JH7100 SoC Boot User Guide

01 (2021-6-7)

<§ StarFive
D

= AN 12

Shanghai StarFive Technology Co., Ltd.

All Rights Reserved

PROPRIETARY NOTICE

Copyright © Shanghai StarFive Technology Co., Ltd., 2018-2025. All rights reserved.
Information in this document is provided "as is," with all faults.

Shanghai StarFive Technology Co., Ltd., expressly disclaims all warranties, representations, and conditions
of any kind, whether express or implied, including, but not limited to, the implied warranties or conditions
of merchantability, fitness for a particular purpose and non-infringement.

Shanghai StarFive Technology Co., Ltd., does not assume any liability rising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation indirect,
incidental, special, exemplary, or consequential damages.

Shanghai StarFive Technology Co., Ltd., reserves the right to make changes without further notice to any
products herein.

All material appearing in this document is protected by copyright and is the property of Shanghai StarFive
Technology Co., Ltd. You may not copy, reproduce, distribute, publish, display, perform, modify, create
derivative works, transmit, or in any way exploit any such content, nor may you distribute any part of this
content over any network, including a local area network, sell or offer it for sale, or use such content to
construct any kind of database. Copying or storing any content except as provided above is expressly
prohibited without prior written permission of the Shanghai StarFive Technology Co, Ltd (hereinafter
“StarFive”).

Shanghai StarFive Technology Co., Ltd

Address: Room 502, Building 2, No. 61 Shengxia Rd., China (Shanghai) Pilot Free Trade Zone,
Shanghai, 201203, China

Website: www starfivetech.com

e-Mail: sales@starfivetech.com (sales)

support@starfivetech.com (support)

www.starfivetech.com
mailto:sales@starfivetech.com
mailto:support@starfivetech.com

About This Manual

Introduction

This document mainly describes the boot flow, the boot sources available for the JH7100 SoC and the Bare-
metal boot examples.

Prerequisite

In order to run the examples presented in this guide, the following are required:
e Ubuntu 18.04

e BeagleV™ - StarlLight development board

Revision History

Version Released Change Description
01 2021-6-7 The first official release.

Tables of Content

A o Yo 10N o I oY 3 AV = s T - i
I = 7o Yo AT o 11 1o L S 1
22 = To o) Q= [0 2
2.1 BOOTROM ..ot 2
2.2 BOOTLOAAET ..o 3
2.3 OPENSBI ... 3
24 U=BOOT .. 4

User Guide

1 Boot Sources

1 Boot Sources

The GPIO is used to select the boot vector and BootlLoader source and offer multiple methods to obtain
the BootLoader image.

The JH7100 SoC can boot from one of the sources listed in the following table, as selected by the PAD_GPIO
[62:60] values.

Table 1-1 PAD_GPIO Values for Boot Source Selection

Processor

SCFG_boot_mode

PAD_GPIO [63]

Boot Vector

PAD_GPIO [62:60]

u74

Ox1 -

SCFG_u74 reset_vector

0x0

0x00_2000_0000,
Flash

XIP

0x0 (default)

Ox1

0x00_1840_0000, on-
chip BootROM (32KB)

0x0: 1-bit quad SPI
NOR flash memory
Ox1: 4-bit quad SPI
NOR flash memory
0x2: SDIO (Reserved)
0x3: eMMC
(Reserved)

Ox4: UART

0x5: USB (Reserved)
0x6: chiplink
(Reserved)

Ox7: SPI2AHB
(Reserved)

Note:

1) The boot mode and boot source selection (PAD_GPIO [63]) can be read through syscon status
registers.
2) Use the GPIO pad to select the vector and loader source by default.
3) PAD_GPIO [63] and PAD_GPIO [62:60] can be configured to 1 or 0 via pull-up/pull-down resister,
button or jumper according to board hardware design.

Power
on

Release
Release
u74
—» reset for —
clkaen reset
9 (rstn_dly)

U74 boot

C(;:\Sg Open Release
—» VP6 — VP6 |— VP6 boot
rstvec clock reset
for VP6
Config Open
rstVec —» E24 —» Release —» E24 boot
E24 reset
for E24 clock

Figure 1-2 Hardware Boot Sequence

www starfivetech.com

Page 1

01 (2021-6-7)

www.starfivetech.com

User Guide 2 Boot Flow

2 Boot Flow

The boot process starts when the processor is released from reset, and jumps to the reset vector address
(0x1840,0000 by default), located in the BootROM address space.

The boot flow is a multi-stage process. Each stage is responsible for loading the next stage. The typical
boot flow is illustrated in the following figure.

s// 7\\\
{ Start

g #

Power on

!

