user_main.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. /******************************************************************************
  2. * Copyright 2013-2014 Espressif Systems (Wuxi)
  3. *
  4. * FileName: user_main.c
  5. *
  6. * Description: entry file of user application
  7. *
  8. * Modification history:
  9. * 2014/1/1, v1.0 create this file.
  10. *******************************************************************************/
  11. #include "lua.h"
  12. #include "platform.h"
  13. #include <string.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include "vfs.h"
  17. #include "flash_api.h"
  18. #include "user_interface.h"
  19. #include "user_modules.h"
  20. #include "ets_sys.h"
  21. #include "driver/uart.h"
  22. #include "driver/input.h"
  23. #include "task/task.h"
  24. #include "mem.h"
  25. #include "espconn.h"
  26. #include "sections.h"
  27. #ifdef LUA_USE_MODULES_RTCTIME
  28. #include "rtc/rtctime.h"
  29. #endif
  30. /* Contents of esp_init_data_default.bin */
  31. extern const uint32_t init_data[], init_data_end[];
  32. #define INIT_DATA_SIZE ((init_data_end - init_data)*sizeof(uint32_t))
  33. __asm__(
  34. ".align 4\n"
  35. "init_data: .incbin \"" ESP_INIT_DATA_DEFAULT "\"\n"
  36. "init_data_end:\n"
  37. );
  38. extern const char _irom0_text_start[], _irom0_text_end[], _flash_used_end[];
  39. #define IROM0_SIZE (_irom0_text_end - _irom0_text_start)
  40. #define PRE_INIT_TEXT_ATTR __attribute__((section(".p3.pre_init")))
  41. #define IROM_PTABLE_ATTR __attribute__((section(".irom0.ptable")))
  42. #define USED_ATTR __attribute__((used))
  43. #define PARTITION(n) (SYSTEM_PARTITION_CUSTOMER_BEGIN + n)
  44. #define SIZE_256K 0x00040000
  45. #define SIZE_1024K 0x00100000
  46. #define PT_CHUNK 0x00002000
  47. #define PT_ALIGN(n) ((n + (PT_CHUNK-1)) & (~((PT_CHUNK-1))))
  48. #define FLASH_BASE_ADDR ((char *) 0x40200000)
  49. #define NODEMCU_PARTITION_EAGLEROM PLATFORM_PARTITION(NODEMCU_EAGLEROM_PARTITION)
  50. #define NODEMCU_PARTITION_IROM0TEXT PLATFORM_PARTITION(NODEMCU_IROM0TEXT_PARTITION)
  51. #define NODEMCU_PARTITION_LFS PLATFORM_PARTITION(NODEMCU_LFS0_PARTITION)
  52. #define NODEMCU_PARTITION_SPIFFS PLATFORM_PARTITION(NODEMCU_SPIFFS0_PARTITION)
  53. #define MAX_PARTITIONS 20
  54. #define WORDSIZE sizeof(uint32_t)
  55. #define PTABLE_SIZE 7 /** THIS MUST BE MATCHED TO NO OF PT ENTRIES BELOW **/
  56. struct defaultpt {
  57. platform_rcr_t hdr;
  58. partition_item_t pt[PTABLE_SIZE+1]; // the +! is for the endmarker
  59. };
  60. #define PT_LEN (NUM_PARTITIONS*sizeof(partition_item_t))
  61. /*
  62. * See app/platform/platform.h for how the platform reboot config records are used
  63. * and these records are allocated. The first record is a default partition table
  64. * and this is statically declared in compilation below.
