//------------------------------------------------------------------------ // // Model Railroading with Arduino - NmraDcc.cpp // // Copyright (c) 2008 - 2020 Alex Shepherd // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //------------------------------------------------------------------------ // // file: NmraDcc.cpp // author: Alex Shepherd // webpage: http://mrrwa.org/ // history: 2008-03-20 Initial Version // 2011-06-26 Migrated into Arduino library from OpenDCC codebase // 2014 Added getAddr to NmraDcc Geoff Bunza // 2015-11-06 Martin Pischky (martin@pischky.de): // Experimental Version to support 14 speed steps // and new signature of notifyDccSpeed and notifyDccFunc // 2015-12-16 Version without use of Timer0 by Franz-Peter Müller // 2016-07-16 handle glitches on DCC line // 2016-08-20 added ESP8266 support by Sven (littleyoda) // 2017-01-19 added STM32F1 support by Franz-Peter // 2017-11-29 Ken West (kgw4449@gmail.com): // Minor fixes to pass NMRA Baseline Conformance Tests. // 2018-12-17 added ESP32 support by Trusty (thierry@lapajaparis.net) // 2019-02-17 added ESP32 specific changes by Hans Tanner // 2020-05-15 changes to pass NMRA Tests ( always search for preamble ) //------------------------------------------------------------------------ // // purpose: Provide a simplified interface to decode NMRA DCC packets // and build DCC Mobile and Stationary Decoders // //------------------------------------------------------------------------ // NodeMCU Lua port by @voborsky // #define NODE_DEBUG #define NODEMCUDCC #ifdef NODEMCUDCC #include #include #include #include "platform.h" #include "user_interface.h" #include "task/task.h" #include "driver/NmraDcc.h" #define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c" #define BYTE_TO_BINARY(byte) \ (byte & 0x80 ? '1' : '0'), \ (byte & 0x40 ? '1' : '0'), \ (byte & 0x20 ? '1' : '0'), \ (byte & 0x10 ? '1' : '0'), \ (byte & 0x08 ? '1' : '0'), \ (byte & 0x04 ? '1' : '0'), \ (byte & 0x02 ? '1' : '0'), \ (byte & 0x01 ? '1' : '0') #define byte uint8_t #define word int16_t #define abs(a) ((a) > 0 ? (a) : (0-a)) #define RISING GPIO_PIN_INTR_POSEDGE #define FALLING GPIO_PIN_INTR_NEGEDGE #define CHANGE GPIO_PIN_INTR_ANYEDGE static uint32_t last_time_overflow_millis; static uint32_t last_system_time; uint32_t millis() { uint32_t now = system_get_time(); if (now < last_system_time) { // we have an overflow situation // assume only one overflow last_time_overflow_millis += (1 << 29) / 125; // (1 << 32) / 1000 } last_system_time = now; return last_time_overflow_millis + now / 1000; } #else #include "NmraDcc.h" #include "EEPROM.h" #endif // Uncomment to print DEBUG messages // #define DEBUG_PRINT //------------------------------------------------------------------------ // DCC Receive Routine // // Howto: uses two interrupts: a rising edge in DCC polarity triggers INTx // in INTx handler, Timer0 CompareB with a delay of 80us is started. // On Timer0 CompareB Match the level of DCC is evaluated and // parsed. // // |<-----116us----->| // // DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________ // ^-INTx // |----87us--->| // ^Timer-INT: reads zero // // DCC 0: _________XXXXXXXXXXXXXXXXXX__________________ // ^-INTx // |----------->| // ^Timer-INT: reads one // // new DCC Receive Routine without Timer0 ........................................................ // // Howto: uses only one interrupt at the rising or falling edge of the DCC signal // The time between two edges is measured to determine the bit value // Synchronising to the edge of the first part of a bit is done after recognizing the start bit // During synchronizing each part of a bit is detected ( Interruptmode 'change' ) // // |<-----116us----->| // DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________ // |<--------146us------>| // ^-INTx ^-INTx // less than 146us: its a one-Bit // // // |<-----------------232us----------->| // DCC 0: _________XXXXXXXXXXXXXXXXXX__________________XXXXXXXX__________ // |<--------146us------->| // ^-INTx ^-INTx // greater than 146us: its a zero bit // // // // //------------------------------------------------------------------------ // if this is commented out, bit synchronisation is only done after a wrong checksum #define SYNC_ALWAYS // if this is commented out, Zero-Bit_Stretching is not supported // ( Bits longer than 2* MAX ONEBIT are treated as error ) #define SUPPORT_ZERO_BIT_STRETCHING #define MAX_ONEBITFULL 146 #define MAX_PRAEAMBEL 146 #define MAX_ONEBITHALF 82 #define MIN_ONEBITFULL 82 #define MIN_ONEBITHALF 35 #define MAX_BITDIFF 24 // Debug-Ports //#define debug // Testpulse for logic analyser #ifdef NODE_DEBUG #define debug #endif #ifdef debug #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define MODE_TP1 DDRF |= (1<<2) //pinA2 #define SET_TP1 PORTF |= (1<<2) #define CLR_TP1 PORTF &= ~(1<<2) #define MODE_TP2 DDRF |= (1<<3) //pinA3 #define SET_TP2 PORTF |= (1<<3) #define CLR_TP2 PORTF &= ~(1<<3) #define MODE_TP3 DDRF |= (1<<4) //pinA4 #define SET_TP3 PORTF |= (1<<4) #define CLR_TP3 PORTF &= ~(1<<4) #define MODE_TP4 DDRF |= (1<<5) //pinA5 #define SET_TP4 PORTF |= (1<<5) #define CLR_TP4 PORTF &= ~(1<<5) #elif defined(__AVR_ATmega32U4__) #define MODE_TP1 DDRF |= (1<<4) //A3 #define SET_TP1 PORTF |= (1<<4) #define CLR_TP1 PORTF &= ~(1<<4) #define MODE_TP2 DDRF |= (1<<5) //A2 #define SET_TP2 PORTF |= (1<<5) #define CLR_TP2 PORTF &= ~(1<<5) #define MODE_TP3 #define SET_TP3 #define CLR_TP3 #define MODE_TP4 #define SET_TP4 #define CLR_TP4 #elif defined(__AVR_ATmega328P__) #define MODE_TP1 DDRC |= (1<<1) //A1 #define SET_TP1 PORTC |= (1<<1) #define CLR_TP1 PORTC &= ~(1<<1) #define MODE_TP2 DDRC |= (1<<2) // A2 #define SET_TP2 PORTC |= (1<<2) #define CLR_TP2 PORTC &= ~(1<<2) #define MODE_TP3 DDRC |= (1<<3) //A3 #define SET_TP3 PORTC |= (1<<3) #define CLR_TP3 PORTC &= ~(1<<3) #define MODE_TP4 DDRC |= (1<<4) //A4 #define SET_TP4 PORTC |= (1<<4) #define CLR_TP4 PORTC &= ~(1<<4) #elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__)) // Teensys 3.x #define MODE_TP1 pinMode( A1,OUTPUT ) // A1= PortC, Bit0 #define SET_TP1 GPIOC_PSOR = 0x01 #define CLR_TP1 GPIOC_PCOR = 0x01 #define MODE_TP2 pinMode( A2,OUTPUT ) // A2= PortB Bit0 #define SET_TP2 GPIOB_PSOR = 0x01 #define CLR_TP2 GPIOB_PCOR = 0x01 #define MODE_TP3 