user_main.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /******************************************************************************
  2. * Copyright 2013-2014 Espressif Systems (Wuxi)
  3. *
  4. * FileName: user_main.c
  5. *
  6. * Description: entry file of user application
  7. *
  8. * Modification history:
  9. * 2014/1/1, v1.0 create this file.
  10. *******************************************************************************/
  11. #include "lua.h"
  12. #include "platform.h"
  13. #include <string.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include "vfs.h"
  17. #include "flash_api.h"
  18. #include "user_interface.h"
  19. #include "user_modules.h"
  20. #include "ets_sys.h"
  21. #include "driver/uart.h"
  22. #include "driver/input.h"
  23. #include "task/task.h"
  24. #include "mem.h"
  25. #include "espconn.h"
  26. #include "sections.h"
  27. #include "../modules/wifi_common.h"
  28. #ifdef LUA_USE_MODULES_RTCTIME
  29. #include "rtc/rtctime.h"
  30. #endif
  31. extern int lua_main (void);
  32. /* Contents of esp_init_data_default.bin */
  33. extern const uint32_t init_data[], init_data_end[];
  34. #define INIT_DATA_SIZE ((init_data_end - init_data)*sizeof(uint32_t))
  35. __asm__(
  36. ".align 4\n"
  37. "init_data: .incbin \"" ESP_INIT_DATA_DEFAULT "\"\n"
  38. "init_data_end:\n"
  39. );
  40. extern const char _irom0_text_start[], _irom0_text_end[], _flash_used_end[];
  41. #define IROM0_SIZE (_irom0_text_end - _irom0_text_start)
  42. #define PRE_INIT_TEXT_ATTR __attribute__((section(".p3.pre_init")))
  43. #define IROM_PTABLE_ATTR __attribute__((section(".irom0.ptable")))
  44. #define USED_ATTR __attribute__((used))
  45. #define PARTITION(n) (SYSTEM_PARTITION_CUSTOMER_BEGIN + n)
  46. #define SIZE_256K 0x00040000
  47. #define SIZE_1024K 0x00100000
  48. #define PT_CHUNK 0x00002000
  49. #define PT_ALIGN(n) ((n + (PT_CHUNK-1)) & (~((PT_CHUNK-1))))
  50. #define FLASH_BASE_ADDR ((char *) 0x40200000)
  51. #define NODEMCU_PARTITION_EAGLEROM PLATFORM_PARTITION(NODEMCU_EAGLEROM_PARTITION)
  52. #define NODEMCU_PARTITION_IROM0TEXT PLATFORM_PARTITION(NODEMCU_IROM0TEXT_PARTITION)
  53. #define NODEMCU_PARTITION_LFS PLATFORM_PARTITION(NODEMCU_LFS0_PARTITION)
  54. #define NODEMCU_PARTITION_SPIFFS PLATFORM_PARTITION(NODEMCU_SPIFFS0_PARTITION)
  55. #define RF_CAL_SIZE 0x1000
  56. #define PHY_DATA_SIZE 0x1000
  57. #define SYSTEM_PARAMETER_SIZE 0x3000
  58. #define MAX_PARTITIONS 20
  59. #define WORDSIZE sizeof(uint32_t)
  60. #define PTABLE_SIZE 7 /** THIS MUST BE MATCHED TO NO OF PT ENTRIES BELOW **/
  61. struct defaultpt {
  62. platform_rcr_t hdr;
  63. partition_item_t pt[PTABLE_SIZE+1]; // the +! is for the endmarker
  64. };
  65. #define PT_LEN (NUM_PARTITIONS*sizeof(partition_item_t))
  66. /*
  67. * See app/platform/platform.h for how the platform reboot config records are used
  68. * and these records are allocated. The first record is a default partition table
  69. * and this is statically declared in compilation below.