BootROM

UART QSPI (Recommended)

Y A

BootLoader BootLoader

'
OpenSBI (M)

.

U-Boot (S)

, UART/ETH/SPI/SDIO/USB

Loading Linux 5.10 kernel

Figure 2-1 Typical Boot Flow

2.1 BootROM

The BootROM is located in on-chip ROM, and the storage address is 0x1840,0000, which cannot be
dynamically updated. After power-on, each HART jumps to 0x1800,0000 (located in RAM) by default
and starts to execute BootROM.

The main function of the BootROM is to select the boot source and execute it. According to different
hardware jumpers on the chip, only UART and QSPI sources are supported currently.

www.starfivetech.com Page 2 01 (2021-6-7)

file:///d:/Users/Winni.Chen/Desktop/www.starfivetech.com

User Guide 2 Boot Flow

Table 2-1 Boot Source Description

Source Description
UART Enter a simple command line. Load a limited size binary into the on-chip RAM and
execute it. This mode is mainly used for firmware update.
o Automatically load the 32K Bootloader to 0x1800,0000 (located in RAM) from
address 0 of NOR Flash and jump to it.
LIMITATION

The file loaded from NOR Flash cannot exceed 32KB.

2.2 BootLoader

The BootROM limits the size of data read from NOR Flash. The BootLoader reads DDRInit from
0x10000 in NOR Flash to 0x1808,0000 (located in RAM), and then jump to it for execution.

The DDRInit will initialize the DDR, then read fw_payload.bin (OpenSBI+Uboot, the file header
contains file size information) from 0x40000 in NOR Flash to 0x8000,0000 (located in DDR), and then
jump to it to execute the OpenSBI.

The normal output information is illustrated in the following figure.

+" Serial-EVE x

boot loader version:210209-4547
ddr 0x00000000, 1M test

ddr 0x00100000, 2ZM test

DDR clk 2133M,version: 210302-5acea3zf

0 crc flash: 77d92512, crc ddr: 77d92512
crc check PASSED

alc

bootloader.

Figure 2-2 BootlLoader Output Example

2.3 OpenSBI

The binary of OpenSBI is packaged with the binary compiled by U-Boot in the way of payload to
generate the final fw_payload.bin. The main functions of OpenSBI are:

e Provide basic system calls for Linux
e Switch the mode from M mode to S mode
e Jump to 0x8002,0000 (located in DDR) to execute U-Boot.

The normal output information is illustrated in the following figure.

www.starfivetech.com Page 3 01 (2021-6-7)

file:///d:/Users/Winni.Chen/Desktop/www.starfivetech.com

User Guide 2 Boot Flow

OpensBI v0.9

Ty Ty T Ty ¢ =)

— — — A — =
Do D _

Platform Name : StarFive VIC7100
Platform Features : timer,mfdeleg
Platform HART Count 2
Firmware Base : OX80000000
Firmware size 1 92 KB
Runtime SBI Version 1 0.2
pomaind Name : root
pomaind Boot HART e al
Domaind HARTS : O* A
pomaind Region0O : Ox0000000080000000-0x000000008001LFFFF (O
pomaing RegionOl . Ox0000000000000000-0xFFFFFfffffffftff (rR,w,x)
pomaind Next Address : Ox0Q000000080020000
pomaind Next At‘gl : Ox0000000088000000
Domaind Next Mode : S—-mode
pomaind SysReset I oyes
Boot HART ID 1
BoOt HART Domain : root
BOoOT HART ISA : rvedimafdcsux
BOOT HART Features I Scounteren,mcounteren
Boot HART PMP Count S
BOOT HART PMP Granularity : 4096
BOOT HART PMP Address Bits: 36
Boot HART MHPM Count : 0
Boot HART MHPM Count : 0
Boot HART MIDELEG : 0x0000000000000222
Boot HART MEDELEG : Ox000000000000b109
u-Boot 2021.01-gcdbfbfOc-dirty (Apr 16 2021 - 06:58:12 +0000)
CPU: rvedimafdc
Model: sifive,freedom-u74-arty
DRAM 2 8 GiB
MMC : VIC DWMMCO: 0O
In: serial
out: serial
Err: serial
Model: sifive,freedom-u74-arty
Net : could not get PHY for_dwmac.10020000: addr O
Board Net Initialization Failed
dwmac. 10020000
StarFive #
sStarFive #
sStarFive #
StarFive #

Figure 2-3 OpenSBI Output Example
2.4 U-Boot

U-Boot runs at 0x8002,0000 and works in S mode. It contains basic file system and commonly used
peripheral drivers (such as GMAC, UART, QSPI, USB, SDIO etc.). U-Boot can load the kernel image
through ETH, UART, QSPI, SDIO or USB.