pinMode( A3,OUTPUT ) // A3 = PortB Bit1 #define SET_TP3 GPIOB_PSOR = 0x02 #define CLR_TP3 GPIOB_PCOR = 0x02 #define MODE_TP4 pinMode( A4,OUTPUT ) // A4 = PortB Bit3 #define SET_TP4 GPIOB_PSOR = 0x08 #define CLR_TP4 GPIOB_PCOR = 0x08 #elif defined (__STM32F1__) // STM32F103... #define MODE_TP1 pinMode( PB12,OUTPUT ) // TP1= PB12 #define SET_TP1 gpio_write_bit( GPIOB,12, HIGH ); #define CLR_TP1 gpio_write_bit( GPIOB,12, LOW ); #define MODE_TP2 pinMode( PB13,OUTPUT ) // TP2= PB13 #define SET_TP2 gpio_write_bit( GPIOB,13, HIGH ); #define CLR_TP2 gpio_write_bit( GPIOB,13, LOW ); #define MODE_TP3 pinMode( PB14,OUTPUT ) // TP3 = PB14 #define SET_TP3 gpio_write_bit( GPIOB,14, HIGH ); #define CLR_TP3 gpio_write_bit( GPIOB,14, LOW ); #define MODE_TP4 pinMode( PB15,OUTPUT ) // TP4 = PB15 #define SET_TP4 gpio_write_bit( GPIOB,15, HIGH ); #define CLR_TP4 gpio_write_bit( GPIOB,15, LOW ); #elif defined(ESP8266) #define MODE_TP1 pinMode( D5,OUTPUT ) ; // GPIO 14 #define SET_TP1 GPOS = (1 << D5); #define CLR_TP1 GPOC = (1 << D5); #define MODE_TP2 pinMode( D6,OUTPUT ) ; // GPIO 12 #define SET_TP2 GPOS = (1 << D6); #define CLR_TP2 GPOC = (1 << D6); #define MODE_TP3 pinMode( D7,OUTPUT ) ; // GPIO 13 #define SET_TP3 GPOS = (1 << D7); #define CLR_TP3 GPOC = (1 << D7); #define MODE_TP4 pinMode( D8,OUTPUT ) ; // GPIO 15 #define SET_TP4 GPOS = (1 << D8); #define CLR_TP4 GPOC = (1 << D8); #elif defined(ESP32) #define MODE_TP1 pinMode( 33,OUTPUT ) ; // GPIO 33 #define SET_TP1 GPOS = (1 << 33); #define CLR_TP1 GPOC = (1 << 33); #define MODE_TP2 pinMode( 25,OUTPUT ) ; // GPIO 25 #define SET_TP2 GPOS = (1 << 25); #define CLR_TP2 GPOC = (1 << 25); #define MODE_TP3 pinMode( 26,OUTPUT ) ; // GPIO 26 #define SET_TP3 GPOS = (1 << 26); #define CLR_TP3 GPOC = (1 << 26); #define MODE_TP4 pinMode( 27,OUTPUT ) ; // GPIO 27 #define SET_TP4 GPOS = (1 << 27); #define CLR_TP4 GPOC = (1 << 27); //#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) #elif defined(NODE_DEBUG) #define PULLUP PLATFORM_GPIO_PULLUP #define OUTPUT PLATFORM_GPIO_OUTPUT #define HIGH PLATFORM_GPIO_HIGH #define LOW PLATFORM_GPIO_LOW #define MODE_TP1 platform_gpio_mode( 5, OUTPUT, PULLUP ); // GPIO 14 #define SET_TP1 platform_gpio_write(5, HIGH); #define CLR_TP1 platform_gpio_write(5, LOW); #define MODE_TP2 platform_gpio_mode( 6, OUTPUT, PULLUP ); // GPIO 12 #define SET_TP2 platform_gpio_write(6, HIGH); #define CLR_TP2 platform_gpio_write(6, LOW); #define MODE_TP3 platform_gpio_mode( 7, OUTPUT, PULLUP ); // GPIO 13 #define SET_TP3 platform_gpio_write(7, HIGH); #define CLR_TP3 platform_gpio_write(7, LOW); #define MODE_TP4 platform_gpio_mode( 8, OUTPUT, PULLUP ); // GPIO 15 #define SET_TP4 platform_gpio_write(8, HIGH); #define CLR_TP4 platform_gpio_write(8, LOW); #else #define MODE_TP1 #define SET_TP1 #define CLR_TP1 #define MODE_TP2 #define SET_TP2 #define CLR_TP2 #define MODE_TP3 #define SET_TP3 #define CLR_TP3 #define MODE_TP4 #define SET_TP4 #define CLR_TP4 #endif #else #define MODE_TP1 #define SET_TP1 #define CLR_TP1 #define MODE_TP2 #define SET_TP2 #define CLR_TP2 #define MODE_TP3 #define SET_TP3 #define CLR_TP3 #define MODE_TP4 #define SET_TP4 #define CLR_TP4 #endif #ifdef DEBUG_PRINT #ifdef NODEMCUDCC #define DB_PRINT NODE_DBG #else #define DB_PRINT( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.println( dbgbuf ); } #define DB_PRINT_( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.print( dbgbuf ); } #endif #else #define DB_PRINT( x, ... ) ; #define DB_PRINT_( x, ... ) ; #endif #ifdef DCC_DBGVAR struct countOf_t countOf; #endif #if defined ( __STM32F1__ ) static ExtIntTriggerMode ISREdge; #elif defined ( ESP32 ) static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING static byte ISRWatch; // Interrupt Handler Edge Filter #elif defined ( NODEMCUDCC ) static uint8_t ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING static int16_t bitMax, bitMin; DCC_MSG Msg ; #else static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING static byte ISRWatch; // Interrupt Handler Edge Filter #endif byte ISRLevel; // expected Level at DCC input during ISR ( to detect glitches ) byte ISRChkMask; // Flag if Level must be checked static word bitMax, bitMin; typedef enum { WAIT_PREAMBLE = 0, WAIT_START_BIT, #ifndef SYNC_ALWAYS WAIT_START_BIT_FULL, #endif WAIT_DATA, WAIT_END_BIT } DccRxWaitState ; typedef enum { OPS_INS_RESERVED = 0, OPS_INS_VERIFY_BYTE, OPS_INS_BIT_MANIPULATION, OPS_INS_WRITE_BYTE } OpsInstructionType; struct DccRx_t { DccRxWaitState State ; uint8_t DataReady ; uint8_t BitCount ; uint8_t TempByte ; uint8_t chkSum; DCC_MSG PacketBuf; DCC_MSG PacketCopy; } DccRx ; typedef struct { uint8_t Flags ; uint8_t OpsModeAddressBaseCV ; uint8_t inServiceMode ; long LastServiceModeMillis ; uint8_t PageRegister ; // Used for Paged Operations in Service Mode Programming uint8_t DuplicateCount ; DCC_MSG LastMsg ; #ifdef NODEMCUDCC uint8_t IntPin; uint8_t IntBitmask; #else uint8_t ExtIntNum; uint8_t ExtIntPinNum; volatile uint8_t *ExtIntPort; // use port and bitmask to read input at AVR in ISR uint8_t ExtIntMask; // digitalRead is too slow on AVR #endif int16_t myDccAddress; // Cached value of DCC Address from CVs uint8_t inAccDecDCCAddrNextReceivedMode; uint8_t cv29Value; #ifdef DCC_DEBUG uint8_t IntCount; uint8_t TickCount; uint8_t NestedIrqCount; #endif } DCC_PROCESSOR_STATE ; DCC_PROCESSOR_STATE DccProcState ; #ifdef ESP32 portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED; void IRAM_ATTR ExternalInterruptHandler(void) #elif defined(ESP8266) void ICACHE_RAM_ATTR ExternalInterruptHandler(void) #elif defined(NODEMCUDCC) task_handle_t DataReady_taskid; static uint32_t ICACHE_RAM_ATTR InterruptHandler (uint32_t ret_gpio_status) #else void ExternalInterruptHandler(void) #endif { SET_TP3; #ifdef NODEMCUDCC // This function really is running at interrupt level with everything // else masked off. It should take as little time as necessary. uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS); if ((gpio_status & DccProcState.IntBitmask) == 0) { return ret_gpio_status; } GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status & DccProcState.IntBitmask); ret_gpio_status &= ~(DccProcState.IntBitmask); #endif #ifdef ESP32 // switch (ISRWatch) // { // case RISING: if (digitalRead(DccProcState.ExtIntPinNum)) break; // case FALLING: if (digitalRead(DccProcState.ExtIntPinNum)) return; break; // } // First compare the edge we're looking for to the pin state switch (ISRWatch) { case CHANGE: break; case RISING: if (digitalRead(DccProcState.ExtIntPinNum) != HIGH) return; break; case FALLING: if (digitalRead(DccProcState.ExtIntPinNum) != LOW) return; break; } #endif // Bit evaluation without Timer 0 ------------------------------ uint8_t DccBitVal; static int8_t bit1, bit2 ; static unsigned int lastMicros = 0; #ifdef NODEMCUDCC static byte halfBit, preambleBitCount; #else static byte halfBit, DCC_IrqRunning, preambleBitCount; #endif unsigned int actMicros, bitMicros; #ifdef ALLOW_NESTED_IRQ if ( DCC_IrqRunning ) { // nested DCC IRQ - obviously there are glitches // ignore this interrupt and increment glitchcounter CLR_TP3; #ifdef DCC_DEBUG DccProcState.NestedIrqCount++; #endif SET_TP3; return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ } #endif #ifdef NODEMCUDCC actMicros = system_get_time(); #else actMicros = micros(); #endif bitMicros = actMicros-lastMicros; CLR_TP3; SET_TP3; #ifdef __AVR_MEGA__ if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && (*DccProcState.ExtIntPort & DccProcState.ExtIntMask) != (ISRLevel) ) ) { #elif defined(NODEMCUDCC) if ( bitMicros < bitMin ) { #else if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && digitalRead( DccProcState.ExtIntPinNum ) != (ISRLevel) ) ) { #endif // too short - my be false interrupt due to glitch or false protocol or level does not match RISING / FALLING edge -> ignore this IRQ CLR_TP3; SET_TP4; /*delayMicroseconds(1); */ CLR_TP4; #ifdef NODEMCUDCC return ret_gpio_status; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ #else return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ #endif } CLR_TP3; SET_TP3; lastMicros = actMicros; #ifndef SUPPORT_ZERO_BIT_STRETCHING //if ( bitMicros > MAX_ZEROBITFULL ) { if ( bitMicros > (bitMax*2) ) { // too long - my be false protocol -> start over DccRx.State = WAIT_PREAMBLE ; DccRx.BitCount = 0 ; preambleBitCount = 0; // SET_TP2; CLR_TP2; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; #if defined ( __STM32F1__ ) detachInterrupt( DccProcState.ExtIntNum ); #endif #ifdef ESP32 ISRWatch = ISREdge; #elif defined(NODEMCUDCC) gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge ); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge ); #endif // enable level-checking ISRChkMask = DccProcState.ExtIntMask; ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ; CLR_TP3; //CLR_TP3; return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ } CLR_TP3; SET_TP3; #endif DccBitVal = ( bitMicros < bitMax ); #ifdef ALLOW_NESTED_IRQ DCC_IrqRunning = true; interrupts(); // time critical is only the micros() command,so allow nested irq's #endif #ifdef DCC_DEBUG DccProcState.TickCount++; #endif switch( DccRx.State ) { case WAIT_PREAMBLE: // We don't have to do anything special - looking for a preamble condition is done always SET_TP2; break; #ifndef SYNC_ALWAYS case WAIT_START_BIT_FULL: // wait for startbit without level checking if ( !DccBitVal ) { // we got the startbit CLR_TP2;CLR_TP1; DccRx.State = WAIT_DATA ; CLR_TP1; // initialize packet buffer DccRx.PacketBuf.Size = 0; /*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ ) DccRx.PacketBuf.Data[i] = 0;*/ DccRx.PacketBuf.PreambleBits = preambleBitCount; DccRx.BitCount = 0 ; DccRx.chkSum = 0 ; DccRx.TempByte = 0 ; //SET_TP1; } break; #endif case WAIT_START_BIT: // we are looking for first half "0" bit after preamble switch ( halfBit ) { case 0: // check first part if ( DccBitVal ) { // is still 1-bit (Preamble) halfBit=1; bit1=bitMicros; } else { // was "0" half bit, maybe the startbit halfBit = 4; } break; case 1: // previous halfbit was '1' if ( DccBitVal ) { // its a '1' halfBit -> we are still in the preamble halfBit = 0; bit2=bitMicros; preambleBitCount++; if( abs(bit2-bit1) > MAX_BITDIFF ) { // the length of the 2 halfbits differ too much -> wrong protokoll DccRx.State = WAIT_PREAMBLE; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; preambleBitCount = 0; // SET_TP2; CLR_TP2; #if defined ( __STM32F1__ ) detachInterrupt( DccProcState.ExtIntNum ); #endif #ifdef ESP32 ISRWatch = ISREdge; #elif defined(NODEMCUDCC) gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge ); // enable level checking ( with direct port reading @ AVR ) ISRChkMask = DccProcState.ExtIntMask; ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ; #endif SET_TP3; CLR_TP4; } } else { // first '0' half detected in second halfBit // wrong sync or not a DCC protokoll CLR_TP3; halfBit = 3; SET_TP3; } break; case 3: // previous halfbit was '0' in second halfbit if ( DccBitVal ) { // its a '1' halfbit -> we got only a half '0' bit -> cannot be DCC DccRx.State = WAIT_PREAMBLE; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; preambleBitCount = 0; // SET_TP2; CLR_TP2; } else { // we got two '0' halfbits -> it's the startbit // but sync is NOT ok, change IRQ edge. CLR_TP2;CLR_TP1; if ( ISREdge == RISING ) ISREdge = FALLING; else ISREdge = RISING; DccRx.State = WAIT_DATA ; CLR_TP1; bitMax = MAX_ONEBITFULL; bitMin = MIN_ONEBITFULL; DccRx.PacketBuf.Size = 0; /*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ ) DccRx.PacketBuf.Data[i] = 0;*/ DccRx.PacketBuf.PreambleBits = preambleBitCount; DccRx.BitCount = 0 ; DccRx.chkSum = 0 ; DccRx.TempByte = 0 ; //SET_TP1; } //SET_TP4; #if defined ( __STM32F1__ ) detachInterrupt( DccProcState.ExtIntNum ); #endif #ifdef ESP32 ISRWatch = ISREdge; #elif defined(NODEMCUDCC) gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge ); #endif #ifndef NODEMCUDCC // enable level-checking ISRChkMask = DccProcState.ExtIntMask; ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ; //CLR_TP4; #endif break; case 4: // previous (first) halfbit was 0 // if this halfbit is 0 too, we got the startbit if ( DccBitVal ) { // second halfbit is 1 -> unknown protokoll DccRx.State = WAIT_PREAMBLE; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; preambleBitCount = 0; CLR_TP2;CLR_TP1; DccRx.BitCount = 0; } else { // we got the startbit CLR_TP2;CLR_TP1; DccRx.State = WAIT_DATA ; CLR_TP1; bitMax = MAX_ONEBITFULL; bitMin = MIN_ONEBITFULL; // initialize packet buffer DccRx.PacketBuf.Size = 0; /*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ ) DccRx.PacketBuf.Data[i] = 