lopcodes.h 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /*
  2. ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
  3. ** Opcodes for Lua virtual machine
  4. ** See Copyright Notice in lua.h
  5. */
  6. #ifndef lopcodes_h
  7. #define lopcodes_h
  8. #include "llimits.h"
  9. /*===========================================================================
  10. We assume that instructions are unsigned numbers.
  11. All instructions have an opcode in the first 6 bits.
  12. Instructions can have the following fields:
  13. `A' : 8 bits
  14. `B' : 9 bits
  15. `C' : 9 bits
  16. `Bx' : 18 bits (`B' and `C' together)
  17. `sBx' : signed Bx
  18. A signed argument is represented in excess K; that is, the number
  19. value is the unsigned value minus K. K is exactly the maximum value
  20. for that argument (so that -max is represented by 0, and +max is
  21. represented by 2*max), which is half the maximum for the corresponding
  22. unsigned argument.
  23. ===========================================================================*/
  24. enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
  25. /*
  26. ** size and position of opcode arguments.
  27. */
  28. #define SIZE_C 9
  29. #define SIZE_B 9
  30. #define SIZE_Bx (SIZE_C + SIZE_B)
  31. #define SIZE_A 8
  32. #define SIZE_OP 6
  33. #define POS_OP 0
  34. #define POS_A (POS_OP + SIZE_OP)
  35. #define POS_C (POS_A + SIZE_A)
  36. #define POS_B (POS_C + SIZE_C)
  37. #define POS_Bx POS_C
  38. /*
  39. ** limits for opcode arguments.
  40. ** we use (signed) int to manipulate most arguments,
  41. ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
  42. */
  43. #if SIZE_Bx < LUAI_BITSINT-1
  44. #define MAXARG_Bx ((1<<SIZE_Bx)-1)
  45. #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
  46. #else
  47. #define MAXARG_Bx MAX_INT
  48. #define MAXARG_sBx MAX_INT
  49. #endif
  50. #define MAXARG_A ((1<<SIZE_A)-1)
  51. #define MAXARG_B ((1<<SIZE_B)-1)
  52. #define MAXARG_C ((1<<SIZE_C)-1)
  53. /* creates a mask with `n' 1 bits at position `p' */
  54. #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
  55. /* creates a mask with `n' 0 bits at position `p' */
  56. #define MASK0(n,p) (~MASK1(n,p))
  57. /*
  58. ** the following macros help to manipulate instructions
  59. */
  60. #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
  61. #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
  62. ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
  63. #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
  64. #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
  65. ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
  66. #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
  67. #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
  68. ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
  69. #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
  70. #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
  71. ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
  72. #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
  73. #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
  74. ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
  75. #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
  76. #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
  77. #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
  78. | (cast(Instruction, a)<<POS_A) \
  79. | (cast(Instruction, b)<<POS_B) \
  80. | (cast(Instruction, c)<<POS_C))
  81. #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
  82. | (cast(Instruction, a)<<POS_A) \
  83. | (cast(Instruction, bc)<<POS_Bx))
  84. /*
  85. ** Macros to operate RK indices
  86. */
  87. /* this bit 1 means constant (0 means register) */
  88. #define BITRK (1 << (SIZE_B - 1))
  89. /* test whether value is a constant */
  90. #define ISK(x) ((x) & BITRK)
  91. /* gets the index of the constant */
  92. #define INDEXK(r) ((int)(r) & ~BITRK)
  93. #define MAXINDEXRK (BITRK - 1)
  94. /* code a constant index as a RK value */
  95. #define RKASK(x) ((x) | BITRK)
  96. /*
  97. ** invalid register that fits in 8 bits
  98. */
  99. #define NO_REG MAXARG_A
  100. /*
  101. ** R(x) - register
  102. ** Kst(x) - constant (in constant table)
  103. ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
  104. */
  105. /*
  106. ** grep "ORDER OP" if you change these enums
  107. */
  108. typedef enum {
  109. /*----------------------------------------------------------------------
  110. name args description
  111. ------------------------------------------------------------------------*/
  112. OP_MOVE,/* A B R(A) := R(B) */
  113. OP_LOADK,/* A Bx R(A) := Kst(Bx) */
  114. OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
  115. OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
  116. OP_GETUPVAL,/* A B R(A) := UpValue[B] */
  117. OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
  118. OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
  119. OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
  120. OP_SETUPVAL,/* A B UpValue[B] := R(A) */
  121. OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
  122. OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
  123. OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
  124. OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
  125. OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
  126. OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
  127. OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
  128. OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
  129. OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
  130. OP_UNM,/* A B R(A) := -R(B) */
  131. OP_NOT,/* A B R(A) := not R(B) */
  132. OP_LEN,/* A B R(A) := length of R(B) */
  133. OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
  134. OP_JMP,/* sBx pc+=sBx */
  135. OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
  136. OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
  137. OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
  138. OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
  139. OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
  140. OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
  141. OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
  142. OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
  143. OP_FORLOOP,/* A sBx R(A)+=R(A+2);
  144. if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
  145. OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
  146. OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
  147. if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
  148. OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
  149. OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
  150. OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
  151. OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
  152. } OpCode;
  153. #define NUM_OPCODES (cast(int, OP_VARARG) + 1)
  154. /*===========================================================================
  155. Notes:
  156. (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
  157. and can be 0: OP_CALL then sets `top' to last_result+1, so
  158. next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
  159. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
  160. set top (like in OP_CALL with C == 0).
  161. (*) In OP_RETURN, if (B == 0) then return up to `top'
  162. (*) In OP_SETLIST, if (B == 0) then B = `top';
  163. if (C == 0) then next `instruction' is real C
  164. (*) For comparisons, A specifies what condition the test should accept
  165. (true or false).
  166. (*) All `skips' (pc++) assume that next instruction is a jump
  167. ===========================================================================*/
  168. /*
  169. ** masks for instruction properties. The format is:
  170. ** bits 0-1: op mode
  171. ** bits 2-3: C arg mode
  172. ** bits 4-5: B arg mode
  173. ** bit 6: instruction set register A
  174. ** bit 7: operator is a test
  175. */
  176. enum OpArgMask {
  177. OpArgN, /* argument is not used */
  178. OpArgU, /* argument is used */
  179. OpArgR, /* argument is a register or a jump offset */
  180. OpArgK /* argument is a constant or register/constant */
  181. };
  182. LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
  183. #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
  184. #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
  185. #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
  186. #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
  187. #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
  188. LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
  189. /* number of list items to accumulate before a SETLIST instruction */
  190. #define LFIELDS_PER_FLUSH 50
  191. #endif