  65. */
  66. static const struct defaultpt rompt IROM_PTABLE_ATTR USED_ATTR = {
  67. .hdr = {.len = sizeof(struct defaultpt)/WORDSIZE - 1,
  68. .id = PLATFORM_RCR_PT},
  69. .pt = {
  70. { NODEMCU_PARTITION_EAGLEROM, 0x00000, 0x0B000},
  71. { SYSTEM_PARTITION_RF_CAL, 0x0B000, 0x1000},
  72. { SYSTEM_PARTITION_PHY_DATA, 0x0C000, 0x1000},
  73. { SYSTEM_PARTITION_SYSTEM_PARAMETER, 0x0D000, 0x3000},
  74. { NODEMCU_PARTITION_IROM0TEXT, 0x10000, 0x0000},
  75. { NODEMCU_PARTITION_LFS, 0x0, LUA_FLASH_STORE},
  76. { NODEMCU_PARTITION_SPIFFS, 0x0, SPIFFS_MAX_FILESYSTEM_SIZE},
  77. {0,(uint32_t) &_irom0_text_end,0}
  78. }
  79. };
  80. //TODO: map the TLS server and client certs into NODEMCU_TLSCERT_PARTITION
  81. static uint32_t first_time_setup(partition_item_t *pt, uint32_t n, uint32_t flash_size);
  82. static void phy_data_setup (partition_item_t *pt, uint32_t n);
  83. extern void _ResetHandler(void);
  84. /*
  85. * The non-OS SDK prolog has been fundamentally revised in V3. See SDK EN document
  86. * Partition Table.md for further discussion. This version of user_main.c is a
  87. * complete rework aligned to V3, with the redundant pre-V3 features removed.
  88. *
  89. * SDK V3 significantly reduces the RAM footprint required by the SDK and introduces
  90. * the use of a partition table (PT) to control flash allocation. The NodeMCU uses
  91. * this PT for overall allocation of its flash resources. The non_OS SDK calls the
  92. * user_pre_init() entry to do all of this startup configuration. Note that this
  93. * runs with Icache enabled -- that is the IROM0 partition is already mapped to the
  94. * address space at 0x40210000 and so that most SDK services are available, such
  95. * as system_get_flash_size_map() which returns the valid flash size (including the
  96. * 8Mb and 16Mb variants).
  97. *
  98. * The first 4K page of IROM0 (flash offset 0x10000) is used to maintain a set of
  99. * Resource Communication Records (RCR) for inter-boot configuration using a NAND
  100. * write-once algo (see app/platform/platform.h). One of the current records is the
  101. * SDK3.0 PT. This build statically compiles in an initial version at the start of
  102. * the PT, with a {0, _irom0_text_end,0} marker as the last record and some fields
  103. * also that need to be recomputed at runtime. This version is either replaced
  104. * by first boot processing after provisioning, or by a node.setpartitiontable()
  105. * API call. These replacement PTs are complete and can be passed directly for use
  106. * by the non-OS SDK.
  107. *
  108. * Note that we have released a host PC-base python tool, nodemcu-partition.py, to
  109. * configure the PT, etc during provisioning.
  110. */
  111. void user_pre_init(void) {
  112. #ifdef LUA_USE_MODULES_RTCTIME
  113. // Note: Keep this as close to call_user_start() as possible, since it
  114. // is where the cpu clock actually gets bumped to 80MHz.
  115. rtctime_early_startup ();
  116. #endif
  117. partition_item_t *rcr_pt = NULL, *pt;
  118. enum flash_size_map fs_size_code = system_get_flash_size_map();
  119. // Flash size lookup is SIZE_256K*2^N where N is as follows (see SDK/user_interface.h)
  120. /* 0 1 2 3 4 5 6 7 8 9 */
  121. /* ½M ¼M 1M 2M 4M 2M 4M 4M 8M 16M */
  122. static char flash_size_scaler[] = "\001\000\002\003\004\003\004\004\005\006";
  123. uint32_t flash_size = SIZE_256K << flash_size_scaler[fs_size_code];
  124. uint32_t i = platform_rcr_read(PLATFORM_RCR_PT, (void **) &rcr_pt);
  125. uint32_t n = i / sizeof(partition_item_t);
  126. if (flash_size < SIZE_1024K) {
  127. os_printf("Flash size (%u) too small to support NodeMCU\n", flash_size);
  128. return;
  129. } else {
  130. os_printf("system SPI FI size:%u, Flash size: %u\n", fs_size_code, flash_size );
  131. }