0;*/ DccRx.PacketBuf.PreambleBits = preambleBitCount; DccRx.BitCount = 0 ; DccRx.chkSum = 0 ; DccRx.TempByte = 0 ; //SET_TP1; } //SET_TP4; #if defined ( __STM32F1__ ) detachInterrupt( DccProcState.ExtIntNum ); #endif #ifdef ESP32 ISRWatch = ISREdge; #elif defined(NODEMCUDCC) gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge ); #endif #ifndef NODEMCUDCC // enable level-checking ISRChkMask = DccProcState.ExtIntMask; ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ; //CLR_TP4; #endif break; } break; case WAIT_DATA: CLR_TP2; DccRx.BitCount++; DccRx.TempByte = ( DccRx.TempByte << 1 ) ; if( DccBitVal ) DccRx.TempByte |= 1 ; if( DccRx.BitCount == 8 ) { if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort { DccRx.State = WAIT_PREAMBLE ; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; DccRx.BitCount = 0 ; } else { DccRx.State = WAIT_END_BIT ; DccRx.PacketBuf.Data[ DccRx.PacketBuf.Size++ ] = DccRx.TempByte ; DccRx.chkSum ^= DccRx.TempByte; } } break; case WAIT_END_BIT: SET_TP2;CLR_TP2; DccRx.BitCount++; if( DccBitVal ) { // End of packet? CLR_TP3; SET_TP4; DccRx.State = WAIT_PREAMBLE ; DccRx.BitCount = 0 ; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; SET_TP1; if ( DccRx.chkSum == 0 ) { // Packet is valid #ifdef ESP32 portENTER_CRITICAL_ISR(&mux); #endif DccRx.PacketCopy = DccRx.PacketBuf ; DccRx.DataReady = 1 ; #ifdef ESP32 portEXIT_CRITICAL_ISR(&mux); #elif defined(NODEMCUDCC) task_post_high(DataReady_taskid, (os_param_t) 0); #endif // SET_TP2; CLR_TP2; preambleBitCount = 0 ; } else { // Wrong checksum CLR_TP1; #ifdef DCC_DBGVAR DB_PRINT("Cerr"); countOf.Err++; #endif } SET_TP3; CLR_TP4; } else { // Get next Byte // KGW - Abort immediately if packet is too long. if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort { DccRx.State = WAIT_PREAMBLE ; bitMax = MAX_PRAEAMBEL; bitMin = MIN_ONEBITFULL; DccRx.BitCount = 0 ; } else { DccRx.State = WAIT_DATA ; DccRx.BitCount = 0 ; DccRx.TempByte = 0 ; } } } // unless we're already looking for the start bit // we always search for a preamble ( ( 10 or more consecutive 1 bits ) // if we found it within a packet, the packet decoding is aborted because // that much one bits cannot be valid in a packet. if ( DccRx.State != WAIT_START_BIT ) { if( DccBitVal ) { preambleBitCount++; //SET_TP2; if( preambleBitCount > 10 ) { CLR_TP2; #ifndef SYNC_ALWAYS if ( DccRx.chkSum == 0 ) { // sync must be correct if chksum was ok, no need to check sync DccRx.State = WAIT_START_BIT_FULL; } else { #endif DccRx.State = WAIT_START_BIT ; SET_TP2; // While waiting for the start bit, detect halfbit lengths. We will detect the correct // sync and detect whether we see a false (e.g. motorola) protocol #if defined ( __STM32F1__ ) detachInterrupt( DccProcState.ExtIntNum ); #endif #ifdef ESP32 ISRWatch = CHANGE; #elif defined(NODEMCUDCC) gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), CHANGE); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE); #endif ISRChkMask = 0; // AVR level check is always true with this settings ISRLevel = 0; // ( there cannot be false edge IRQ's with CHANGE ) halfBit = 0; bitMax = MAX_ONEBITHALF; bitMin = MIN_ONEBITHALF; //CLR_TP1; #ifndef SYNC_ALWAYS } #endif } } else { CLR_TP1; preambleBitCount = 0 ; // SET_TP2; CLR_TP2; } } #ifdef ALLOW_NESTED_IRQ DCC_IrqRunning = false; #endif //CLR_TP1; CLR_TP3; #ifdef NODEMCUDCC return ret_gpio_status; #endif } void ackCV(void) { if( notifyCVAck ) { DB_PRINT("ackCV: Send Basic ACK"); notifyCVAck() ; } } void ackAdvancedCV(void) { if( notifyAdvancedCVAck && (DccProcState.cv29Value & CV29_RAILCOM_ENABLE) ) { DB_PRINT("ackAdvancedCV: Send RailCom ACK"); notifyAdvancedCVAck() ; } } #ifndef NODEMCUDCC uint8_t readEEPROM( unsigned int CV ) { return EEPROM.read(CV) ; } void writeEEPROM( unsigned int CV, uint8_t Value ) { EEPROM.write(CV, Value) ; #if defined(ESP8266) EEPROM.commit(); #endif #if defined(ESP32) EEPROM.commit(); #endif } bool readyEEPROM() { #if defined ARDUINO_ARCH_MEGAAVR return bit_is_clear(NVMCTRL.STATUS,NVMCTRL_EEBUSY_bp); #elif defined __AVR_MEGA__ return eeprom_is_ready(); #else return true; #endif } #endif uint8_t validCV( uint16_t CV, uint8_t Writable ) { if( notifyCVResetFactoryDefault && (CV == CV_MANUFACTURER_ID ) && Writable ) notifyCVResetFactoryDefault(); if( notifyCVValid ) return notifyCVValid( CV, Writable ) ; #ifdef NODEMCUDCC return 0; #else uint8_t Valid = 1 ; if( CV > MAXCV ) Valid = 0 ; if( Writable && ( ( CV ==CV_VERSION_ID ) || (CV == CV_MANUFACTURER_ID ) ) ) Valid = 0 ; return Valid ; #endif } #ifdef NODEMCUDCC uint16_t readCV( unsigned int CV ) #else uint8_t readCV( unsigned int CV ) #endif { #ifndef NODEMCUDCC uint8_t Value ; #endif if( notifyCVRead ) return notifyCVRead( CV ) ; #ifndef NODEMCUDCC Value = readEEPROM(CV); return Value ; #else return 0; #endif } uint8_t writeCV( unsigned int CV, uint8_t Value) { switch( CV ) { case CV_29_CONFIG: // copy addressmode Bit to Flags Value = Value & ~CV29_RAILCOM_ENABLE; // Bidi (RailCom) Bit must not be enabled, // because you cannot build a Bidi decoder with this lib. DccProcState.cv29Value = Value; DccProcState.Flags = ( DccProcState.Flags & ~FLAGS_CV29_BITS) | (Value & FLAGS_CV29_BITS); // no break, because myDccAdress must also be reset case CV_ACCESSORY_DECODER_ADDRESS_LSB: // Also same CV for CV_MULTIFUNCTION_PRIMARY_ADDRESS case CV_ACCESSORY_DECODER_ADDRESS_MSB: case CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB: case CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB: DccProcState.myDccAddress = -1; // Assume any CV Write Operation might change the Address } if( notifyCVWrite ) return notifyCVWrite( CV, Value ) ; #ifdef NODEMCUDCC return 0; #else if( readEEPROM( CV ) != Value ) { writeEEPROM( CV, Value ) ; if( notifyCVChange ) notifyCVChange( CV, Value) ; if( notifyDccCVChange && !