bnode.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /*
  2. * linux/fs/hfsplus/bnode.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle basic btree node operations
  9. */
  10. #include <linux/string.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/fs.h>
  14. #include <linux/swap.h>
  15. #include "hfsplus_fs.h"
  16. #include "hfsplus_raw.h"
  17. /* Copy a specified range of bytes from the raw data of a node */
  18. void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
  19. {
  20. struct page **pagep;
  21. int l;
  22. off += node->page_offset;
  23. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  24. off &= ~PAGE_CACHE_MASK;
  25. l = min(len, (int)PAGE_CACHE_SIZE - off);
  26. memcpy(buf, kmap(*pagep) + off, l);
  27. kunmap(*pagep);
  28. while ((len -= l) != 0) {
  29. buf += l;
  30. l = min(len, (int)PAGE_CACHE_SIZE);
  31. memcpy(buf, kmap(*++pagep), l);
  32. kunmap(*pagep);
  33. }
  34. }
  35. u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
  36. {
  37. __be16 data;
  38. // optimize later...
  39. hfs_bnode_read(node, &data, off, 2);
  40. return be16_to_cpu(data);
  41. }
  42. u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
  43. {
  44. u8 data;
  45. // optimize later...
  46. hfs_bnode_read(node, &data, off, 1);
  47. return data;
  48. }
  49. void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
  50. {
  51. struct hfs_btree *tree;
  52. int key_len;
  53. tree = node->tree;
  54. if (node->type == HFS_NODE_LEAF ||
  55. tree->attributes & HFS_TREE_VARIDXKEYS)
  56. key_len = hfs_bnode_read_u16(node, off) + 2;
  57. else
  58. key_len = tree->max_key_len + 2;
  59. hfs_bnode_read(node, key, off, key_len);
  60. }
  61. void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
  62. {
  63. struct page **pagep;
  64. int l;
  65. off += node->page_offset;
  66. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  67. off &= ~PAGE_CACHE_MASK;
  68. l = min(len, (int)PAGE_CACHE_SIZE - off);
  69. memcpy(kmap(*pagep) + off, buf, l);
  70. set_page_dirty(*pagep);
  71. kunmap(*pagep);
  72. while ((len -= l) != 0) {
  73. buf += l;
  74. l = min(len, (int)PAGE_CACHE_SIZE);
  75. memcpy(kmap(*++pagep), buf, l);
  76. set_page_dirty(*pagep);
  77. kunmap(*pagep);
  78. }
  79. }
  80. void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
  81. {
  82. __be16 v = cpu_to_be16(data);
  83. // optimize later...
  84. hfs_bnode_write(node, &v, off, 2);
  85. }
  86. void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
  87. {
  88. struct page **pagep;
  89. int l;
  90. off += node->page_offset;
  91. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  92. off &= ~PAGE_CACHE_MASK;
  93. l = min(len, (int)PAGE_CACHE_SIZE - off);
  94. memset(kmap(*pagep) + off, 0, l);
  95. set_page_dirty(*pagep);
  96. kunmap(*pagep);
  97. while ((len -= l) != 0) {
  98. l = min(len, (int)PAGE_CACHE_SIZE);
  99. memset(kmap(*++pagep), 0, l);
  100. set_page_dirty(*pagep);
  101. kunmap(*pagep);
  102. }
  103. }
  104. void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
  105. struct hfs_bnode *src_node, int src, int len)
  106. {
  107. struct hfs_btree *tree;
  108. struct page **src_page, **dst_page;
  109. int l;
