core.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. /*
  2. * linux/arch/arm/mach-aaec2000/core.c
  3. *
  4. * Code common to all AAEC-2000 machines
  5. *
  6. * Copyright (c) 2005 Nicolas Bellido Y Ortega
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/list.h>
  17. #include <linux/errno.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/timex.h>
  21. #include <linux/signal.h>
  22. #include <asm/hardware.h>
  23. #include <asm/irq.h>
  24. #include <asm/sizes.h>
  25. #include <asm/mach/flash.h>
  26. #include <asm/mach/irq.h>
  27. #include <asm/mach/time.h>
  28. #include <asm/mach/map.h>
  29. #include "core.h"
  30. #include "clock.h"
  31. /*
  32. * Common I/O mapping:
  33. *
  34. * Static virtual address mappings are as follow:
  35. *
  36. * 0xf8000000-0xf8001ffff: Devices connected to APB bus
  37. * 0xf8002000-0xf8003ffff: Devices connected to AHB bus
  38. *
  39. * Below 0xe8000000 is reserved for vm allocation.
  40. *
  41. * The machine specific code must provide the extra mapping beside the
  42. * default mapping provided here.
  43. */
  44. static struct map_desc standard_io_desc[] __initdata = {
  45. {
  46. .virtual = VIO_APB_BASE,
  47. .pfn = __phys_to_pfn(PIO_APB_BASE),
  48. .length = IO_APB_LENGTH,
  49. .type = MT_DEVICE
  50. }, {
  51. .virtual = VIO_AHB_BASE,
  52. .pfn = __phys_to_pfn(PIO_AHB_BASE),
  53. .length = IO_AHB_LENGTH,
  54. .type = MT_DEVICE
  55. }
  56. };
  57. void __init aaec2000_map_io(void)
  58. {
  59. iotable_init(standard_io_desc, ARRAY_SIZE(standard_io_desc));
  60. }
  61. /*
  62. * Interrupt handling routines
  63. */
  64. static void aaec2000_int_ack(unsigned int irq)
  65. {
  66. IRQ_INTSR = 1 << irq;
  67. }
  68. static void aaec2000_int_mask(unsigned int irq)
  69. {
  70. IRQ_INTENC |= (1 << irq);
  71. }
  72. static void aaec2000_int_unmask(unsigned int irq)
  73. {
  74. IRQ_INTENS |= (1 << irq);
  75. }
  76. static struct irq_chip aaec2000_irq_chip = {
  77. .ack = aaec2000_int_ack,
  78. .mask = aaec2000_int_mask,
  79. .unmask = aaec2000_int_unmask,
  80. };
  81. void __init aaec2000_init_irq(void)
  82. {
  83. unsigned int i;
  84. for (i = 0; i < NR_IRQS; i++) {
  85. set_irq_handler(i, handle_level_irq);
  86. set_irq_chip(i, &aaec2000_irq_chip);
  87. set_irq_flags(i, IRQF_VALID);
  88. }
  89. /* Disable all interrupts */
  90. IRQ_INTENC = 0xffffffff;
  91. /* Clear any pending interrupts */
  92. IRQ_INTSR = IRQ_INTSR;
  93. }
  94. /*
  95. * Time keeping
  96. */
  97. /* IRQs are disabled before entering here from do_gettimeofday() */
  98. static unsigned long aaec2000_gettimeoffset(void)
  99. {
  100. unsigned long ticks_to_match, elapsed, usec;
  101. /* Get ticks before next timer match */
  102. ticks_to_match = TIMER1_LOAD - TIMER1_VAL;
  103. /* We need elapsed ticks since last match */
  104. elapsed = LATCH - ticks_to_match;
  105. /* Now, convert them to usec */
  106. usec = (unsigned long)(elapsed * (tick_nsec / 1000))/LATCH;
  107. return usec;
  108. }
  109. /* We enter here with IRQs enabled */
  110. static irqreturn_t
  111. aaec2000_timer_interrupt(int irq, void *dev_id)
  112. {
  113. /* TODO: Check timer accuracy */
  114. write_seqlock(&xtime_lock);
  115. timer_tick();
  116. TIMER1_CLEAR = 1;
  117. write_sequnlock(&xtime_lock);
  118. return IRQ_HANDLED;
  119. }
  120. static struct irqaction aaec2000_timer_irq = {
  121. .name = "AAEC-2000 Timer Tick",
  122. .flags = IRQF_DISABLED | IRQF_TIMER,
  123. .handler = aaec2000_timer_interrupt,
  124. };
  125. static void __init aaec2000_timer_init(void)
  126. {
  127. /* Disable timer 1 */
  128. TIMER1_CTRL = 0;
  129. /* We have somehow to generate a 100Hz clock.