  132. pt = os_malloc_iram(i); // We will work on and register a copy of the PT in iRAM
  133. // Return if anything is amiss; The SDK will halt if the PT hasn't been registered
  134. if ( !rcr_pt || !pt || n * sizeof(partition_item_t) != i) {
  135. return;
  136. }
  137. os_memcpy(pt, rcr_pt, i);
  138. if (pt[n-1].type == 0) {
  139. // If the last PT entry is a {0,XX,0} end marker, then we need first time setup
  140. n = first_time_setup(pt, n-1, flash_size); // return n because setup might shrink the PT
  141. }
  142. if (platform_rcr_read(PLATFORM_RCR_PHY_DATA, NULL)!=0) {
  143. phy_data_setup(pt, n);
  144. }
  145. // Now register the partition and return
  146. // for (i=0;i<n;i++) os_printf("P%d: %3d %06x %06x\n", i, pt[i].type, pt[i].addr, pt[i].size);
  147. if( fs_size_code > 1 && system_partition_table_regist(pt, n, fs_size_code)) {
  148. return;
  149. }
  150. os_printf("Invalid system partition table\n");
  151. while (1) {};
  152. }
  153. /*
  154. * If the PLATFORM_RCR_PT record doesn't exist then the PHY_DATA partition might
  155. * not have been initialised. This must be set to the proper default init data
  156. * otherwise the SDK will halt on the "rf_cal[0] !=0x05,is 0xFF" error.
  157. */
  158. static void phy_data_setup (partition_item_t *pt, uint32_t n) {
  159. uint8_t header[sizeof(uint32_t)] = {0};
  160. int i;
  161. for (i = 0; i < n; i++) {
  162. if (pt[i].type == SYSTEM_PARTITION_PHY_DATA) {
  163. uint32_t addr = pt[i].addr;
  164. platform_s_flash_read(header, addr, sizeof(header));
  165. if (header[0] != 0x05) {
  166. uint32_t sector = pt[i].addr/INTERNAL_FLASH_SECTOR_SIZE;
  167. if (platform_flash_erase_sector(sector) == PLATFORM_OK) {
  168. os_printf("Writing Init Data to 0x%08x\n",addr);
  169. platform_s_flash_write(init_data, addr, INIT_DATA_SIZE);
  170. }
  171. }
  172. // flag setup complete so we don't retry this every boot
  173. platform_rcr_write(PLATFORM_RCR_PHY_DATA, &addr, 0);
  174. return;
  175. }
  176. }
  177. // If the PHY_DATA doesn't exist or the write fails then the
  178. // SDK will raise the rf_cal error anyway, so just return.
  179. }
  180. /*
  181. * First time setup does the one-off PT calculations and checks. If these are OK,
  182. * then writes back a new RCR for the updated PT and triggers a reboot. It returns
  183. * on failure.
  184. */
  185. static uint32_t first_time_setup(partition_item_t *pt, uint32_t n, uint32_t flash_size) {
  186. int i, j, last = 0, newn = n;
  187. /*
  188. * Scan down the PT adjusting and 0 entries to sensible defaults. Also delete any
  189. * zero-sized partitions (as the SDK barfs on these).
  190. */
  191. for (i = 0, j = 0; i < n; i ++) {
  192. partition_item_t *p = pt + i;
  193. switch (p->type) {
  194. case NODEMCU_PARTITION_IROM0TEXT:
  195. // If the IROM0 partition size is 0 then compute from the IROM0_SIZE. Note
  196. // that the size in the end-marker is used by the nodemcu-partition.py
  197. // script and not here.
  198. if (p->size == 0) {
  199. p->size = PT_ALIGN(IROM0_SIZE);
  200. }
  201. break;
  202. case NODEMCU_PARTITION_LFS:
  203. // Properly align the LFS partition size and make it consecutive to
  204. // the previous partition.
  205. p->size = PT_ALIGN(p->size);
  206. if (p->addr == 0)
  207. p->addr = last;
  208. break;
  209. case NODEMCU_PARTITION_SPIFFS:
  210. if (p->size == ~0x0 && p->addr == 0) {
  211. // This allocate all the remaining flash to SPIFFS
  212. p->addr = last;
  213. p->size = flash_size - last;
  214. } else if (p->size == ~0x0) {
  215. p->size = flash_size - p->addr;
  216. } else if (p->addr == 0) {
  217. // if the is addr not specified then start SPIFFS at 1Mb
  218. // boundary if the size will fit otherwise make it consecutive
  219. // to the previous partition.
