ws2812.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. #include "module.h"
  2. #include "lauxlib.h"
  3. #include "lmem.h"
  4. #include "platform.h"
  5. #include <stdlib.h>
  6. #include <math.h>
  7. #include <string.h>
  8. #include "user_interface.h"
  9. #include "driver/uart.h"
  10. #include "osapi.h"
  11. #include "ws2812.h"
  12. #define CANARY_VALUE 0x32383132
  13. #define MODE_SINGLE 0
  14. #define MODE_DUAL 1
  15. // Init UART1 to be able to stream WS2812 data to GPIO2 pin
  16. // If DUAL mode is selected, init UART0 to stream to TXD0 as well
  17. // You HAVE to redirect LUA's output somewhere else
  18. static int ws2812_init(lua_State* L) {
  19. const int mode = luaL_optinteger(L, 1, MODE_SINGLE);
  20. luaL_argcheck(L, mode == MODE_SINGLE || mode == MODE_DUAL, 1, "ws2812.SINGLE or ws2812.DUAL expected");
  21. // Configure UART1
  22. // Set baudrate of UART1 to 3200000
  23. WRITE_PERI_REG(UART_CLKDIV(1), UART_CLK_FREQ / 3200000);
  24. // Set UART Configuration No parity / 6 DataBits / 1 StopBits / Invert TX
  25. WRITE_PERI_REG(UART_CONF0(1), UART_TXD_INV | (1 << UART_STOP_BIT_NUM_S) | (1 << UART_BIT_NUM_S));
  26. if (mode == MODE_DUAL) {
  27. // Configure UART0
  28. // Set baudrate of UART0 to 3200000
  29. WRITE_PERI_REG(UART_CLKDIV(0), UART_CLK_FREQ / 3200000);
  30. // Set UART Configuration No parity / 6 DataBits / 1 StopBits / Invert TX
  31. WRITE_PERI_REG(UART_CONF0(0), UART_TXD_INV | (1 << UART_STOP_BIT_NUM_S) | (1 << UART_BIT_NUM_S));
  32. }
  33. // Pull GPIO2 down
  34. platform_gpio_mode(4, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT);
  35. platform_gpio_write(4, 0);
  36. // Waits 10us to simulate a reset
  37. os_delay_us(10);
  38. // Redirect UART1 to GPIO2
  39. // Disable GPIO2
  40. GPIO_REG_WRITE(GPIO_ENABLE_W1TC_ADDRESS, BIT2);
  41. // Enable Function 2 for GPIO2 (U1TXD)
  42. PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK);
  43. return 0;
  44. }
  45. // Stream data using UART1 routed to GPIO2
  46. // ws2812.init() should be called first
  47. //
  48. // NODE_DEBUG should not be activated because it also uses UART1
  49. void ICACHE_RAM_ATTR ws2812_write_data(const uint8_t *pixels, uint32_t length, const uint8_t *pixels2, uint32_t length2) {
  50. // Data are sent LSB first, with a start bit at 0, an end bit at 1 and all inverted
  51. // 0b00110111 => 110111 => [0]111011[1] => 10001000 => 00
  52. // 0b00000111 => 000111 => [0]111000[1] => 10001110 => 01
  53. // 0b00110100 => 110100 => [0]001011[1] => 11101000 => 10
  54. // 0b00000100 => 000100 => [0]001000[1] => 11101110 => 11
  55. // Array declared as static const to avoid runtime generation
  56. // But declared in ".data" section to avoid read penalty from FLASH
  57. static const __attribute__((section(".data._uartData"))) uint8_t _uartData[4] = { 0b00110111, 0b00000111, 0b00110100, 0b00000100 };
  58. const uint8_t *end = pixels + length;
  59. const uint8_t *end2 = pixels2 + length2;
  60. do {
  61. // If something to send for first buffer and enough room
  62. // in FIFO buffer (we wants to write 4 bytes, so less than
  63. // 124 in the buffer)
  64. if (pixels < end && (((READ_PERI_REG(UART_STATUS(1)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT) <= 124)) {
  65. uint8_t value = *pixels++;
  66. // Fill the buffer
  67. WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 6) & 3]);
  68. WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 4) & 3]);
  69. WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 2) & 3]);
  70. WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 0) & 3]);
  71. }
  72. // Same for the second buffer
  73. if (pixels2 < end2 && (((READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT) <= 124)) {
  74. uint8_t value = *pixels2++;
  75. // Fill the buffer
  76. WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 6) & 3]);
  77. WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 4) & 3]);
  78. WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 2) & 3]);
  79. WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 0) & 3]);
  80. }
  81. } while(pixels < end || pixels2 < end2); // Until there is still something to send
  82. }
  83. // Lua: ws2812.write("string")
  84. // Byte triples in the string are interpreted as G R B values.