  110. dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
  111. if (!len)
  112. return;
  113. tree = src_node->tree;
  114. src += src_node->page_offset;
  115. dst += dst_node->page_offset;
  116. src_page = src_node->page + (src >> PAGE_CACHE_SHIFT);
  117. src &= ~PAGE_CACHE_MASK;
  118. dst_page = dst_node->page + (dst >> PAGE_CACHE_SHIFT);
  119. dst &= ~PAGE_CACHE_MASK;
  120. if (src == dst) {
  121. l = min(len, (int)PAGE_CACHE_SIZE - src);
  122. memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  123. kunmap(*src_page);
  124. set_page_dirty(*dst_page);
  125. kunmap(*dst_page);
  126. while ((len -= l) != 0) {
  127. l = min(len, (int)PAGE_CACHE_SIZE);
  128. memcpy(kmap(*++dst_page), kmap(*++src_page), l);
  129. kunmap(*src_page);
  130. set_page_dirty(*dst_page);
  131. kunmap(*dst_page);
  132. }
  133. } else {
  134. void *src_ptr, *dst_ptr;
  135. do {
  136. src_ptr = kmap(*src_page) + src;
  137. dst_ptr = kmap(*dst_page) + dst;
  138. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  139. l = PAGE_CACHE_SIZE - src;
  140. src = 0;
  141. dst += l;
  142. } else {
  143. l = PAGE_CACHE_SIZE - dst;
  144. src += l;
  145. dst = 0;
  146. }
  147. l = min(len, l);
  148. memcpy(dst_ptr, src_ptr, l);
  149. kunmap(*src_page);
  150. set_page_dirty(*dst_page);
  151. kunmap(*dst_page);
  152. if (!dst)
  153. dst_page++;
  154. else
  155. src_page++;
  156. } while ((len -= l));
  157. }
  158. }
  159. void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
  160. {
  161. struct page **src_page, **dst_page;
  162. int l;
  163. dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
  164. if (!len)
  165. return;
  166. src += node->page_offset;
  167. dst += node->page_offset;
  168. if (dst > src) {
  169. src += len - 1;
  170. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  171. src = (src & ~PAGE_CACHE_MASK) + 1;
  172. dst += len - 1;
  173. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  174. dst = (dst & ~PAGE_CACHE_MASK) + 1;
  175. if (src == dst) {
  176. while (src < len) {
  177. memmove(kmap(*dst_page), kmap(*src_page), src);
  178. kunmap(*src_page);
  179. set_page_dirty(*dst_page);
  180. kunmap(*dst_page);
  181. len -= src;
  182. src = PAGE_CACHE_SIZE;
  183. src_page--;
  184. dst_page--;
  185. }
  186. src -= len;
  187. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, len);
  188. kunmap(*src_page);
  189. set_page_dirty(*dst_page);
  190. kunmap(*dst_page);
  191. } else {
  192. void *src_ptr, *dst_ptr;
  193. do {
  194. src_ptr = kmap(*src_page) + src;
  195. dst_ptr = kmap(*dst_page) + dst;
  196. if (src < dst) {
  197. l = src;
  198. src = PAGE_CACHE_SIZE;
  199. dst -= l;
  200. } else {
  201. l = dst;
  202. src -= l;
  203. dst = PAGE_CACHE_SIZE;
  204. }
  205. l = min(len, l);
  206. memmove(dst_ptr - l, src_ptr - l, l);
  207. kunmap(*src_page);
  208. set_page_dirty(*dst_page);
  209. kunmap(*dst_page);
  210. if (dst == PAGE_CACHE_SIZE)
  211. dst_page--;
  212. else
  213. src_page--;
  214. } while ((len -= l));
  215. }
  216. } else {
  217. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  218. src &= ~PAGE_CACHE_MASK;
  219. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  220. dst &= ~PAGE_CACHE_MASK;