  220. p->addr = (p->size <= flash_size - 0x100000) ? 0x100000 : last;
  221. }
  222. }
  223. if (p->size == 0) {
  224. // Delete 0-sized partitions as the SDK barfs on these
  225. newn--;
  226. } else {
  227. // Do consistency tests on the partition
  228. if (p->addr & (INTERNAL_FLASH_SECTOR_SIZE - 1) ||
  229. p->size & (INTERNAL_FLASH_SECTOR_SIZE - 1) ||
  230. p->addr < last ||
  231. p->addr + p->size > flash_size) {
  232. os_printf("Partition %u invalid alignment\n", i);
  233. while(1) {/*system_soft_wdt_feed ();*/}
  234. }
  235. if (j < i) // shift the partition down if we have any deleted slots
  236. pt[j] = *p;
  237. //os_printf("Partition %d: %04x %06x %06x\n", j, p->type, p->addr, p->size);
  238. j++;
  239. last = p->addr + p->size;
  240. }
  241. }
  242. platform_rcr_write(PLATFORM_RCR_PT, pt, newn*sizeof(partition_item_t));
  243. ets_delay_us(5000);
  244. _ResetHandler(); // Trigger reset; the new PT will be loaded on reboot
  245. }
  246. uint32 ICACHE_RAM_ATTR user_iram_memory_is_enabled(void) {
  247. return FALSE; // NodeMCU runs like a dog if iRAM is enabled
  248. }
  249. void nodemcu_init(void) {
  250. NODE_DBG("Task task_lua starting.\n");
  251. // Call the Lua bootstrap startup directly. This uses the task interface
  252. // internally to carry out the main lua libraries initialisation.
  253. lua_main();
  254. }
  255. #ifdef LUA_USE_MODULES_WIFI
  256. #include "../modules/wifi_common.h"
  257. void user_rf_pre_init(void)
  258. {
  259. //set WiFi hostname before RF initialization (adds ~479 us to boot time)
  260. wifi_change_default_host_name();
  261. }
  262. #endif
  263. /******************************************************************************
  264. * FunctionName : user_init
  265. * Description : entry of user application, init user function here
  266. * Parameters : none
  267. * Returns : none
  268. *******************************************************************************/
  269. void user_init(void) {
  270. #ifdef LUA_USE_MODULES_RTCTIME
  271. rtctime_late_startup ();
  272. #endif
  273. if( platform_init() != PLATFORM_OK ) {
  274. // This should never happen
  275. NODE_DBG("Can not init platform for modules.\n");
  276. return;
  277. }
  278. UartBautRate br = BIT_RATE_DEFAULT;
  279. uart_init (br, br);
  280. #ifndef NODE_DEBUG
  281. system_set_os_print(0);
  282. #endif
  283. system_init_done_cb(nodemcu_init);
  284. }
  285. #if 0
  286. /*
  287. * The SDK now establishes exception handlers for EXCCAUSE errors: ILLEGAL,
  288. * INSTR_ERROR, LOAD_STORE_ERROR, PRIVILEGED, UNALIGNED, LOAD_PROHIBITED,
  289. * STORE_PROHIBITED. These handlers are established in SDK/app_main.c.
  290. * LOAD_STORE_ERROR is handled by SDK/user_exceptions.o:load_non_32_wide_handler()
  291. * which is a fork of our version. The remaining are handled by a static function
  292. * at SDK:app+main.c:offset 0x0348. This wrappoer is only needed for debugging.
  293. */
  294. void __real__xtos_set_exception_handler (uint32_t cause, exception_handler_fn fn);
  295. void __wrap__xtos_set_exception_handler (uint32_t cause, exception_handler_fn fn) {
  296. os_printf("Exception handler %x %x\n", cause, fn);
  297. __real__xtos_set_exception_handler (cause, fn);
  298. }
  299. #endif