The following example describes how to load Linux 5.10 kernel image from SDIO.

ﬂ The example assumes the installation of Ubuntu 18.04.
Press Enter to confirm the operation or for the next command.

www.starfivetech.com Page 4 01 (2021-6-7)

file:///d:/Users/Winni.Chen/Desktop/www.starfivetech.com

User Guide 2 Boot Flow

1. SD card partition.

i-freedom-u- . Use the fdisk command to
I-freedon-u- o fdisk /de partition the SD card.

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

mmand (m for help):| d
lected partition 1

artition 1 has bsen deleted. Repeat command “d"to delete
mmand (m for help): d all Original partitions‘

(m for help)
fon number (1-128, default 1) Use command “n” to create the
r . default 31116254} :| +256M first partition with a size of 256M.

‘and o

Command (m for help) “w
Partition number (. : Use command “n” to create a

First sector - default 52 . oLt 31116754 second partition, the size of which is
' ' the remaining space of the SD card.

Created a new partition 2 of type 'Linux file: and o 14.6 GiB.

Command (m for help):| w Use command “w" to write the
e partition table has been altered.
1ling ioctl{} to re-read partition table. partition information into the

ncing di partition table.

Figure 2-4 SD Card Partition Command Explanation

2. Format the partition.

J Format the first partition as ext2

5

4 6
tored on bloc

| Allocating group tables: done
{ Writing inode tables:
Writing superblocks a fi tem_accounting_information: done

i-freedom-u-sdks$|sudo mkf 2 J Format the second partition as ext2

inodes

| Allocating group tables: done
 writing inode tables: done
{ Writing superblocks and fil tem accounting information: done

ub-server:~/tmp/sft-ri i-freedom-u-sdks$ []

Figure 2-5 Format the Partition

3. Generate image/fit from Freelight U SDK, please refer to the detailed guidelines in the link
https://github.com/starfive-tech/freelight-u-sdk.

4. Copy the boot file.

~Treedon-u- Mount the first partition to /

-freedom-u-

- freedom-u- ! Swyh/mnt/ home/mnt/

freedom-.
i-f Copy the files needed for kernel
-freedom-u- s / / startup

-freedom-u-
-freedom-u-
-freedom-u-

Figure 2-6 Copying the Boot File

5. Load the kernel (Linux 5.10 as an example).

www.starfivetech.com Page 5 01 (2021-6-7)

file:///d:/Users/Winni.Chen/Desktop/www.starfivetech.com
https://github.com/starfive-tech/freelight-u-sdk

User Guide 2 Boot Flow

ﬂ The addresses 0x80200000, 0x86100000 and 0x86000000 have been specified when
compiling and generating image.fit and cannot be modified.

StarFive #

StarFive # setenv kernel_addr_r 0xa0000000

starFive # . 3 ; o s

Starrive # [ext21s mnc 0 | View the file list of the first partition of the SD card.
<DIR> ozd .

<DIR> 1024 ..

<DIR> 12288 Tost+found

44748850 image.fit
StarFive #

<DIR> 1024
<DIR> 1024 ..
<DIR> 12288 Tost+found

44748850 Lfi R - -
StarFive #[ﬁﬂu;gag;(ats{kernﬂ_addr_r} image. fit | Load |mae.f|t f||e to DDR

Analyze fdt and ramdisk from image.fit and move

44748850 byTEs Fead 1 9430 M5 (4.9 MIB/5)
StarFive #
starFive #Ibcotm STart ${kerne'_addr‘_rﬂ
Loading Kernel from FIT Image at aou00)
using "config-1' configuration
Trying 'vmlinux' kernel subimage
Description: wmlinux
o Kernel Image
compression: uncompressed
Data Start: 0xal0000c8
Data Size: 17688576 Bytes = 16.9 MiB
Architecture: RISC-V
0s: Linux

S S R 0x80200000 is the entry address of the kernel.

Verw‘fy'ing Hash Integrity ... OK
Loadin dt from FIT Image at a0000000 ...
Using "config-1' configuration
Trying 'fdt® fdt subimage
Description: wunavailable
Type: Flat Device Tree
Compression: uncompressed
Data Start: OxaZaa6ag0
Data Size: 24672 Bytes = 24.1 KiB
Architecture: RISC
Load Addre. 0x86,

9xE600 0x86000000 is the starting address of FDT in DDR.