(DccProcState.Flags & FLAGS_SETCV_CALLED) ) notifyDccCVChange( CV, Value ); } return readEEPROM( CV ) ; #endif } uint16_t getMyAddr(void) { if( DccProcState.myDccAddress != -1 ) // See if we can return the cached value return( DccProcState.myDccAddress ); if( DccProcState.cv29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder? { if( DccProcState.cv29Value & CV29_OUTPUT_ADDRESS_MODE ) DccProcState.myDccAddress = ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) << 8 ) | readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ); else DccProcState.myDccAddress = ( ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) & 0b00000111) << 6 ) | ( readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ) & 0b00111111) ; } else // Multi-Function Decoder? { if( DccProcState.cv29Value & CV29_EXT_ADDRESSING ) // Two Byte Address? DccProcState.myDccAddress = ( ( readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB ) - 192 ) << 8 ) | readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB ) ; else DccProcState.myDccAddress = readCV( 1 ) ; } return DccProcState.myDccAddress ; } void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void (*ackFunction)() ) { // is it a Byte Operation if( Cmd & 0x04 ) { // Perform the Write Operation if( Cmd & 0x08 ) { if( validCV( CVAddr, 1 ) ) { DB_PRINT("CV: %d Byte Write: %02X", CVAddr, Value) if( writeCV( CVAddr, Value ) == Value ) ackFunction(); } } else // Perform the Verify Operation { if( validCV( CVAddr, 0 ) ) { DB_PRINT("CV: %d Byte Read: %02X", CVAddr, Value) if( readCV( CVAddr ) == Value ) ackFunction(); } } } // Perform the Bit-Wise Operation else { uint8_t BitMask = (1 << (Value & 0x07) ) ; uint8_t BitValue = Value & 0x08 ; uint8_t BitWrite = Value & 0x10 ; #ifdef NODEMCUDCC uint16_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value #else uint8_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value #endif #ifdef NODEMCUDCC if (tempValue <= 255) { DB_PRINT("CV: %d Current Value: %02X Bit-Wise Mode: %s Mask: %02X Value: %02X", CVAddr, tempValue, BitWrite ? "Write":"Read", BitMask, BitValue); #else DB_PRINT("CV: %d Current Value: %02X Bit-Wise Mode: %s Mask: %02X Value: %02X", CVAddr, tempValue, BitWrite ? "Write":"Read", BitMask, BitValue); #endif // Perform the Bit Write Operation if( BitWrite ) { if( validCV( CVAddr, 1 ) ) { if( BitValue ) tempValue |= BitMask ; // Turn the Bit On else tempValue &= ~BitMask ; // Turn the Bit Off if( writeCV( CVAddr, tempValue ) == tempValue ) ackFunction() ; } } // Perform the Bit Verify Operation else { if( validCV( CVAddr, 0 ) ) { if( BitValue ) { if( tempValue & BitMask ) ackFunction() ; } else { if( !( tempValue & BitMask) ) ackFunction() ; } } } #ifdef NODEMCUDCC } #endif } } ///////////////////////////////////////////////////////////////////////// #ifdef NMRA_DCC_PROCESS_MULTIFUNCTION void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Cmd, uint8_t Data1, uint8_t Data2 ) { uint8_t speed ; uint16_t CVAddr ; DCC_DIRECTION dir ; DCC_SPEED_STEPS speedSteps ; uint8_t CmdMasked = Cmd & 0b11100000 ; // NODE_DBG("[dcc_processMultiFunctionMessage] Addr: %d, Type: %d, Cmd: %d ("BYTE_TO_BINARY_PATTERN"), Data: %d, %d, CmdMasked="BYTE_TO_BINARY_PATTERN"\n", Addr, AddrType, Cmd, BYTE_TO_BINARY(Cmd), Data1, Data2, BYTE_TO_BINARY(CmdMasked)); // If we are an Accessory Decoder if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER ) { // NODE_DBG("[dcc_processMultiFunctionMessage] DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER\n"); // and this isn't an Ops Mode Write or we are NOT faking the Multifunction Ops mode address in CV 33+34 or // it's not our fake address, then return if( ( CmdMasked != 0b11100000 ) || ( DccProcState.OpsModeAddressBaseCV == 0 ) ) return ; uint16_t FakeOpsAddr = readCV( DccProcState.OpsModeAddressBaseCV ) | ( readCV( DccProcState.OpsModeAddressBaseCV + 1 ) << 8 ) ; uint16_t OpsAddr = Addr & 0x3FFF ; if( OpsAddr != FakeOpsAddr ) return ; } // We are looking for FLAGS_MY_ADDRESS_ONLY but it does not match and it is not a Broadcast Address then return else if( ( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY ) && ( Addr != getMyAddr() ) && ( Addr != 0 ) ) return ; NODE_DBG("[dcc_processMultiFunctionMessage] CmdMasked: %x\n", CmdMasked); switch( CmdMasked ) { case 0b00000000: // Decoder Control switch( Cmd & 0b00001110 ) { case 0b00000000: if( notifyDccReset) notifyDccReset( Cmd & 0b00000001 ) ; break ; case 0b00000010: // Factory Test break ; case 0b00000110: // Set Decoder Flags break ; case 0b00001010: // Set Advanced Addressing break ; case 0b00001110: // Decoder Acknowledgment break ; default: // Reserved ; } break ; case 0b00100000: // Advanced Operations switch( Cmd & 0b00011111 ) { case 0b00011111: if( notifyDccSpeed ) { switch( Data1 & 0b01111111 ) { case 0b00000000: // 0=STOP speed = 1 ; // => 1 break ; case 0b00000001: // 1=EMERGENCY_STOP speed = 0 ; // => 0 break ; default: // 2..127 speed = (Data1 & 0b01111111) ; } dir = (DCC_DIRECTION) ((Data1 & 0b10000000) >> 7) ; notifyDccSpeed( Addr, AddrType, speed, dir, SPEED_STEP_128 ) ; } } break; case 0b01000000: case 0b01100000: //TODO should we cache this info in DCC_PROCESSOR_STATE.Flags ? #ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE speedSteps = (DccProcState.cv29Value & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ; #else speedSteps = SPEED_STEP_28 ; #endif if( notifyDccSpeed ) { switch( Cmd & 0b00011111 ) { case 0b00000000: // 0 0000 = STOP case 0b00010000: // 1 0000 = STOP speed = 1 ; // => 1 break ; case 0b00000001: // 0 0001 = EMERGENCY STOP case 0b00010001: // 1 0001 = EMERGENCY STOP speed = 0 ; // => 0 break ; default: #ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE if( speedSteps == SPEED_STEP_14 ) { speed = (Cmd & 0b00001111) ; // => 2..15 } else { #endif speed = (((Cmd & 0b00001111) << 1 ) | ((Cmd & 0b00010000) >> 4)) - 2 ; // => 2..29 #ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE } #endif } dir = (DCC_DIRECTION) ((Cmd & 0b00100000) >> 5) ; notifyDccSpeed( Addr, AddrType, speed, dir, speedSteps ) ; } if( notifyDccSpeedRaw ) notifyDccSpeedRaw(Addr, AddrType, Cmd ); #ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE if( notifyDccFunc && (speedSteps == SPEED_STEP_14) ) { // function light is controlled by this package uint8_t fn0 = (Cmd & 0b00010000) ; notifyDccFunc( Addr, AddrType, FN_0, fn0 ) ; } #endif break; case 0b10000000: // Function Group 0..4 if( notifyDccFunc ) { // function light is controlled by this package (28 or 128 speed steps) notifyDccFunc( Addr, AddrType, FN_0_4, Cmd & 0b00011111 ) ; } break; case 0b10100000: // Function Group 5..8 if( notifyDccFunc) { if (Cmd & 0b00010000 ) notifyDccFunc( Addr, AddrType, FN_5_8, Cmd & 0b00001111 ) ; else notifyDccFunc( Addr, AddrType, FN_9_12, Cmd & 0b00001111 ) ; } break; case 