  130. * We then use the 508KHz timer in periodic mode.
  131. */
  132. TIMER1_LOAD = LATCH;
  133. TIMER1_CLEAR = 1; /* Clear interrupt */
  134. setup_irq(INT_TMR1_OFL, &aaec2000_timer_irq);
  135. TIMER1_CTRL = TIMER_CTRL_ENABLE |
  136. TIMER_CTRL_PERIODIC |
  137. TIMER_CTRL_CLKSEL_508K;
  138. }
  139. struct sys_timer aaec2000_timer = {
  140. .init = aaec2000_timer_init,
  141. .offset = aaec2000_gettimeoffset,
  142. };
  143. static struct clcd_panel mach_clcd_panel;
  144. static int aaec2000_clcd_setup(struct clcd_fb *fb)
  145. {
  146. dma_addr_t dma;
  147. fb->panel = &mach_clcd_panel;
  148. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, SZ_1M,
  149. &dma, GFP_KERNEL);
  150. if (!fb->fb.screen_base) {
  151. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  152. return -ENOMEM;
  153. }
  154. fb->fb.fix.smem_start = dma;
  155. fb->fb.fix.smem_len = SZ_1M;
  156. return 0;
  157. }
  158. static int aaec2000_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  159. {
  160. return dma_mmap_writecombine(&fb->dev->dev, vma,
  161. fb->fb.screen_base,
  162. fb->fb.fix.smem_start,
  163. fb->fb.fix.smem_len);
  164. }
  165. static void aaec2000_clcd_remove(struct clcd_fb *fb)
  166. {
  167. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  168. fb->fb.screen_base, fb->fb.fix.smem_start);
  169. }
  170. static struct clcd_board clcd_plat_data = {
  171. .name = "AAEC-2000",
  172. .check = clcdfb_check,
  173. .decode = clcdfb_decode,
  174. .setup = aaec2000_clcd_setup,
  175. .mmap = aaec2000_clcd_mmap,
  176. .remove = aaec2000_clcd_remove,
  177. };
  178. static struct amba_device clcd_device = {
  179. .dev = {
  180. .bus_id = "mb:16",
  181. .coherent_dma_mask = ~0,
  182. .platform_data = &clcd_plat_data,
  183. },
  184. .res = {
  185. .start = AAEC_CLCD_PHYS,
  186. .end = AAEC_CLCD_PHYS + SZ_4K - 1,
  187. .flags = IORESOURCE_MEM,
  188. },
  189. .irq = { INT_LCD, NO_IRQ },
  190. .periphid = 0x41110,
  191. };
  192. static struct amba_device *amba_devs[] __initdata = {
  193. &clcd_device,
  194. };
  195. static struct clk aaec2000_clcd_clk = {
  196. .name = "CLCDCLK",
  197. };
  198. void __init aaec2000_set_clcd_plat_data(struct aaec2000_clcd_info *clcd)
  199. {
  200. clcd_plat_data.enable = clcd->enable;
  201. clcd_plat_data.disable = clcd->disable;
  202. memcpy(&mach_clcd_panel, &clcd->panel, sizeof(struct clcd_panel));
  203. }
  204. static struct flash_platform_data aaec2000_flash_data = {
  205. .map_name = "cfi_probe",
  206. .width = 4,
  207. };
  208. static struct resource aaec2000_flash_resource = {
  209. .start = AAEC_FLASH_BASE,
  210. .end = AAEC_FLASH_BASE + AAEC_FLASH_SIZE,
  211. .flags = IORESOURCE_MEM,
  212. };
  213. static struct platform_device aaec2000_flash_device = {
  214. .name = "armflash",
  215. .id = 0,
  216. .dev = {
  217. .platform_data = &aaec2000_flash_data,
  218. },
  219. .num_resources = 1,
  220. .resource = &aaec2000_flash_resource,
  221. };
  222. static int __init aaec2000_init(void)
  223. {
  224. int i;
  225. clk_register(&aaec2000_clcd_clk);
  226. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  227. struct amba_device *d = amba_devs[i];
  228. amba_device_register(d, &iomem_resource);
  229. }
  230. platform_device_register(&aaec2000_flash_device);
  231. return 0;
  232. };
  233. arch_initcall(aaec2000_init);