  221. if (src == dst) {
  222. l = min(len, (int)PAGE_CACHE_SIZE - src);
  223. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  224. kunmap(*src_page);
  225. set_page_dirty(*dst_page);
  226. kunmap(*dst_page);
  227. while ((len -= l) != 0) {
  228. l = min(len, (int)PAGE_CACHE_SIZE);
  229. memmove(kmap(*++dst_page), kmap(*++src_page), l);
  230. kunmap(*src_page);
  231. set_page_dirty(*dst_page);
  232. kunmap(*dst_page);
  233. }
  234. } else {
  235. void *src_ptr, *dst_ptr;
  236. do {
  237. src_ptr = kmap(*src_page) + src;
  238. dst_ptr = kmap(*dst_page) + dst;
  239. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  240. l = PAGE_CACHE_SIZE - src;
  241. src = 0;
  242. dst += l;
  243. } else {
  244. l = PAGE_CACHE_SIZE - dst;
  245. src += l;
  246. dst = 0;
  247. }
  248. l = min(len, l);
  249. memmove(dst_ptr, src_ptr, l);
  250. kunmap(*src_page);
  251. set_page_dirty(*dst_page);
  252. kunmap(*dst_page);
  253. if (!dst)
  254. dst_page++;
  255. else
  256. src_page++;
  257. } while ((len -= l));
  258. }
  259. }
  260. }
  261. void hfs_bnode_dump(struct hfs_bnode *node)
  262. {
  263. struct hfs_bnode_desc desc;
  264. __be32 cnid;
  265. int i, off, key_off;
  266. dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this);
  267. hfs_bnode_read(node, &desc, 0, sizeof(desc));
  268. dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n",
  269. be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
  270. desc.type, desc.height, be16_to_cpu(desc.num_recs));
  271. off = node->tree->node_size - 2;
  272. for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
  273. key_off = hfs_bnode_read_u16(node, off);
  274. dprint(DBG_BNODE_MOD, " %d", key_off);
  275. if (i && node->type == HFS_NODE_INDEX) {
  276. int tmp;
  277. if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
  278. tmp = hfs_bnode_read_u16(node, key_off) + 2;
  279. else
  280. tmp = node->tree->max_key_len + 2;
  281. dprint(DBG_BNODE_MOD, " (%d", tmp);
  282. hfs_bnode_read(node, &cnid, key_off + tmp, 4);
  283. dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid));
  284. } else if (i && node->type == HFS_NODE_LEAF) {
  285. int tmp;
  286. tmp = hfs_bnode_read_u16(node, key_off);
  287. dprint(DBG_BNODE_MOD, " (%d)", tmp);
  288. }
  289. }
  290. dprint(DBG_BNODE_MOD, "\n");
  291. }
  292. void hfs_bnode_unlink(struct hfs_bnode *node)
  293. {
  294. struct hfs_btree *tree;
  295. struct hfs_bnode *tmp;
  296. __be32 cnid;
  297. tree = node->tree;
  298. if (node->prev) {
  299. tmp = hfs_bnode_find(tree, node->prev);
  300. if (IS_ERR(tmp))
  301. return;
  302. tmp->next = node->next;
  303. cnid = cpu_to_be32(tmp->next);
  304. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  305. hfs_bnode_put(tmp);
  306. } else if (node->type == HFS_NODE_LEAF)
  307. tree->leaf_head = node->next;
  308. if (node->next) {
  309. tmp = hfs_bnode_find(tree, node->next);
  310. if (IS_ERR(tmp))
  311. return;
  312. tmp->prev = node->prev;
  313. cnid = cpu_to_be32(tmp->prev);
  314. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
  315. hfs_bnode_put(tmp);
  316. } else if (node->type == HFS_NODE_LEAF)
  317. tree->leaf_tail = node->prev;
  318. // move down?