0b11000000: // Feature Expansion Instruction switch(Cmd & 0b00011111) { case 0b00011110: if( notifyDccFunc ) notifyDccFunc( Addr, AddrType, FN_13_20, Data1 ) ; break; case 0b00011111: if( notifyDccFunc ) notifyDccFunc( Addr, AddrType, FN_21_28, Data1 ) ; break; } break; case 0b11100000: // CV Access CVAddr = ( ( ( Cmd & 0x03 ) << 8 ) | Data1 ) + 1 ; processDirectCVOperation( Cmd, CVAddr, Data2, ackAdvancedCV) ; break; } } #endif ///////////////////////////////////////////////////////////////////////// #ifdef NMRA_DCC_PROCESS_SERVICEMODE void processServiceModeOperation( DCC_MSG * pDccMsg ) { uint16_t CVAddr ; uint8_t Value ; if( pDccMsg->Size == 3) // 3 Byte Packets are for Address Only, Register and Paged Mode { uint8_t RegisterAddr ; DB_PRINT("CV Address, Register & Paged Mode Operation"); RegisterAddr = pDccMsg->Data[0] & 0x07 ; Value = pDccMsg->Data[1] ; if( RegisterAddr == 5 ) { DccProcState.PageRegister = Value ; ackCV(); } else { if( RegisterAddr == 4 ) CVAddr = CV_29_CONFIG ; else if( ( RegisterAddr <= 3 ) && ( DccProcState.PageRegister > 0 ) ) CVAddr = ( ( DccProcState.PageRegister - 1 ) * 4 ) + RegisterAddr + 1 ; else CVAddr = RegisterAddr + 1 ; if( pDccMsg->Data[0] & 0x08 ) // Perform the Write Operation { if( validCV( CVAddr, 1 ) ) { if( writeCV( CVAddr, Value ) == Value ) ackCV(); } } else // Perform the Verify Operation { if( validCV( CVAddr, 0 ) ) { if( readCV( CVAddr ) == Value ) ackCV(); } } } } else if( pDccMsg->Size == 4) // 4 Byte Packets are for Direct Byte & Bit Mode { DB_PRINT("CV Direct Byte and Bit Mode Mode Operation"); CVAddr = ( ( ( pDccMsg->Data[0] & 0x03 ) << 8 ) | pDccMsg->Data[1] ) + 1 ; Value = pDccMsg->Data[2] ; processDirectCVOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value, ackCV) ; } } #endif ///////////////////////////////////////////////////////////////////////// void resetServiceModeTimer(uint8_t inServiceMode) { if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode) { notifyServiceMode(inServiceMode); } // Set the Service Mode DccProcState.inServiceMode = inServiceMode ; DccProcState.LastServiceModeMillis = inServiceMode ? millis() : 0 ; if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode) { notifyServiceMode(inServiceMode); } } ///////////////////////////////////////////////////////////////////////// void clearDccProcState(uint8_t inServiceMode) { resetServiceModeTimer( inServiceMode ) ; // Set the Page Register to it's default of 1 only on the first Reset DccProcState.PageRegister = 1 ; // Clear the LastMsg buffer and DuplicateCount in preparation for possible CV programming DccProcState.DuplicateCount = 0 ; memset( &DccProcState.LastMsg, 0, sizeof( DCC_MSG ) ) ; } ///////////////////////////////////////////////////////////////////////// #ifdef DEBUG_PRINT void SerialPrintPacketHex(const __FlashStringHelper *strLabel, DCC_MSG * pDccMsg) { Serial.print( strLabel ); for( uint8_t i = 0; i < pDccMsg->Size; i++ ) { if( pDccMsg->Data[i] <= 9) Serial.print('0'); Serial.print( pDccMsg->Data[i], HEX ); Serial.write( ' ' ); } Serial.println(); } #endif /////////////////////////////////////////////////////////////////////////////// void execDccProcessor( DCC_MSG * pDccMsg ) { NODE_DBG("[dcc_execDccProcessor]\n"); if( ( pDccMsg->Data[0] == 0 ) && ( pDccMsg->Data[1] == 0 ) ) { if( notifyDccReset ) notifyDccReset( 0 ) ; #ifdef NMRA_DCC_PROCESS_SERVICEMODE // If this is the first Reset then perform some one-shot actions as we maybe about to enter service mode if( DccProcState.inServiceMode ) resetServiceModeTimer( 1 ) ; else clearDccProcState( 1 ); #endif } else { #ifdef NMRA_DCC_PROCESS_SERVICEMODE if( DccProcState.inServiceMode && ( pDccMsg->Data[0] >= 112 ) && ( pDccMsg->Data[0] < 128 ) ) { resetServiceModeTimer( 1 ) ; //Only check the DCC Packet "Size" and "Data" fields and ignore the "PreambleBits" as they can be different to the previous packet if(pDccMsg->Size != DccProcState.LastMsg.Size || memcmp( pDccMsg->Data, &DccProcState.LastMsg.Data, pDccMsg->Size ) != 0 ) { DccProcState.DuplicateCount = 0 ; memcpy( &DccProcState.LastMsg, pDccMsg, sizeof( DCC_MSG ) ) ; } // Wait until you see 2 identical packets before acting on a Service Mode Packet else { DccProcState.DuplicateCount++ ; processServiceModeOperation( pDccMsg ) ; } } else { if( DccProcState.inServiceMode ) clearDccProcState( 0 ); #endif // Idle Packet if( ( pDccMsg->Data[0] == 0b11111111 ) && ( pDccMsg->Data[1] == 0 ) ) { if( notifyDccIdle ) notifyDccIdle() ; } #ifdef NMRA_DCC_PROCESS_MULTIFUNCTION // Multi Function Decoders (7-bit address) else if( pDccMsg->Data[0] < 128 ) processMultiFunctionMessage( pDccMsg->Data[0], DCC_ADDR_SHORT, pDccMsg->Data[1], pDccMsg->Data[2], pDccMsg->Data[3] ) ; // Basic Accessory Decoders (9-bit) & Extended Accessory Decoders (11-bit) else if( pDccMsg->Data[0] < 192 ) #else else if( ( pDccMsg->Data[0] >= 128 ) && ( pDccMsg->Data[0] < 192 ) ) #endif { if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER ) { int16_t BoardAddress ; int16_t OutputAddress ; uint8_t TurnoutPairIndex ; #ifdef DEBUG_PRINT SerialPrintPacketHex(F( "eDP: AccCmd: "), pDccMsg); #endif BoardAddress = ( ( (~pDccMsg->Data[1]) & 0b01110000 ) << 2 ) | ( pDccMsg->Data[0] & 0b00111111 ) ; TurnoutPairIndex = (pDccMsg->Data[1] & 0b00000110) >> 1; DB_PRINT("[dcc_execDccProcessor] eDP: BAddr:%d, Index:%d", BoardAddress, TurnoutPairIndex); // First check for Legacy Accessory Decoder Configuration Variable Access Instruction // as it's got a different format to the others if((pDccMsg->Size == 5) && ((pDccMsg->Data[1] & 0b10001100) == 0b00001100)) { DB_PRINT( "eDP: Legacy Accessory Decoder CV Access Command"); // Check if this command is for our address or the broadcast address if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 )) { DB_PRINT("[dcc_execDccProcessor] eDP: Board Address Not Matched"); return; } uint16_t cvAddress = ((pDccMsg->Data[1] & 0b00000011) << 8) + pDccMsg->Data[2] + 1; uint8_t cvValue = pDccMsg->Data[3]; DB_PRINT("[dcc_execDccProcessor] eDP: CV:%d Value:%d", cvAddress, cvValue ); if(validCV( cvAddress, 1 )) writeCV(cvAddress, cvValue); return; } OutputAddress = (((BoardAddress - 1) << 2 ) | TurnoutPairIndex) + 1 ; //decoder output addresses start with 1, packet address range starts with 0 // ( according to NMRA 9.2.2 ) DB_PRINT("[dcc_execDccProcessor] eDP: OAddr:%d", OutputAddress); if( DccProcState.inAccDecDCCAddrNextReceivedMode) { if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) { DB_PRINT("eDP: Set OAddr:%d", OutputAddress); //uint16_t storedOutputAddress = OutputAddress + 1; // The value stored in CV1 & 9 for Output Addressing Mode is + 1 writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(OutputAddress % 256)); writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(OutputAddress / 256)); if( notifyDccAccOutputAddrSet ) notifyDccAccOutputAddrSet(OutputAddress); } else { DB_PRINT("eDP: Set BAddr:%d", BoardAddress); writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(BoardAddress % 64)); writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(BoardAddress / 64)); if( notifyDccAccBoardAddrSet ) notifyDccAccBoardAddrSet(BoardAddress); } DccProcState.inAccDecDCCAddrNextReceivedMode = 0; // Reset the mode now that we have set the address } // If we're filtering addresses, does the address match our address or is it a broadcast address? If NOT then return if( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY ) { if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) { DB_PRINT("[dcc_execDccProcessor] AddrChk: OAddr:%d, BAddr:%d, myAddr:%d Chk=%d", OutputAddress, BoardAddress, getMyAddr(), OutputAddress != getMyAddr() ); if ( OutputAddress != getMyAddr() && OutputAddress < 2045 ) { DB_PRINT("[dcc_execDccProcessor] eDP: OAddr:%d, myAddr:%d - no match", OutputAddress, getMyAddr() ); return; } } else { if( ( BoardAddress != getMyAddr() ) && ( BoardAddress < 511 ) ) { DB_PRINT("[dcc_execDccProcessor] eDP: BAddr:%d, myAddr:%d - no match", BoardAddress, getMyAddr() ); return; } } DB_PRINT("[dcc_execDccProcessor] eDP: Address Matched"); } if((pDccMsg->Size == 4) && ((pDccMsg->Data[1] & 0b10001001) == 1)) // Extended Accessory Decoder Control Packet Format { // According to the NMRA Dcc Spec the Signal State should only use the lower 5 Bits, // however some manufacturers seem to allow/use all 8 bits, so we'll relax that constraint for now uint8_t state = pDccMsg->Data[2] ; DB_PRINT("eDP: OAddr:%d Extended State:%0X", OutputAddress, state); if( notifyDccSigOutputState ) notifyDccSigOutputState(OutputAddress, state); // old callback ( for compatibility with 1.4.2, not to be used in new designs ) if( notifyDccSigState ) notifyDccSigState( OutputAddress, TurnoutPairIndex, pDccMsg->Data[2] ) ; } else if(pDccMsg->Size == 3) // Basic Accessory Decoder Packet Format { uint8_t direction = pDccMsg->Data[1] & 0b00000001; uint8_t outputPower = (pDccMsg->Data[1] & 0b00001000) >> 3; // old callback ( for compatibility with 1.4.2, not to be used in new designs ) if ( notifyDccAccState ) notifyDccAccState( OutputAddress, BoardAddress, pDccMsg->Data[1] & 0b00000111, outputPower ); if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) { DB_PRINT("eDP: OAddr:%d Turnout Dir:%d Output Power:%d", OutputAddress, direction, outputPower); if( notifyDccAccTurnoutOutput ) notifyDccAccTurnoutOutput( OutputAddress, direction, outputPower ); } else { DB_PRINT("eDP: Turnout Pair Index:%d Dir:%d Output Power: ", TurnoutPairIndex, direction, outputPower); if( notifyDccAccTurnoutBoard ) notifyDccAccTurnoutBoard( BoardAddress, TurnoutPairIndex, direction, outputPower ); } } else if(pDccMsg->Size == 6) // Accessory Decoder OPS Mode Programming { DB_PRINT("eDP: OPS Mode CV Programming Command"); // Check for unsupported OPS Mode Addressing mode if(((pDccMsg->Data[1] & 0b10001001) != 1) && ((pDccMsg->Data[1] & 0b10001111) != 0x80)) { DB_PRINT("eDP: Unsupported OPS Mode CV Addressing Mode"); return; } // Check if this command is for our address or the broadcast address if(DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE) { DB_PRINT("eDP: Check Output Address:%d", OutputAddress); if((OutputAddress != getMyAddr()) && ( OutputAddress < 2045 )) { DB_PRINT("eDP: Output Address Not Matched"); return; } } else { DB_PRINT("eDP: Check Board Address:%d", BoardAddress); if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 )) { DB_PRINT("eDP: Board Address Not Matched"); return; } } uint16_t cvAddress = ((pDccMsg->Data[2] & 0b00000011) << 8) + pDccMsg->Data[3] + 1; uint8_t cvValue = pDccMsg->Data[4]; OpsInstructionType insType = (OpsInstructionType)((pDccMsg->Data[2] & 0b00001100) >> 2) ; DB_PRINT("eDP: OPS Mode Instruction:%d", insType); switch(insType) { case OPS_INS_RESERVED: case OPS_INS_VERIFY_BYTE: DB_PRINT("eDP: Unsupported OPS Mode Instruction:%d", insType); break; // We only support Write Byte or Bit Manipulation case OPS_INS_WRITE_BYTE: DB_PRINT("eDP: CV:%d Value:%d", cvAddress, cvValue); if(validCV( cvAddress, 1 )) writeCV(cvAddress, cvValue); break; // 111CDBBB // Where BBB represents the bit position within the CV, // D contains the value of the bit to be verified or written, // and C describes whether the operation is a verify bit or a write bit operation. // C = "1" WRITE BIT // C = "0" VERIFY BIT case OPS_INS_BIT_MANIPULATION: // Make sure its a Write Bit Manipulation if((cvValue & 0b00010000) && validCV(cvAddress, 1 )) { uint8_t currentValue = readCV(cvAddress); uint8_t newValueMask = 1 << (cvValue & 0b00000111); if(cvValue & 0b00001000) writeCV(cvAddress, currentValue | newValueMask); else writeCV(cvAddress, currentValue & ~newValueMask); } break; } } } } #ifdef NMRA_DCC_PROCESS_MULTIFUNCTION // Multi Function Decoders (14-bit address) else if( pDccMsg->Data[0] < 232 ) { uint16_t Address ; Address = ( ( pDccMsg->Data[0] - 192 ) << 8 ) | pDccMsg->Data[1]; //TODO should we convert Address to 1 .. 