mtimecmp for hart 0 MTIMECMP Registers

0x4008

…

0xbff7

Reserved

0xbff8 8B RW mtime Timer Register

0xc000 Reserved

Table 15: CLIC Shared Register Map

CLIC Hart Specific Region

Offset Width Name Notes

0x000 1B per interrupt-id CLICINTIP CLIC Interrupt Pending Registers

0x400 1B per interrupt-id CLICINTIE CLIC Interrupt Enable Registers

0x800 1B per interrupt-id CLICINTCFG CLIC Interrupt Configuration Registers

0xC00 1B CLICCFG CLIC Configuration Register

Table 16: CLIC Hart Specific Region Map

6.3 Registers

This section will describe the functionality of the CLIC’s registers.
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6.3.1 CLIC Interrupt Pending (clicintip)

CLIC Interrupt Pending

Address CLIC Hart Base + 1×Interrupt ID

Bits Field Name Attr. RST. Description

0 clicintip RO* 0 When clicintip is set, the corre-

sponding Interrupt ID is pending. Only

the SW interrupt bits are writable. For

all other interrupts these are read-only

registers connected directly to input

pins or logic.

[7:1] Reserved RO 0

*clicintip bits for msip (Interrupt ID 3) and csip (Interrupt ID 12) are RW registers which

enables software to set these interrupts to pending.

Table 17: clicintip Register

When in CLIC mode, the Machine Interrupt Pending (mip) CSR is hardwired to zero and inter-

rupt pending status is instead presented in the clicintip memory-mapped registers.

6.3.2 CLIC Interrupt Enable (clicintie)

CLIC Interrupt Enable

Address CLIC Hart Base + 0x400 + 1×Interrupt ID

Bits Field Name Attr. RST. Description

0 clicintie RW 0 When clicintie is set, the corre-

sponding Interrupt ID is enabled

[7:1] Reserved RO 0

Table 18: clicintip Register

When in CLIC mode, the Machine Interrupt Enable (mie) CSR is hardwired to zero and interrupt

enables are instead presented in the clicintie memory-mapped registers.

6.3.3 CLIC Interrupt Configuration (clicintcfg)

CLIC Interrupt Configuration

Address CLIC Hart Base + 0x800 + 1×Interrupt ID

Bits Field Name Attr. RST. Description

[3:0] Reserved RO 0

[7: 4] clicintcfg RW 0 clicintcfg sets the pre-emption level

and priority of a given interrupt.

Table 19: clicintcfg Register
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The VIC_E24 has a total of 4 bits in clicintcfg which specify how to encode a given inter-

rupt’s pre-emption level and/or priority. The actual number of bits which determine the pre-emp-

tion level is determined by cliccfg.NLBITS. If cliccfg.NLBITS is < 4, then the remaining least

significant implemented bits are used to encode priorities within a given pre-emption level. If

cliccfg.NLBITS is set to zero, then all interrupts are treated as level 255 and all 4 bits are

used to set priorities.

See Section 5.2.2 for a description of CLIC levels and priorities.

6.3.4 CLIC Configuration (cliccfg)

CLIC Configuration

Address CLIC Hart Base + 0xC00

Bits Field Name Attr. RST. Description

[0] nvbits RW 0 When set, selective hardware vectoring

is enabled.

[4:1] nlbits RW 0 Determines the number of Level bits

available in clicintcfg

[6:5] nmbits RO 0 Determines the number Mode bits

available in clicintcfg.

[7] Reserved WARL 0

Table 20: cliccfg Register

The cliccfg register is used to configure the operation of the CLIC primarily by determining the

function of the bits implemented in clicintcfg bits. The VIC_E24 only supports Machine Mode

interrupts, therefore cliccfg.NMBITS is set to zero.

cliccfg.NLBITS is used to determine the number of clicintcfg bits used for levels vs priori-

ties. The CLIC supports a maximum of 256 pre-emption levels which requires 8 bits to encode

all 256 levels. For values of cliccfg.NLBITS< 8, the lower bits are assumed to be all 1s. The

resulting encoding of cliccfg.NLBITS to interrupt levels is shown below.