Hash wvalue: 1906c46cd7d51e103866F48870e5562b90a6805de6307271b4735F73c40108dd
verifying Hash Integrity ... sha256+ OK
Loading gdt from Oxa2aa6a80 to 0x86000000
Booting using the fdt blob at 0x86000000
Loading Toadables from FIT Image at a0000000 ...
Trying 'ramdisk’ loadables subimage
Description: buildroot initrar
Type: RAMDisk Image
(umpressw‘un: uncompresse
Data Start: 0xal0ded7c
Data Size: 27033654 Bytes = 25.8 MiB
Architecture: RISC-V
0s: Linux - - . -
Coad "Address:” Ux88100000 H
I e e e - 0x86100000 is the starting address of ramdisk in DDR.
Hash algo: sha256
Hash vaTue: 6B8eleabB3c65T6d23727fh88c49593631bch6cdf957fb02e63caf c7ebof8acTa
Verw‘fy'in? Hash Integrity ... sha2s6+ OK
Loading Toadables from Oxal0de97c to 0x86100000
StarfFive #

Sep e Tn e IR | 0od the kernel to the corresponding address in the DDR.

starFive #
Trying to execute a command out of order
bootm™ - boot application image from memory

usage:
bootm [addr g...1]

- boot application image stored in memory
passing arguments ‘arg ...'; when booting a Linux kernel,
"arg’ can be the address of an initrd image
When booting a Linux kernel which requires a flat device-tree
a third argument is required which is the address of the
device-tree blob. To boot that kernel without an initrd image,
use a "-' for the second argument. If you do not pass a third
a bd_info struct will be passed instead

For the new multi component uImage format (FIT) addresses
must be extended to include component or configuration unit name:
addr:<subimg_uname> - direct component image specification
addr#<conf_uname> - (unfiﬁuratwun specification
use iminfo command to get the 1ist of existing component
images and configurations.

Sub-commands to do part of the bootm sequence. The sub-cammands must be
issued in the order below (it's ok to not issue all sub-commands):
start [addr [arg ...]]
Toados - load 0s image
ramdisk - relocate initrd, set env initrd_start/initrd_end
fd - relocate flat device tree
05 specific command line processing/setup
0s specific bd_info processin
prep 05 specific prep before relocation or go

go Tart
Starﬁwe #Jhnnt'i 0x80200000 0x86100000:${filesize} 0x86000000 } Boot t kernel
Flattened—pevt .

Booting using the fdt blob at 0x86000000
Using Device Tree in place at 0000000086000000, end 000000008600905F

it
cmdline
bdt

starting kernel ...

[0.000000] Linux version 5.10.6-gade958526177-dirty (clivia@ubuntu) (riscvé4-buildroot-linux-gnu-gec.br_real (
3 03:38:06 PDT 2021
00000] OF: fdt: Ignoring memory range 0x80000000 - 0x80200000
000000] efi: UEFI not found.
000000] Initial ramdisk at: Ox(ptrval) (44752896 bytes)
000000] Reserved memory: created CMA memory pool at 0x00000000a0000000, size 640 MiB
000000] OF: reserved mem: initialized node linux,cma, compatible id shared-dma-poal
000000] Reserved memory: created DMA memory pool at 0x00000000T9000000, size 16 MiB
000000] OF: reserved mem: initialized node framebuffer@f9000000, compatible id shared-dma-pool
000000] Reserved memory: created DMA memory pool at 0x00000000fb000000, size 32 miB
000000] OF: reserved mem: initialized node framebuffer@fb000000, compatible id shared-dma-pool
000000] zone ranges:
000000 DMA32 [mem 0x0000000080200000-0x00000000FFFFFFFF]
000000 Normal [mem 0x0000000100000000-0x000000027FFFFff]
000000] mMovable zone start for each node
000000] Early memory node ranges
000000 node 0: [mem 0x0000000080200000-0x00000000F8FFFFf]
000000 node 0: [mem 0x00000000fa000000-0x00000000faffffff]
000000 node 0: [mem 0x00000000fd000000-0%000000027 FFFFFFF]
000000] Initmem setup node O [mem 0x0000000080200000-0x000000027FFFFfff]
000000] on node O totalpages: 2084352
000000 DMA32 zone: 7161 pages used for memmap
000000 DMA32 zone: 0 pages reserved
000000 DMA32 zone: 511488 pages, LIFO batch:63
000000 Normal zone: 21504 pages used for memmap
000000 Normal zone: 1572864 pages, LIFO batch:63
000000] software I0 TLB: mapped [mem 0x00000000cc000000-0x00000000d0000000] (64ME)
000000] SBI specification v0.2 detected
0000001 _SRT imnlementarion Tn=0xl versinn=0xd

PCOCOCOCOC00000000000000000:-
)

Figure 2-7 Loading the Kernel

www.starfivetech.com Page 6 01 (2021-6-7)

file:///d:/Users/Winni.Chen/Desktop/www.starfivetech.com