  85. //
  86. // ws2812.init() should be called first
  87. //
  88. // ws2812.write(string.char(0, 255, 0)) sets the first LED red.
  89. // ws2812.write(string.char(0, 0, 255):rep(10)) sets ten LEDs blue.
  90. // ws2812.write(string.char(255, 0, 0, 255, 255, 255)) first LED green, second LED white.
  91. //
  92. // In DUAL mode 'ws2812.init(ws2812.DUAL)', you may pass a second string as parameter
  93. // It will be sent through TXD0 in parallel
  94. static int ws2812_write(lua_State* L) {
  95. size_t length1, length2;
  96. const char *buffer1, *buffer2;
  97. // First mandatory parameter
  98. int type = lua_type(L, 1);
  99. if (type == LUA_TNIL)
  100. {
  101. buffer1 = 0;
  102. length1 = 0;
  103. }
  104. else if(type == LUA_TSTRING)
  105. {
  106. buffer1 = lua_tolstring(L, 1, &length1);
  107. }
  108. else if (type == LUA_TUSERDATA)
  109. {
  110. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  111. buffer1 = buffer->values;
  112. length1 = buffer->colorsPerLed*buffer->size;
  113. }
  114. else
  115. {
  116. luaL_argerror(L, 1, "ws2812.buffer or string expected");
  117. }
  118. // Second optionnal parameter
  119. type = lua_type(L, 2);
  120. if (type == LUA_TNONE || type == LUA_TNIL)
  121. {
  122. buffer2 = 0;
  123. length2 = 0;
  124. }
  125. else if (type == LUA_TSTRING)
  126. {
  127. buffer2 = lua_tolstring(L, 2, &length2);
  128. }
  129. else if (type == LUA_TUSERDATA)
  130. {
  131. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer");
  132. buffer2 = buffer->values;
  133. length2 = buffer->colorsPerLed*buffer->size;
  134. }
  135. else
  136. {
  137. luaL_argerror(L, 2, "ws2812.buffer or string expected");
  138. }
  139. // Send the buffers
  140. ws2812_write_data(buffer1, length1, buffer2, length2);
  141. return 0;
  142. }
  143. static ptrdiff_t posrelat(ptrdiff_t pos, size_t len) {
  144. /* relative string position: negative means back from end */
  145. if (pos < 0) pos += (ptrdiff_t)len + 1;
  146. return MIN(MAX(pos, 1), len);
  147. }
  148. static ws2812_buffer *allocate_buffer(lua_State *L, int leds, int colorsPerLed) {
  149. // Allocate memory
  150. size_t size = sizeof(ws2812_buffer) + colorsPerLed*leds;
  151. ws2812_buffer * buffer = (ws2812_buffer*)lua_newuserdata(L, size);
  152. // Associate its metatable
  153. luaL_getmetatable(L, "ws2812.buffer");
  154. lua_setmetatable(L, -2);
  155. // Save led strip size
  156. buffer->size = leds;
  157. buffer->colorsPerLed = colorsPerLed;
  158. return buffer;
  159. }
  160. // Handle a buffer where we can store led values
  161. static int ws2812_new_buffer(lua_State *L) {
  162. const int leds = luaL_checkint(L, 1);
  163. const int colorsPerLed = luaL_checkint(L, 2);
  164. luaL_argcheck(L, leds > 0, 1, "should be a positive integer");
  165. luaL_argcheck(L, colorsPerLed > 0, 2, "should be a positive integer");
  166. ws2812_buffer * buffer = allocate_buffer(L, leds, colorsPerLed);
  167. memset(buffer->values, 0, colorsPerLed * leds);
  168. return 1;
  169. }
  170. int ws2812_buffer_fill(ws2812_buffer * buffer, int * colors) {
  171. // Grab colors
  172. int i, j;
  173. // Fill buffer
  174. uint8_t * p = &buffer->values[0];
  175. for(i = 0; i < buffer->size; i++)
  176. {