#NLBITS   encoding           interrupt levels
0    1111                                                           255
1    x111                           127,                            255
2    xx11              63,          127,            191,            255
3    xxx1        31,   63,   95,    127,    159,    191,    223,    255
4    xxxx     15,31,47,63,79,95,111,127,143,159,175,191,207,223,239,255

x bits are available `clicintcfg` bits

See Section 6.3.3 for a description of the effects of cliccfg.NLBITS on clicintcfg.

cliccfg.NVBITS allows for certain, selected, interrupts to be vectored while in the CLIC’s Direct

mode. If in CLIC Direct mode and cliccfg.NVBITS = 1, then selective interrupt vectoring is

turned on. The least-significant implemented bit of clicintcfg (bit 4 in VIC_E24) controls the

vectoring behavior of a given interrupt. When in CLIC Direct mode, and both cliccfg.NVBITS
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and the relevant bit of clicintcfg are set to 1, then the interrupt is vectored using the vector

table pointed to by the mtvt CSR. This allows some interrupts to all jump to a common base

address held in mtvec, while the others are vectored in hardware.
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Chapter 7

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints

are supported.

7.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

Table 21: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

7.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:
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Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 22: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

7.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 23: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 24: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

Table 25: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any
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attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

7.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification, Version 0.13.

7.1.4 Debug PC dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

7.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation, Version 0.13.

7.2 Breakpoints

The VIC_E24 supports four hardware breakpoint registers per hart, which can be flexibly shared

between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 26: TDR CSRs when used as Breakpoints

7.2.1 Breakpoint Match Control Register mcontrol

Each breakpoint control register is a read/write register laid out in Table 27.
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Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[15:12] action WARL 0 Breakpoint action to take.

[17:16] sizelo WARL 0 Size of the breakpoint. Always 0.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 27: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the

address match is successful. The value 0 generates a breakpoint exception. The value 1 enters

debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered
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breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 28: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

7.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

7.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.
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Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

7.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

7.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

7.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The VIC_E24 has two 32-bit words of program buffer for the debugger to direct a hart to exe-

cute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc

instructions and storing the result into the program buffer.

The VIC_E24 has one 32-bit words of debug data RAM. Its location can be determined by read-

ing the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM space

is used to pass data for the Access Register abstract command described in the RISC-V Debug

Specification. The VIC_E24 supports only general-purpose register access when harts are

halted. All other commands must be implemented by executing from the debug program buffer.

In the VIC_E24, both the program buffer and debug data RAM are general-purpose RAM and

are mapped contiguously in the Core Complex memory space. Therefore, additional data can

be passed in the program buffer, and additional instructions can be stored in the debug data

RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The VIC_E24 does not implement the DMSTATUS.anyhavereset or DMSTATUS.allhavereset

bits.

7.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.
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7.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

7.3.4 Safe Zero Address

In the VIC_E24, the debug module contains the addresses 0x0 through 0xFFF in the memory

map. Memory accesses to these addresses raise access exceptions, unless the hart is in debug

mode. This property allows a "safe" location for unprogrammed parts, as the default mtvec loca-

tion is 0x0.

7.4 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC‑V Debug Specification, Version 0.13. A

debug probe or agent connects to the Debug Module through the Debug Module Interface

(DMI). The following sections describe notable spec options used in the implementation and

should be read in conjunction with the RISC‑V Debug Specification.

7.4.1 DM Registers

dmstatus register

dmstatus holds the DM version number and other implementation information. Most impor-

tantly, it contains status bits that indicate the current state of the selected hart(s).

dmcontrol register

A debugger performs most hart control through the dmcontrol register.

Control Function

dmactive This bit enables the DM and is reflected in the dmactive output signal.

When dmactive=0, the clock to the DM is gated off.

ndmreset This is a read/write bit that drives the ndreset output signal.

resethaltreq When set, the DM will halt the hart when it emerges from reset.

hartreset Not Supported

hartsel This field selects the hart to operate on

hasel Not Supported

Table 29: Debug Control Register
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7.4.2 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state. Many

aspects of Abstract Commands are optional in the RISC‑V Debug Spec and are implemented

as described below.

Cmdtype Feature Support

Access

Register

GPR registers Access Register command, register number 0x1000 - 0x101f

CSR registers Not supported. CSRs are accessed using the Program Buffer.

FPU registers Not supported. FPU registers are accessed using the Program

Buffer.

Autoexec Both autoexecprogbuf and autoexecdata are supported.

Postincrement Not supported.

Quick

Access

Not supported.

Access

Memory

Not supported. Memory access is accomplished using the Pro-

gram Buffer.

Table 30: Debug Abstract Commands
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