  70. */
  71. static const struct defaultpt rompt IROM_PTABLE_ATTR USED_ATTR = {
  72. .hdr = {.len = sizeof(struct defaultpt)/WORDSIZE - 1,
  73. .id = PLATFORM_RCR_PT},
  74. .pt = {
  75. { NODEMCU_PARTITION_EAGLEROM, 0x00000, 0x0B000},
  76. { SYSTEM_PARTITION_RF_CAL, 0x0D000, RF_CAL_SIZE},
  77. { SYSTEM_PARTITION_PHY_DATA, 0x0F000, PHY_DATA_SIZE},
  78. { NODEMCU_PARTITION_IROM0TEXT, 0x10000, 0x0000},
  79. { NODEMCU_PARTITION_LFS, 0x0, LUA_FLASH_STORE},
  80. { NODEMCU_PARTITION_SPIFFS, 0x0, SPIFFS_MAX_FILESYSTEM_SIZE},
  81. { SYSTEM_PARTITION_SYSTEM_PARAMETER, 0x0, SYSTEM_PARAMETER_SIZE},
  82. {0,(uint32_t) &_irom0_text_end,0}
  83. }
  84. };
  85. //TODO: map the TLS server and client certs into NODEMCU_TLSCERT_PARTITION
  86. static uint32_t first_time_setup(partition_item_t *pt, uint32_t n, uint32_t flash_size);
  87. static void phy_data_setup (partition_item_t *pt, uint32_t n);
  88. extern void _ResetHandler(void);
  89. /*
  90. * The non-OS SDK prolog has been fundamentally revised in V3. See SDK EN document
  91. * Partition Table.md for further discussion. This version of user_main.c is a
  92. * complete rework aligned to V3, with the redundant pre-V3 features removed.
  93. *
  94. * SDK V3 significantly reduces the RAM footprint required by the SDK and introduces
  95. * the use of a partition table (PT) to control flash allocation. The NodeMCU uses
  96. * this PT for overall allocation of its flash resources. The non_OS SDK calls the
  97. * user_pre_init() entry to do all of this startup configuration. Note that this
  98. * runs with Icache enabled -- that is the IROM0 partition is already mapped to the
  99. * address space at 0x40210000 and so that most SDK services are available, such
  100. * as system_get_flash_size_map() which returns the valid flash size (including the
  101. * 8Mb and 16Mb variants).
  102. *
  103. * The first 4K page of IROM0 (flash offset 0x10000) is used to maintain a set of
  104. * Resource Communication Records (RCR) for inter-boot configuration using a NAND
  105. * write-once algo (see app/platform/platform.h). One of the current records is the
  106. * SDK3.0 PT. This build statically compiles in an initial version at the start of
  107. * the PT, with a {0, _irom0_text_end,0} marker as the last record and some fields
  108. * also that need to be recomputed at runtime. This version is either replaced
  109. * by first boot processing after provisioning, or by a node.setpartitiontable()
  110. * API call. These replacement PTs are complete and can be passed directly for use
  111. * by the non-OS SDK.
  112. *
  113. * Note that we have released a host PC-base python tool, nodemcu-partition.py, to
  114. * configure the PT, etc during provisioning.
  115. */
  116. void user_pre_init(void) {
  117. STARTUP_COUNT;
  118. #ifdef LUA_USE_MODULES_RTCTIME
  119. // Note: Keep this as close to call_user_start() as possible, since it
  120. // is where the cpu clock actually gets bumped to 80MHz.
  121. rtctime_early_startup ();
  122. #endif
  123. int startup_option = platform_rcr_get_startup_option();
  124. if (startup_option & STARTUP_OPTION_CPU_FREQ_MAX) {
  125. REG_SET_BIT(0x3ff00014, BIT(0));
  126. ets_update_cpu_frequency(SYS_CPU_160MHZ);
  127. }
  128. int no_banner = startup_option & STARTUP_OPTION_NO_BANNER;
  129. partition_item_t *rcr_pt = NULL, *pt;
  130. enum flash_size_map fs_size_code = system_get_flash_size_map();
  131. // Flash size lookup is SIZE_256K*2^N where N is as follows (see SDK/user_interface.h)
  132. /* 0 1 2 3 4 5 6 7 8 9 */
  133. /* ½M ¼M 1M 2M 4M 2M 4M 4M 8M 16M */
  134. static char flash_size_scaler[] = "\001\000\002\003\004\003\004\004\005\006";
  135. uint32_t flash_size = SIZE_256K << flash_size_scaler[fs_size_code];
  136. uint32_t i = platform_rcr_read(PLATFORM_RCR_PT, (void **) &rcr_pt);
  137. uint32_t n = i / sizeof(partition_item_t);