  177. for (j = 0; j < buffer->colorsPerLed; j++)
  178. {
  179. *p++ = colors[j];
  180. }
  181. }
  182. return 0;
  183. }
  184. static int ws2812_buffer_fill_lua(lua_State* L) {
  185. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  186. // Grab colors
  187. int i;
  188. int * colors = luaM_malloc(L, buffer->colorsPerLed * sizeof(int));
  189. for (i = 0; i < buffer->colorsPerLed; i++)
  190. {
  191. colors[i] = luaL_checkinteger(L, 2+i);
  192. }
  193. ws2812_buffer_fill(buffer, colors);
  194. // Free memory
  195. luaM_free(L, colors);
  196. return 0;
  197. }
  198. void ws2812_buffer_fade(ws2812_buffer * buffer, int fade, unsigned direction) {
  199. uint8_t * p = &buffer->values[0];
  200. int val = 0;
  201. int i;
  202. for (i = 0; i < buffer->size * buffer->colorsPerLed; i++)
  203. {
  204. if (direction == FADE_OUT)
  205. {
  206. *p++ /= fade;
  207. }
  208. else
  209. {
  210. // as fade in can result in value overflow, an int is used to perform the check afterwards
  211. val = *p * fade;
  212. if (val > 255) val = 255;
  213. *p++ = val;
  214. }
  215. }
  216. }
  217. static int ws2812_buffer_fade_lua(lua_State* L) {
  218. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  219. const int fade = luaL_checkinteger(L, 2);
  220. unsigned direction = luaL_optinteger( L, 3, FADE_OUT );
  221. luaL_argcheck(L, fade > 0, 2, "fade value should be a strict positive number");
  222. ws2812_buffer_fade(buffer, fade, direction);
  223. return 0;
  224. }
  225. int ws2812_buffer_shift(lua_State* L, ws2812_buffer * buffer, int shiftValue, unsigned shift_type, int pos_start, int pos_end){
  226. ws2812_buffer_shift_prepare* prepare = ws2812_buffer_get_shift_prepare(L, buffer, shiftValue, shift_type, pos_start, pos_end);
  227. ws2812_buffer_shift_prepared(prepare);
  228. // Free memory
  229. luaM_freemem(L, prepare, sizeof(ws2812_buffer_shift_prepare) + prepare->shift_len);
  230. return 0;
  231. }
  232. ws2812_buffer_shift_prepare* ws2812_buffer_get_shift_prepare(lua_State* L, ws2812_buffer * buffer, int shiftValue, unsigned shift_type, int pos_start, int pos_end){
  233. ptrdiff_t start = posrelat(pos_start, buffer->size);
  234. ptrdiff_t end = posrelat(pos_end, buffer->size);
  235. start--;
  236. int size = end - start;
  237. size_t offset = start * buffer->colorsPerLed;
  238. luaL_argcheck(L, shiftValue >= 0-size && shiftValue <= size, 2, "shifting more elements than buffer size");
  239. int shift = shiftValue >= 0 ? shiftValue : -shiftValue;
  240. size_t shift_len, remaining_len;
  241. // calculate length of shift section and remaining section
  242. shift_len = shift*buffer->colorsPerLed;
  243. remaining_len = (size-shift)*buffer->colorsPerLed;
  244. ws2812_buffer_shift_prepare* prepare = luaM_malloc(L, sizeof(ws2812_buffer_shift_prepare) + shift_len);
  245. prepare->offset = offset;
  246. prepare->tmp_pixels = (uint8_t*)(prepare+1);
  247. prepare->shiftValue = shiftValue;
  248. prepare->shift_len = shift_len;
  249. prepare->remaining_len = remaining_len;
  250. prepare->shift_type = shift_type;
  251. prepare->buffer = buffer;
  252. return prepare;
  253. }
  254. void ws2812_buffer_shift_prepared(ws2812_buffer_shift_prepare* prepare) {
  255. // check if we want to shift at all