10239 ? processMultiFunctionMessage( Address, DCC_ADDR_LONG, pDccMsg->Data[2], pDccMsg->Data[3], pDccMsg->Data[4] ) ; } #endif #ifdef NMRA_DCC_PROCESS_SERVICEMODE } #endif } } //////////////////////////////////////////////////////////////////////// #ifndef NODEMCUDCC NmraDcc::NmraDcc() { } #ifdef digitalPinToInterrupt void NmraDcc::pin( uint8_t ExtIntPinNum, uint8_t EnablePullup) { pin(digitalPinToInterrupt(ExtIntPinNum), ExtIntPinNum, EnablePullup); } #endif void NmraDcc::pin( uint8_t ExtIntNum, uint8_t ExtIntPinNum, uint8_t EnablePullup) { #if defined ( __STM32F1__ ) // with STM32F1 the interuptnumber is equal the pin number DccProcState.ExtIntNum = ExtIntPinNum; // because STM32F1 has a NVIC we must set interuptpriorities const nvic_irq_num irqNum2nvic[] = { NVIC_EXTI0, NVIC_EXTI1, NVIC_EXTI2, NVIC_EXTI3, NVIC_EXTI4, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10 }; exti_num irqNum = (exti_num)(PIN_MAP[ExtIntPinNum].gpio_bit); // DCC-Input IRQ must be able to interrupt other long low priority ( level15 ) IRQ's nvic_irq_set_priority ( irqNum2nvic[irqNum], PRIO_DCC_IRQ); // Systic must be able to interrupt DCC-IRQ to always get correct micros() values nvic_irq_set_priority(NVIC_SYSTICK, PRIO_SYSTIC); #else DccProcState.ExtIntNum = ExtIntNum; #endif DccProcState.ExtIntPinNum = ExtIntPinNum; #ifdef __AVR_MEGA__ // because digitalRead at AVR is slow, we will read the dcc input in the ISR // by direct port access. DccProcState.ExtIntPort = portInputRegister( digitalPinToPort(ExtIntPinNum) ); DccProcState.ExtIntMask = digitalPinToBitMask( ExtIntPinNum ); #else DccProcState.ExtIntMask = 1; #endif pinMode( ExtIntPinNum, EnablePullup ? INPUT_PULLUP : INPUT ); } //////////////////////////////////////////////////////////////////////// void NmraDcc::initAccessoryDecoder( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV ) { init(ManufacturerId, VersionId, Flags | FLAGS_DCC_ACCESSORY_DECODER, OpsModeAddressBaseCV); } #endif //#ifndef NODEMCUDCC //////////////////////////////////////////////////////////////////////// #ifdef NODEMCUDCC void dcc_setup(uint8_t pin, uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV) #else void NmraDcc::init( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV ) #endif { #if defined(ESP8266) EEPROM.begin(MAXCV); #endif #if defined(ESP32) EEPROM.begin(MAXCV); #endif // Clear all the static member variables memset( &DccRx, 0, sizeof( DccRx) ); MODE_TP1; // only for debugging and timing measurement MODE_TP2; MODE_TP3; MODE_TP4; bitMax = MAX_ONEBITFULL; bitMin = MIN_ONEBITFULL; DccProcState.Flags = Flags ; DccProcState.OpsModeAddressBaseCV = OpsModeAddressBaseCV ; DccProcState.myDccAddress = -1; DccProcState.inAccDecDCCAddrNextReceivedMode = 0; ISREdge = RISING; #ifdef NODEMCUDCC DccProcState.IntPin = pin; DccProcState.IntBitmask = 1 << pin_num[pin]; #else // level checking to detect false IRQ's fired by glitches ISRLevel = DccProcState.ExtIntMask; ISRChkMask = DccProcState.ExtIntMask; #endif #ifdef ESP32 ISRWatch = ISREdge; attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE); #elif defined(NODEMCUDCC) platform_gpio_mode(pin, PLATFORM_GPIO_INT, PLATFORM_GPIO_PULLUP); NODE_DBG("[dcc_setup] platform_gpio_register_intr_hook - pin: %d, mask: %d\n", DccProcState.IntPin, DccProcState.IntBitmask); platform_gpio_register_intr_hook(DccProcState.IntBitmask, InterruptHandler); gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[pin]), RISING); #else attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, RISING); #endif // Set the Bits that control Multifunction or Accessory behaviour // and if the Accessory decoder optionally handles Output Addressing // we need to peal off the top two bits DccProcState.cv29Value = writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ; uint8_t doAutoFactoryDefault = 0; if((Flags & FLAGS_AUTO_FACTORY_DEFAULT) && (readCV(CV_VERSION_ID) == 255) && (readCV(CV_MANUFACTURER_ID) == 255)) doAutoFactoryDefault = 1; writeCV( CV_VERSION_ID, VersionId ) ; writeCV( CV_MANUFACTURER_ID, ManufacturerId ) ; clearDccProcState( 0 ); if(notifyCVResetFactoryDefault && doAutoFactoryDefault) notifyCVResetFactoryDefault(); } #ifndef NODEMCUDCC //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::getCV( uint16_t CV ) { return readCV(CV); } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::setCV( uint16_t CV, uint8_t Value) { DccProcState.Flags |= FLAGS_SETCV_CALLED; uint8_t returnValue = writeCV(CV,Value); DccProcState.Flags &= ~FLAGS_SETCV_CALLED; return returnValue; } //////////////////////////////////////////////////////////////////////// uint16_t NmraDcc::getAddr(void) { return getMyAddr(); } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::isSetCVReady(void) { if(notifyIsSetCVReady) return notifyIsSetCVReady(); return readyEEPROM(); } //////////////////////////////////////////////////////////////////////// #ifdef DCC_DEBUG uint8_t NmraDcc::getIntCount(void) { return DccProcState.IntCount; } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::getTickCount(void) { return DccProcState.TickCount; } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::getNestedIrqCount(void) { return DccProcState.NestedIrqCount; } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::getState(void) { return DccRx.State; } //////////////////////////////////////////////////////////////////////// uint8_t NmraDcc::getBitCount(void) { return DccRx.BitCount; } #endif //////////////////////////////////////////////////////////////////////// void NmraDcc::setAccDecDCCAddrNextReceived(uint8_t enable) { DccProcState.inAccDecDCCAddrNextReceivedMode = enable; } #endif //#ifndef NODEMCUDCC //////////////////////////////////////////////////////////////////////// #ifdef NODEMCUDCC static uint8_t process (os_param_t param, uint8_t prio) #else uint8_t NmraDcc::process() #endif { if( DccProcState.inServiceMode ) { if( (millis() - DccProcState.LastServiceModeMillis ) > 20L ) { clearDccProcState( 0 ) ; } } if( DccRx.DataReady ) { // We need to do this check with interrupts disabled #ifdef ESP32 portENTER_CRITICAL(&mux); #elif defined(NODEMCUDCC) ETS_GPIO_INTR_DISABLE(); #else noInterrupts(); #endif Msg = DccRx.PacketCopy ; DccRx.DataReady = 0 ; #ifdef ESP32 portEXIT_CRITICAL(&mux); #elif defined(NODEMCUDCC) ETS_GPIO_INTR_ENABLE(); #else interrupts(); #endif // Checking of the XOR-byte is now done in the ISR already #ifdef DCC_DBGVAR countOf.Tel++; #endif // Clear trailing bytes for ( byte i=Msg.Size; i< MAX_DCC_MESSAGE_LEN; i++ ) Msg.Data[i] = 0; if( notifyDccMsg ) notifyDccMsg( &Msg ); NODE_DBG("[dcc_process] Size: %d\tPreambleBits: %d\t%d, %d, %d, %d, %d, %d\n", Msg.Size, Msg.PreambleBits, Msg.Data[0], Msg.Data[1], Msg.Data[2], Msg.Data[3], Msg.Data[4], Msg.Data[5]); execDccProcessor( &Msg ); return 1 ; } return 0 ; }; #ifdef NODEMCUDCC void dcc_close() { NODE_DBG("[dcc_close]\n"); platform_gpio_mode(DccProcState.IntPin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); } void dcc_init() { NODE_DBG("[dcc_init]\n"); DataReady_taskid = task_get_id((task_callback_t) process); } #endif