  138. if (flash_size < SIZE_1024K) {
  139. os_printf("Flash size (%u) too small to support NodeMCU\n", flash_size);
  140. return;
  141. } else {
  142. if (!no_banner) {
  143. os_printf("system SPI FI size:%u, Flash size: %u\n", fs_size_code, flash_size );
  144. }
  145. }
  146. pt = os_malloc_iram(i); // We will work on and register a copy of the PT in iRAM
  147. // Return if anything is amiss; The SDK will halt if the PT hasn't been registered
  148. if ( !rcr_pt || !pt || n * sizeof(partition_item_t) != i) {
  149. return;
  150. }
  151. os_memcpy(pt, rcr_pt, i);
  152. if (pt[n-1].type == 0) {
  153. // If the last PT entry is a {0,XX,0} end marker, then we need first time setup
  154. n = first_time_setup(pt, n-1, flash_size); // return n because setup might shrink the PT
  155. }
  156. if (platform_rcr_read(PLATFORM_RCR_PHY_DATA, NULL)!=0) {
  157. phy_data_setup(pt, n);
  158. }
  159. // Now register the partition and return
  160. if( fs_size_code > 1 && system_partition_table_regist(pt, n, fs_size_code)) {
  161. if (no_banner) {
  162. system_set_os_print(0);
  163. }
  164. STARTUP_COUNT;
  165. return;
  166. }
  167. os_printf("Invalid system partition table\n");
  168. while (1) {};
  169. }
  170. /*
  171. * If the PLATFORM_RCR_PT record doesn't exist then the PHY_DATA partition might
  172. * not have been initialised. This must be set to the proper default init data
  173. * otherwise the SDK will halt on the "rf_cal[0] !=0x05,is 0xFF" error.
  174. */
  175. static void phy_data_setup (partition_item_t *pt, uint32_t n) {
  176. uint8_t header[sizeof(uint32_t)] = {0};
  177. int i;
  178. for (i = 0; i < n; i++) {
  179. if (pt[i].type == SYSTEM_PARTITION_PHY_DATA) {
  180. uint32_t addr = pt[i].addr;
  181. platform_s_flash_read(header, addr, sizeof(header));
  182. if (header[0] != 0x05) {
  183. uint32_t sector = pt[i].addr/INTERNAL_FLASH_SECTOR_SIZE;
  184. if (platform_flash_erase_sector(sector) == PLATFORM_OK) {
  185. os_printf("Writing Init Data to 0x%08x\n",addr);
  186. platform_s_flash_write(init_data, addr, INIT_DATA_SIZE);
  187. }
  188. }
  189. // flag setup complete so we don't retry this every boot
  190. platform_rcr_write(PLATFORM_RCR_PHY_DATA, &addr, 0);
  191. return;
  192. }
  193. }
  194. // If the PHY_DATA doesn't exist or the write fails then the
  195. // SDK will raise the rf_cal error anyway, so just return.
  196. }
  197. /*
  198. * First time setup does the one-off PT calculations and checks. If these are OK,
  199. * then writes back a new RCR for the updated PT and triggers a reboot. It returns
  200. * on failure.
  201. */
  202. static uint32_t first_time_setup(partition_item_t *pt, uint32_t n, uint32_t flash_size) {
  203. int i, j, last = 0, newn = n;
  204. /*
  205. * Scan down the PT adjusting and 0 entries to sensible defaults. Also delete any
  206. * zero-sized partitions (as the SDK barfs on these).
  207. */
  208. for (i = 0, j = 0; i < n; i ++) {
  209. partition_item_t *p = pt + i;
  210. switch (p->type) {
  211. case NODEMCU_PARTITION_IROM0TEXT:
  212. // If the IROM0 partition size is 0 then compute from the IROM0_SIZE. Note
  213. // that the size in the end-marker is used by the nodemcu-partition.py
  214. // script and not here.
  215. if (p->size == 0) {
  216. p->size = PT_ALIGN(IROM0_SIZE);
  217. }
  218. break;
  219. case NODEMCU_PARTITION_LFS:
  220. // Properly align the LFS partition size and make it consecutive to
  221. // the previous partition.
  222. p->size = PT_ALIGN(p->size);
  223. if (p->addr == 0)
  224. p->addr = last;
  225. break;
  226. /*
  227. * Set up the SPIFFS partition based on some sensible defaults:
  228. * size == 0 mean no SPIFFS partition.
  229. * size == ~0 means use all of the available flash for SPIFFS (resp the addr if set).
  230. * if size > 0 then float the default boundary to 1M if the SPIFFS will fit.