  319. if (!node->prev && !node->next) {
  320. printk(KERN_DEBUG "hfs_btree_del_level\n");
  321. }
  322. if (!node->parent) {
  323. tree->root = 0;
  324. tree->depth = 0;
  325. }
  326. set_bit(HFS_BNODE_DELETED, &node->flags);
  327. }
  328. static inline int hfs_bnode_hash(u32 num)
  329. {
  330. num = (num >> 16) + num;
  331. num += num >> 8;
  332. return num & (NODE_HASH_SIZE - 1);
  333. }
  334. struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
  335. {
  336. struct hfs_bnode *node;
  337. if (cnid >= tree->node_count) {
  338. printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
  339. return NULL;
  340. }
  341. for (node = tree->node_hash[hfs_bnode_hash(cnid)];
  342. node; node = node->next_hash) {
  343. if (node->this == cnid) {
  344. return node;
  345. }
  346. }
  347. return NULL;
  348. }
  349. static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
  350. {
  351. struct super_block *sb;
  352. struct hfs_bnode *node, *node2;
  353. struct address_space *mapping;
  354. struct page *page;
  355. int size, block, i, hash;
  356. loff_t off;
  357. if (cnid >= tree->node_count) {
  358. printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
  359. return NULL;
  360. }
  361. sb = tree->inode->i_sb;
  362. size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
  363. sizeof(struct page *);
  364. node = kzalloc(size, GFP_KERNEL);
  365. if (!node)
  366. return NULL;
  367. node->tree = tree;
  368. node->this = cnid;
  369. set_bit(HFS_BNODE_NEW, &node->flags);
  370. atomic_set(&node->refcnt, 1);
  371. dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n",
  372. node->tree->cnid, node->this);
  373. init_waitqueue_head(&node->lock_wq);
  374. spin_lock(&tree->hash_lock);
  375. node2 = hfs_bnode_findhash(tree, cnid);
  376. if (!node2) {
  377. hash = hfs_bnode_hash(cnid);
  378. node->next_hash = tree->node_hash[hash];
  379. tree->node_hash[hash] = node;
  380. tree->node_hash_cnt++;
  381. } else {
  382. spin_unlock(&tree->hash_lock);
  383. kfree(node);
  384. wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
  385. return node2;
  386. }
  387. spin_unlock(&tree->hash_lock);
  388. mapping = tree->inode->i_mapping;
  389. off = (loff_t)cnid << tree->node_size_shift;
  390. block = off >> PAGE_CACHE_SHIFT;
  391. node->page_offset = off & ~PAGE_CACHE_MASK;
  392. for (i = 0; i < tree->pages_per_bnode; block++, i++) {
  393. page = read_mapping_page(mapping, block, NULL);
  394. if (IS_ERR(page))
  395. goto fail;
  396. if (PageError(page)) {
  397. page_cache_release(page);
  398. goto fail;
  399. }
  400. page_cache_release(page);
  401. node->page[i] = page;
  402. }
  403. return node;
  404. fail:
  405. set_bit(HFS_BNODE_ERROR, &node->flags);
  406. return node;
  407. }
  408. void hfs_bnode_unhash(struct hfs_bnode *node)
  409. {
  410. struct hfs_bnode **p;
  411. dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n",
  412. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  413. for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
  414. *p && *p != node; p = &(*p)->next_hash)
  415. ;
  416. BUG_ON(!*p);
  417. *p = node->next_hash;
  418. node->tree->node_hash_cnt--;
  419. }
  420. /* Load a particular node out of a tree */
  421. struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
  422. {
  423. struct hfs_bnode *node;
  424. struct hfs_bnode_desc *desc;
  425. int i, rec_off, off, next_off;
  426. int entry_size, key_size;
  427. spin_lock(&tree->hash_lock);
  428. node = hfs_bnode_findhash(tree, num);
  429. if (node) {
  430. hfs_bnode_get(node);
  431. spin_unlock(&tree->hash_lock);
  432. wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
  433. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  434. goto node_error;
  435. return node;
  436. }
  437. spin_unlock(&tree->hash_lock);
  438. node = __hfs_bnode_create(tree, num);
  439. if (!node)
  440. return ERR_PTR(-ENOMEM);
  441. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  442. goto node_error;
  443. if (!test_bit(HFS_BNODE_NEW, &node->flags))
  444. return node;