  256. if (prepare->shift_len == 0 || (prepare->shift_len + prepare->remaining_len) <= 0)
  257. {
  258. return;
  259. }
  260. if (prepare->shiftValue > 0)
  261. {
  262. // Store the values which are moved out of the array (last n pixels)
  263. memcpy(prepare->tmp_pixels, &prepare->buffer->values[prepare->offset + prepare->remaining_len], prepare->shift_len);
  264. // Move pixels to end
  265. os_memmove(&prepare->buffer->values[prepare->offset + prepare->shift_len], &prepare->buffer->values[prepare->offset], prepare->remaining_len);
  266. // Fill beginning with temp data
  267. if (prepare->shift_type == SHIFT_LOGICAL)
  268. {
  269. memset(&prepare->buffer->values[prepare->offset], 0, prepare->shift_len);
  270. }
  271. else
  272. {
  273. memcpy(&prepare->buffer->values[prepare->offset], prepare->tmp_pixels, prepare->shift_len);
  274. }
  275. }
  276. else
  277. {
  278. // Store the values which are moved out of the array (last n pixels)
  279. memcpy(prepare->tmp_pixels, &prepare->buffer->values[prepare->offset], prepare->shift_len);
  280. // Move pixels to end
  281. os_memmove(&prepare->buffer->values[prepare->offset], &prepare->buffer->values[prepare->offset + prepare->shift_len], prepare->remaining_len);
  282. // Fill beginning with temp data
  283. if (prepare->shift_type == SHIFT_LOGICAL)
  284. {
  285. memset(&prepare->buffer->values[prepare->offset + prepare->remaining_len], 0, prepare->shift_len);
  286. }
  287. else
  288. {
  289. memcpy(&prepare->buffer->values[prepare->offset + prepare->remaining_len], prepare->tmp_pixels, prepare->shift_len);
  290. }
  291. }
  292. }
  293. static int ws2812_buffer_shift_lua(lua_State* L) {
  294. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  295. const int shiftValue = luaL_checkinteger(L, 2);
  296. const unsigned shift_type = luaL_optinteger( L, 3, SHIFT_LOGICAL );
  297. const int pos_start = luaL_optinteger(L, 4, 1);
  298. const int pos_end = luaL_optinteger(L, 5, -1);
  299. ws2812_buffer_shift(L, buffer, shiftValue, shift_type, pos_start, pos_end);
  300. return 0;
  301. }
  302. static int ws2812_buffer_dump(lua_State* L) {
  303. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  304. lua_pushlstring(L, buffer->values, buffer->size * buffer->colorsPerLed);
  305. return 1;
  306. }
  307. static int ws2812_buffer_replace(lua_State* L) {
  308. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  309. ptrdiff_t start = posrelat(luaL_optinteger(L, 3, 1), buffer->size);
  310. uint8_t *src;
  311. size_t srcLen;
  312. if (lua_type(L, 2) == LUA_TSTRING) {
  313. size_t length;
  314. src = (uint8_t *) lua_tolstring(L, 2, &length);
  315. srcLen = length / buffer->colorsPerLed;
  316. } else {
  317. ws2812_buffer * rhs = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer");
  318. src = rhs->values;
  319. srcLen = rhs->size;
  320. luaL_argcheck(L, rhs->colorsPerLed == buffer->colorsPerLed, 2, "Buffers have different colors");
  321. }
  322. luaL_argcheck(L, srcLen + start - 1 <= buffer->size, 2, "Does not fit into destination");
  323. memcpy(buffer->values + (start - 1) * buffer->colorsPerLed, src, srcLen * buffer->colorsPerLed);
  324. return 0;
  325. }
  326. // buffer:mix(factor1, buffer1, ..)