  231. */
  232. case NODEMCU_PARTITION_SPIFFS:
  233. if (p->size == ~0x0) { /* Maximum SPIFFS partition */
  234. if (p->addr == 0)
  235. p->addr = last;
  236. p->size = flash_size - SYSTEM_PARAMETER_SIZE - last;
  237. } else if (p->size > 0x0) { /* Explicit SPIFFS size */
  238. if (p->addr < last) // SPIFFS can't overlap the previous region;
  239. p->addr = 0;
  240. if (p->addr == 0)
  241. p->addr = (p->size <= flash_size - SYSTEM_PARAMETER_SIZE - 0x100000) ?
  242. 0x100000 : last;
  243. }
  244. /* else p->size == 0 No SPIFFS partition */
  245. break;
  246. case SYSTEM_PARTITION_SYSTEM_PARAMETER:
  247. p->addr = flash_size - SYSTEM_PARAMETER_SIZE;
  248. p->size = SYSTEM_PARAMETER_SIZE;
  249. }
  250. if (p->size == 0) {
  251. // Delete 0-sized partitions as the SDK barfs on these
  252. newn--;
  253. } else {
  254. /*
  255. * Do consistency tests on the partition. The address and size must
  256. * be flash sector aligned. Partitions can't overlap, and the last
  257. * patition must fit within the flash size.
  258. */
  259. if (p->addr & (INTERNAL_FLASH_SECTOR_SIZE - 1) ||
  260. p->size & (INTERNAL_FLASH_SECTOR_SIZE - 1) ||
  261. p->addr < last ||
  262. p->addr + p->size > flash_size) {
  263. os_printf("Partition %u invalid alignment\n", i);
  264. while(1) {/*system_soft_wdt_feed ();*/}
  265. }
  266. if (j < i) // shift the partition down if we have any deleted slots
  267. pt[j] = *p;
  268. j++;
  269. last = p->addr + p->size;
  270. }
  271. }
  272. platform_rcr_write(PLATFORM_RCR_PT, pt, newn*sizeof(partition_item_t));
  273. ets_delay_us(5000);
  274. _ResetHandler(); // Trigger reset; the new PT will be loaded on reboot
  275. }
  276. uint32 ICACHE_RAM_ATTR user_iram_memory_is_enabled(void) {
  277. return FALSE; // NodeMCU runs like a dog if iRAM is enabled
  278. }
  279. void nodemcu_init(void) {
  280. STARTUP_COUNT;
  281. NODE_DBG("Task task_lua starting.\n");
  282. // Call the Lua bootstrap startup directly. This uses the task interface
  283. // internally to carry out the main lua libraries initialisation.
  284. if(lua_main())
  285. lua_main(); // If it returns true then LFS restart is needed
  286. }
  287. /******************************************************************************
  288. * FunctionName : user_init
  289. * Description : entry of user application, init user function here
  290. * Parameters : none
  291. * Returns : none
  292. *******************************************************************************/
  293. void user_init(void) {
  294. #ifdef LUA_USE_MODULES_RTCTIME
  295. rtctime_late_startup ();
  296. #endif
  297. if( platform_init() != PLATFORM_OK ) {
  298. // This should never happen
  299. NODE_DBG("Can not init platform for modules.\n");
  300. return;
  301. }
  302. UartBautRate br = BIT_RATE_DEFAULT;
  303. uart_init (br, br);
  304. #ifdef LUA_USE_MODULES_WIFI
  305. wifi_change_default_host_name();
  306. #endif
  307. #ifndef NODE_DEBUG
  308. system_set_os_print(0);
  309. #endif
  310. system_init_done_cb(nodemcu_init);
  311. }
  312. #if 0
  313. /*
  314. * The SDK now establishes exception handlers for EXCCAUSE errors: ILLEGAL,
  315. * INSTR_ERROR, LOAD_STORE_ERROR, PRIVILEGED, UNALIGNED, LOAD_PROHIBITED,
  316. * STORE_PROHIBITED. These handlers are established in SDK/app_main.c.
  317. * LOAD_STORE_ERROR is handled by SDK/user_exceptions.o:load_non_32_wide_handler()
  318. * which is a fork of our version. The remaining are handled by a static function
  319. * at SDK:app+main.c:offset 0x0348. This wrappoer is only needed for debugging.
  320. */
  321. void __real__xtos_set_exception_handler (uint32_t cause, exception_handler_fn fn);
  322. void __wrap__xtos_set_exception_handler (uint32_t cause, exception_handler_fn fn) {
  323. os_printf("Exception handler %x %x\n", cause, fn);
  324. __real__xtos_set_exception_handler (cause, fn);
  325. }
  326. #endif