  445. desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
  446. node->prev = be32_to_cpu(desc->prev);
  447. node->next = be32_to_cpu(desc->next);
  448. node->num_recs = be16_to_cpu(desc->num_recs);
  449. node->type = desc->type;
  450. node->height = desc->height;
  451. kunmap(node->page[0]);
  452. switch (node->type) {
  453. case HFS_NODE_HEADER:
  454. case HFS_NODE_MAP:
  455. if (node->height != 0)
  456. goto node_error;
  457. break;
  458. case HFS_NODE_LEAF:
  459. if (node->height != 1)
  460. goto node_error;
  461. break;
  462. case HFS_NODE_INDEX:
  463. if (node->height <= 1 || node->height > tree->depth)
  464. goto node_error;
  465. break;
  466. default:
  467. goto node_error;
  468. }
  469. rec_off = tree->node_size - 2;
  470. off = hfs_bnode_read_u16(node, rec_off);
  471. if (off != sizeof(struct hfs_bnode_desc))
  472. goto node_error;
  473. for (i = 1; i <= node->num_recs; off = next_off, i++) {
  474. rec_off -= 2;
  475. next_off = hfs_bnode_read_u16(node, rec_off);
  476. if (next_off <= off ||
  477. next_off > tree->node_size ||
  478. next_off & 1)
  479. goto node_error;
  480. entry_size = next_off - off;
  481. if (node->type != HFS_NODE_INDEX &&
  482. node->type != HFS_NODE_LEAF)
  483. continue;
  484. key_size = hfs_bnode_read_u16(node, off) + 2;
  485. if (key_size >= entry_size || key_size & 1)
  486. goto node_error;
  487. }
  488. clear_bit(HFS_BNODE_NEW, &node->flags);
  489. wake_up(&node->lock_wq);
  490. return node;
  491. node_error:
  492. set_bit(HFS_BNODE_ERROR, &node->flags);
  493. clear_bit(HFS_BNODE_NEW, &node->flags);
  494. wake_up(&node->lock_wq);
  495. hfs_bnode_put(node);
  496. return ERR_PTR(-EIO);
  497. }
  498. void hfs_bnode_free(struct hfs_bnode *node)
  499. {
  500. //int i;
  501. //for (i = 0; i < node->tree->pages_per_bnode; i++)
  502. // if (node->page[i])
  503. // page_cache_release(node->page[i]);
  504. kfree(node);
  505. }
  506. struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
  507. {
  508. struct hfs_bnode *node;
  509. struct page **pagep;
  510. int i;
  511. spin_lock(&tree->hash_lock);
  512. node = hfs_bnode_findhash(tree, num);
  513. spin_unlock(&tree->hash_lock);
  514. if (node) {
  515. printk(KERN_CRIT "new node %u already hashed?\n", num);
  516. WARN_ON(1);
  517. return node;
  518. }
  519. node = __hfs_bnode_create(tree, num);
  520. if (!node)
  521. return ERR_PTR(-ENOMEM);
  522. if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
  523. hfs_bnode_put(node);
  524. return ERR_PTR(-EIO);
  525. }
  526. pagep = node->page;
  527. memset(kmap(*pagep) + node->page_offset, 0,
  528. min((int)PAGE_CACHE_SIZE, (int)tree->node_size));
  529. set_page_dirty(*pagep);
  530. kunmap(*pagep);
  531. for (i = 1; i < tree->pages_per_bnode; i++) {
  532. memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
  533. set_page_dirty(*pagep);
  534. kunmap(*pagep);
  535. }
  536. clear_bit(HFS_BNODE_NEW, &node->flags);
  537. wake_up(&node->lock_wq);
  538. return node;
  539. }
  540. void hfs_bnode_get(struct hfs_bnode *node)
  541. {
  542. if (node) {
  543. atomic_inc(&node->refcnt);
  544. dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n",
  545. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  546. }
  547. }
  548. /* Dispose of resources used by a node */
  549. void hfs_bnode_put(struct hfs_bnode *node)
  550. {
  551. if (node) {
  552. struct hfs_btree *tree = node->tree;
  553. int i;
  554. dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n",
  555. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  556. BUG_ON(!atomic_read(&node->refcnt));
  557. if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
  558. return;
  559. for (i = 0; i < tree->pages_per_bnode; i++) {
  560. if (!node->page[i])
  561. continue;
  562. mark_page_accessed(node->page[i]);
  563. }
  564. if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
  565. hfs_bnode_unhash(node);
  566. spin_unlock(&tree->hash_lock);
  567. hfs_bmap_free(node);
  568. hfs_bnode_free(node);
  569. return;
  570. }
  571. spin_unlock(&tree->hash_lock);
  572. }
  573. }