  327. // factor is 256 for 100%
  328. // uses saturating arithmetic (one buffer at a time)
  329. static int ws2812_buffer_mix(lua_State* L) {
  330. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  331. int pos = 2;
  332. size_t cells = buffer->size * buffer->colorsPerLed;
  333. int n_sources = (lua_gettop(L) - 1) / 2;
  334. struct {
  335. int factor;
  336. const uint8_t *values;
  337. } source[n_sources];
  338. int src;
  339. for (src = 0; src < n_sources; src++, pos += 2) {
  340. int factor = luaL_checkinteger(L, pos);
  341. ws2812_buffer *src_buffer = (ws2812_buffer*) luaL_checkudata(L, pos + 1, "ws2812.buffer");
  342. luaL_argcheck(L, src_buffer->size == buffer->size && src_buffer->colorsPerLed == buffer->colorsPerLed, pos + 1, "Buffer not same shape");
  343. source[src].factor = factor;
  344. source[src].values = src_buffer->values;
  345. }
  346. size_t i;
  347. for (i = 0; i < cells; i++) {
  348. int32_t val = 0;
  349. for (src = 0; src < n_sources; src++) {
  350. val += (int32_t)(source[src].values[i] * source[src].factor);
  351. }
  352. val += 128; // rounding istead of floor
  353. val /= 256; // do not use implemetation dependant right shift
  354. if (val < 0) {
  355. val = 0;
  356. } else if (val > 255) {
  357. val = 255;
  358. }
  359. buffer->values[i] = (uint8_t)val;
  360. }
  361. return 0;
  362. }
  363. // Returns the total of all channels
  364. static int ws2812_buffer_power(lua_State* L) {
  365. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  366. size_t cells = buffer->size * buffer->colorsPerLed;
  367. size_t i;
  368. int total = 0;
  369. for (i = 0; i < cells; i++) {
  370. total += buffer->values[i];
  371. }
  372. lua_pushinteger(L, total);
  373. return 1;
  374. }
  375. static int ws2812_buffer_get(lua_State* L) {
  376. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  377. const int led = luaL_checkinteger(L, 2) - 1;
  378. luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range");
  379. int i;
  380. for (i = 0; i < buffer->colorsPerLed; i++)
  381. {
  382. lua_pushinteger(L, buffer->values[buffer->colorsPerLed*led+i]);
  383. }
  384. return buffer->colorsPerLed;
  385. }
  386. static int ws2812_buffer_set(lua_State* L) {
  387. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  388. const int led = luaL_checkinteger(L, 2) - 1;
  389. luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range");
  390. int type = lua_type(L, 3);
  391. if(type == LUA_TTABLE)
  392. {
  393. int i;
  394. for (i = 0; i < buffer->colorsPerLed; i++)
  395. {
  396. // Get value and push it on stack
  397. lua_rawgeti(L, 3, i+1);
  398. // Convert it as int and store them in buffer
  399. buffer->values[buffer->colorsPerLed*led+i] = lua_tointeger(L, -1);
  400. }
  401. // Clean up the stack
  402. lua_pop(L, buffer->colorsPerLed);
  403. }
  404. else if(type == LUA_TSTRING)
  405. {
  406. size_t len;
  407. const char * buf = lua_tolstring(L, 3, &len);
  408. // Overflow check
  409. if( buffer->colorsPerLed*led + len > buffer->colorsPerLed*buffer->size )
  410. {
  411. return luaL_error(L, "string size will exceed strip length");
  412. }
  413. memcpy(&buffer->values[buffer->colorsPerLed*led], buf, len);
  414. }
  415. else
  416. {
  417. int i;
  418. for (i = 0; i < buffer->colorsPerLed; i++)
  419. {
  420. buffer->values[buffer->colorsPerLed*led+i] = luaL_checkinteger(L, 3+i);
  421. }
  422. }
  423. return 0;
  424. }
  425. static int ws2812_buffer_size(lua_State* L) {
  426. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  427. lua_pushinteger(L, buffer->size);
  428. return 1;
  429. }
  430. static int ws2812_buffer_sub(lua_State* L) {
  431. ws2812_buffer * lhs = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  432. size_t l = lhs->size;
  433. ptrdiff_t start = posrelat(luaL_checkinteger(L, 2), l);
  434. ptrdiff_t end = posrelat(luaL_optinteger(L, 3, -1), l);
  435. if (start <= end) {
  436. ws2812_buffer *result = allocate_buffer(L, end - start + 1, lhs->colorsPerLed);
  437. memcpy(result->values, lhs->values + lhs->colorsPerLed * (start - 1), lhs->colorsPerLed * (end - start + 1));
  438. } else {
  439. ws2812_buffer *result = allocate_buffer(L, 0, lhs->colorsPerLed);
  440. }
  441. return 1;
  442. }
  443. static int ws2812_buffer_concat(lua_State* L) {
  444. ws2812_buffer * lhs = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  445. ws2812_buffer * rhs = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer");
  446. luaL_argcheck(L, lhs->colorsPerLed == rhs->colorsPerLed, 1, "Can only concatenate buffers with same colors");
  447. int colorsPerLed = lhs->colorsPerLed;
  448. int leds = lhs->size + rhs->size;
  449. ws2812_buffer * buffer = allocate_buffer(L, leds, colorsPerLed);
  450. memcpy(buffer->values, lhs->values, lhs->colorsPerLed * lhs->size);
  451. memcpy(buffer->values + lhs->colorsPerLed * lhs->size, rhs->values, rhs->colorsPerLed * rhs->size);
  452. return 1;
  453. }
  454. static int ws2812_buffer_tostring(lua_State* L) {
  455. ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer");
  456. luaL_Buffer result;
  457. luaL_buffinit(L, &result);
  458. luaL_addchar(&result, '[');
  459. int i;
  460. int p = 0;
  461. for (i = 0; i < buffer->size; i++) {
  462. int j;
  463. if (i > 0) {
  464. luaL_addchar(&result, ',');
  465. }
  466. luaL_addchar(&result, '(');
  467. for (j = 0; j < buffer->colorsPerLed; j++, p++) {
  468. if (j > 0) {
  469. luaL_addchar(&result, ',');
  470. }
  471. char numbuf[5];
  472. sprintf(numbuf, "%d", buffer->values[p]);
  473. luaL_addstring(&result, numbuf);
  474. }
  475. luaL_addchar(&result, ')');
  476. }
  477. luaL_addchar(&result, ']');
  478. luaL_pushresult(&result);
  479. return 1;
  480. }
  481. LROT_BEGIN(ws2812_buffer_map, NULL, LROT_MASK_INDEX)
  482. LROT_FUNCENTRY( __concat, ws2812_buffer_concat )
  483. LROT_TABENTRY( __index, ws2812_buffer_map )
  484. LROT_FUNCENTRY( __tostring, ws2812_buffer_tostring )
  485. LROT_FUNCENTRY( dump, ws2812_buffer_dump )
  486. LROT_FUNCENTRY( fade, ws2812_buffer_fade_lua)
  487. LROT_FUNCENTRY( fill, ws2812_buffer_fill_lua )
  488. LROT_FUNCENTRY( get, ws2812_buffer_get )
  489. LROT_FUNCENTRY( replace, ws2812_buffer_replace )
  490. LROT_FUNCENTRY( mix, ws2812_buffer_mix )
  491. LROT_FUNCENTRY( power, ws2812_buffer_power )
  492. LROT_FUNCENTRY( set, ws2812_buffer_set )
  493. LROT_FUNCENTRY( shift, ws2812_buffer_shift_lua )
  494. LROT_FUNCENTRY( size, ws2812_buffer_size )
  495. LROT_FUNCENTRY( sub, ws2812_buffer_sub )
  496. LROT_END(ws2812_buffer_map, NULL, LROT_MASK_INDEX)
  497. LROT_BEGIN(ws2812, NULL, 0)
  498. LROT_FUNCENTRY( init, ws2812_init )
  499. LROT_FUNCENTRY( newBuffer, ws2812_new_buffer )
  500. LROT_FUNCENTRY( write, ws2812_write )
  501. LROT_NUMENTRY( FADE_IN, FADE_IN )
  502. LROT_NUMENTRY( FADE_OUT, FADE_OUT )
  503. LROT_NUMENTRY( MODE_SINGLE, MODE_SINGLE )
  504. LROT_NUMENTRY( MODE_DUAL, MODE_DUAL )
  505. LROT_NUMENTRY( SHIFT_LOGICAL, SHIFT_LOGICAL )
  506. LROT_NUMENTRY( SHIFT_CIRCULAR, SHIFT_CIRCULAR )
  507. LROT_END(ws2812, NULL, 0)
  508. int luaopen_ws2812(lua_State *L) {
  509. // TODO: Make sure that the GPIO system is initialized
  510. luaL_rometatable(L, "ws2812.buffer", LROT_TABLEREF(ws2812_buffer_map));
  511. return 0;
  512. }
  513. NODEMCU_MODULE(WS2812, "ws2812", ws2812, luaopen_ws2812);